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Abstract

Mathematical modeling of lithium-ion batteries (LiBs) is a primary challenge in advanced battery management.

This paper proposes two new frameworks to integrate physics-based models with machine learning to achieve high-

precision modeling for LiBs. The frameworks are characterized by informing the machine learning model of the state

information of the physical model, enabling a deep integration between physics and machine learning. Based on the

frameworks, a series of hybrid models are constructed, through combining an electrochemical model and an equivalent

circuit model, respectively, with a feedforward neural network. The hybrid models are relatively parsimonious in

structure and can provide considerable voltage predictive accuracy under a broad range of C-rates, as shown by

extensive simulations and experiments. The study further expands to conduct aging-aware hybrid modeling, leading

to the design of a hybrid model conscious of the state-of-health to make prediction. The experiments show that the

model has high voltage predictive accuracy throughout a LiB’s cycle life.
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1. Introduction

Lithium-ion batteries (LiBs) represent a key energy storage technology for our industry and society. Today, they

not only power billions of consumer electronics devices, but also enable electrified transportation, smart grid, and

renewable energy adoption to drive the world forward into a decarbonized energy future. The surging use of LiBs has

led to ever-growing demands for higher operating performance and safety. Optimal operation of LiBs involves state

estimation, control, and diagnosis, which all rely on accurate and efficient dynamic models of LiBs. Mathematical

modeling of LiBs hence has attracted intense research interest in the past decade [1, 2]. In this paper, we propose to

integrate physics-based modeling with data-driven machine learning to develop a new breed of models that harness

their respective merits. The proposed models will be shown to offer high voltage predictive accuracy, computational

efficiency and applicability to a broad range of C-rates.
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1.1. Literature Review

The literature includes two main types of physics-based LiB models, namely, electrochemical models and equiva-

lent circuit models (ECMs). Electrochemical models use electrochemical principles to comprehensively characterize

the electrochemical reactions, lithium-ion diffusion and concentration changes in the electrode/electrolyte, as well

as various associated processes during charging/discharging of LiBs. A well-known electrochemical model is the

Doyle-Fuller-Newman (DFN) model, which is broadly considered reliable and precise enough for almost all LiB

management scenarios [3, 4]. Its accuracy yet comes with enormous computational complexity. This hence has mo-

tivated an incessant search for streamlined electrochemical models to balance between accuracy and computational

costs. The single particle model (SPM) is one of the most parsimonious, which represents each electrode as a spher-

ical particle and delineates lithium-ion intercalation and diffusion in the particles [5]. With its simplified structure, it

is computationally fast but accurate only for low to medium C-rates (below 1 C-rate). Based on the SPM, there is a

wide range of improved versions for higher accuracy under different conditions. They usually supplement the SPM

with characterizations of thermal behavior [6, 7], electrolyte dynamics [8–11], degradation physics [12], and stress

buildup [11]. Another important line of research lies in applying model order reduction methods to the DFN, SPM or

other electrochemical models, with the aim of accelerating numerical computation [13–19].

Differently, ECMs leverage electrical circuits, usually based on resistors, capacitors, and voltage sources, to cap-

ture LiBs’ current/voltage dynamics in a physically interpretable way. Compared to electrochemical models, ECMs

have greatly more parsimonious structures and simpler governing equations, thus advantageous for computation and

conducive to real-time control, prediction, and simulation. Some widely used ECMs include the Rint model, the

Thevenin model, and the Dual Polarization model [20–22]. Recent literature has expanded the development of ECMs

toward better prediction accuracy. Some studies seek to account for the effects of hysteresis and temperature on a

LiB’s electrical dynamics [23–27]. Others design new ECMs to approximate certain electrochemical models [28–32].

While ECMs have found increasing popularity, their structural simplicity restricts their accuracy, making them useful

only for low to medium C-rates.

For all the aforementioned models, their effectiveness and fidelity will decrease as a LiB ages, since many param-

eters of a model can change drastically with the LiB’s state-of-health (SoH). This hence has stimulated research on

aging-aware modeling, where electrochemical models [33–38] or ECMs [24, 39–42] are coupled with different aging

or degradation mechanisms intrinsic to LiBs.

Besides physical modeling, extracting models from data directly has become appealing, as ubiquitous onboard

sensing has increased data availability for today’s LiB systems. Machine learning (ML) tools, such as neural networks

(NNs) [43] and support vector machine [44], have been used to learn battery models from measurement data. These

ML models are black-box approximations of LiBs’ dynamics. Bypassing the use of physical principles, they can be

constructed from data conveniently in practice and sufficiently accurate if trained on rich, informative enough data.

Meanwhile, data can help grasp various uncertain factors that affect a LiB cell’s dynamic behaviors. However, unlike

physics-based models, pure ML models generally lack generalizability and risk producing physically unreasonable or
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incorrect prediction in out-of-sample scenarios. Also, training them often requires large amounts of high-quality data,

which may not always be possible.

A close inspection indicates that physical modeling and ML modeling are constructively complementary to each

other. On the one hand, physics-based models can offer physical interpretations of LiBs’ dynamic behaviors and

extrapolate to any charging/discharging scenarios meeting model assumptions. However, they either require much

computation, as in the case of the DFN, or have inadequate accuracy when the model assumptions are not satisfied—

for instance, the SPM and ECMs, usually designed for low to medium C-rates, will poorly predict LiBs’ dynamics

at high C-rates. Besides, some physical parameters of these models, like the diffusion coefficients in electrochemical

models and resistances in ECMs, are subject to change due to different operating conditions, such as temperature and

LiB’s aging. This will eventually result in model mismatch if these parameters are not corrected in time. On the other

hand, ML-based modeling is able to extract complicated input-to-output relationships underlying data, especially

those evading precise characterization by physical principles or suffering uncertainty. As another benefit, ML models,

once after being trained on datasets, can run fast with only fixed computational costs. Based on the above, there is

an emerging interest in hybrid physics-ML modeling for LiBs to combine the respective merits of the two modeling

approaches. The study in [45] couples a one-dimensional electrochemical model with different kinds of NNs. In [46],

recurrent NNs are used to learn the residuals between a LiB’s terminal voltage and the SPM’s output voltage. In [47], a

simplified SPM and a lumped thermal model are combined with an NN in series to predict the terminal voltage. These

hybrid models have a similar underlying structure—an NN takes the current and output voltage of a physical model as

its input, and predicts the residual or actual terminal voltage as its output. However, from a physical perspective, the

mappings represented by such NNs do not effectively hold at the level of LiBs’ dynamics. The NNs, and consequently

the hybrid models, are often not accurate enough in prediction even if they can achieve satisfactory training accuracy.

Therefore, while the present studies indicate a promise of hybrid modeling for LiBs, this subject is still underexplored

to live up to its potential.

1.2. Contributions

The goal of our study is to develop hybrid physics-ML models to enable highly accurate voltage prediction while

preserving low computational complexity for LiBs, as visualized in Fig. 1. As pointed out in the literature survey, the

existing hybrid models, e.g., [45–47], use NNs to learn relationships or mappings that are not physically meaningful,

and thus see their predictive accuracy limited. To overcome this limitation, we propose a new perspective: the NN

must be informed of the internal state of the physical model to correctly learn what the physical model misses in

comparison to the actual physics of LiBs. In other words, the success of a hybrid model depends on whether the NN

represents a physically sound mapping; to this end, the NN must be made to take the physical model’s state as an

input. The perspective leads us to develop the following specific contributions.

• We develop two hybrid physics-ML LiB modeling frameworks, named as HYBRID-1 and HYBRID-2, respec-

tively, which integrate physical LiB models with feedforward neural networks (FNNs). HYBRID-1 leverages
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Figure 1: Comparison of physics-based models for LiB and their applicable current range.

an FNN to capture the residuals of a physical model, and HYBRID-2 uses an FNN to predict the terminal volt-

age based on a physical model. Different from the literature, both of them critically feed state information of

the physical model to the FNN. In particular, we provide a mathematical reasoning to prove that the designed

frameworks are physically reasonable.

• We apply the above frameworks to effectively integrate electrochemical models and ECMs with FNNs. Our first

effort combines the SPM with thermal dynamics (SPMT) with an FNN, and the second blends the nonlinear

double capacitor (NDC) model, an ECM proposed recently in [28, 29], with an FNN. The developed models,

first of their kind, are validated via extensive simulations or experiments, demonstrating high voltage predictive

accuracy across broad C-rate ranges.

• We further propose to incorporate aging awareness into hybrid modeling and develop an upgraded hybrid model

that utilizes a LiB cell’s SoH information for voltage prediction. The model is shown capable of making accurate

prediction throughout a cell’s cycle life.

Compared to the existing hybrid models, the proposed frameworks and models can generalize and predict precisely

beyond training datasets, thanks to the distinct attribute of making the FNN aware of the physical model’s state. They

may find potential use in various LiB energy storage applications, especially those involving high C-rates and high

power load conditions. A further view of their applications is given in Section 6.

1.3. Organization

This paper is organized as follows. Section 2 presents the two proposed hybrid modeling frameworks. Based

on the frameworks, Sections 3-4 develop hybrid models based on integrating the SPMT and the NDC with FNNs,
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Figure 2: Block diagrams of (a) the HYBRID-1 framework and (b) the HYBRID-2 framework.

respectively, and validate them. Then, Section 5 constructs an aging-aware hybrid model based upon Sections 3-4 and

verifies the results. Finally, Section 6 concludes the study.

A preliminary conference version of the work appeared in [48], which deals with only the integration of elec-

trochemical modeling with ML. This paper introduces significant extensions to improve the study in both depth and

breadth. The extensions include the following: 1) the addition of a mathematical rationale to explain the correctness

of the proposed hybrid modeling frameworks, 2) the development of new hybrid models by integrating an ECM with

ML, and evaluation of them by experiments, and 3) the expansion of the proposed frameworks to aging-aware hybrid

modeling along with experimental validation.

2. Hybrid Physics-ML Modeling for LiBs

In this section, we present two hybrid physics-ML modeling frameworks, referring to them as HYBRID-1 and

HYBRID-2, respectively. They both are designed to blend physical modeling with an FNN, and their difference lies

in the learning objective set for the FNN. We further provide an overview of FNNs for the sake of completeness.

2.1. The Proposed Hybrid Modeling Frameworks

As shown in Fig. 2a, HYBRID-1 is composed of a physical model in cascade with an FNN, with them operating

simultaneously. The physical model approximately represents a LiB cell’s electrochemical, electrical, or thermal

behaviors. It is not perfectly accurate relative to the cell’s true dynamics, due to inevitable model mismatch or

uncertainty. The FNN is used to learn biases of the physical model. Here, it is set to capture ∆V = Vtrue − Vphy, which

is the physical model’s residual error with respect to the true terminal voltage. Leveraging the FNN’s prediction ∆V

to correct Vphy, HYBRID-1 will output Vhybrid = Vphy + ∆V to emulate the cell’s actual voltage. As an extension, we

propose HYBRID-2 shown in Fig. 2b, in which the FNN is made to learn the LiB’s terminal voltage Vtrue directly,

rather than the residual. By design, the FNN here is also informed of the state information of the physical model as in

HYBRID-1.
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It is critical to select the input variables of the FNN so that the FNN can learn correct relationships consistent with

the LiB cell’s true dynamics. We propose that the FNN should take the physical model’s state information X and the

applied current I as its input. The reasoning is as follows. Without loss of generality, let us consider that the LiB’s

actual dynamics follows a high-dimensional nonlinear model of the form
ξ̇ = f (ξ, I),

Vtrue = h(ξ, I),
(1)

where ξ ∈ Rp is the full-order state. The model may be derived from the ordinary differential equations or dis-

cretization of the partial differential equations governing the LiB [13, 17, 19]. The physical model can be viewed as a

reduced-order representation of the LiB’s full actual dynamics, which approximates the original model in (1) as
Ẋ = fr(X, I),

Vphy = hr(X, I),
(2)

where X ∈ Rq with q ≪ p is the reduced-order state. From the perspective of model order reduction, one can view X

as the result of projecting the full state ξ into a low-dimensional space. The projection can be described as X = σ(ξ),

where σ : Rp → Rq. Note that it is not possible to exactly reconstruct ξ using X. However, since both ξ and X

represent or reflect the state of the same LiB, it is reasonable to assume that there exists a nonlinear transformation to

approximately project X back to ξ:

ξ = ψ(X, I) + ϵ, (3)

where ϵ is the approximation error. Then, according to (1)-(3), the residual ∆V can be expressed as

∆V = Vtrue − Vphy = h(ψ(X, I) + ϵ, I) − hr(X, I) ≈ h (ψ(X, I), I) − hr(X, I),

where the approximate equality follows from the zeroth-order Taylor expansion of h(ψ(X, I) + ϵ, I) around X and

ϵ = 0. This implies an approximate mapping (X, I)→ ∆V . We hence can use an FNN to learn this mapping as in the

HYBRID-1 framework, with (X, I) as the input and ∆V as the output of the FNN. Following similar lines, we can find

Vtrue ≈ h (ψ(X, I), I) .

This relation justifies using an FNN to learn the approximate mapping (X, I) → Vtrue, as is done in the HYBRID-2

framework.

Remark 1. The pivotal difference of the above hybrid modeling design from the literature, e.g., [45–47], is that

information about the physical model’s state is fed as part of the input to the FNN. This, as is reasoned above, makes

the FNN capable of learning physically consistent relationships, and the resultant tighter physics-ML integration will

lead to enhanced accuracy in prediction.

6



1

𝑥1

𝑥2

𝑥3

𝑥𝑚

𝑦𝑛

Input 
layer

Hidden layers
Output 

layer

𝑦2

Figure 3: FNN architecture with two fully connected hidden layers.

Remark 2. HYBRID-1 and HYBRID-2 are modular and extensible frameworks that allow execution in versatile ways

to construct different hybrid models. First, one can use either an electrochemical model or an ECM as the physical

model component, depending on the specific objective of hybrid modeling. To demonstrate this, we will exploit the

SPMT model and the NDC model, respectively, in Sections 3-4. Further, the frameworks can be readily extended to

meet more needs. For instance, in Section 5, we will incorporate the SoH information into the formulation, enabling

the FNN to make prediction with an awareness of a LiB’s aging condition. This improvement will lead to hybrid

models being able to predict voltage dynamics throughout the LiB’s cycle life. Finally, the frameworks are open to

using other ML models, e.g., Gaussian processes or support vector machines, even though this study focuses on the

FNN.

Remark 3. Physics-informed ML for battery modeling has attracted growing attention recently. Among the few stud-

ies, NNs are used in [49] to estimate the internal states of a physical model, e.g., concentrations and potentials in the

electrodes and the electrolyte, and in [50] to capture the variability in the non-ideal voltage term of an electrochemi-

cal model. While these are meaningful ways to enhance battery modeling, this paper pursues a different goal of using

physics-informed ML for highly accurate voltage prediction over broad C-rate ranges. This type of battery modeling

is useful and important for a variety of battery management tasks, and its potential applications is further discussed

in Section 6.

2.2. The FNN Model

FNNs are an important class of ML methods designed to approximate complex functions. Their network structure

contains no cycle or feedback connections, making them the simplest type of NNs and easy to train and implement.

The theoretical performance of FNNs is guaranteed by the universal approximation theorem, which generally states

that a continuous vector-valued function in the real space can be approximated with arbitrary accuracy by an FNN [51].

An overview of FNNs is offered below, which is mainly based on [52, 53].
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Consider an unknown function g∗, which is a mapping from an m-dimensional input x to an n-dimensional output

y. An FNN aims to approximate it by defining a parameterized mapping y = g (x, θ) and learning the collection of

parameters θ from the data
{
(xi, yi), i = 1, 2, . . . ,N

}
. As Fig. 3 shows, the structure of an FNN includes three parts

interconnected in series, namely the input layer, hidden layers, and output layer. The input layer takes the input x

and passes it to the first hidden layer. A hidden layer makes a nonlinear transformation of its input. For example, the

first hidden layer will transform x into ϕ(W1x+ b1), where ϕ is a chosen nonlinear mapping often called as activation

function, W1 is the weight matrix, and b1 is a correction term. The following hidden layers then run similar nonlinear

transformations sequentially. Finally, the output layer generates an output value to match y. An L-layer FNN can be

described in a general form:

z1 = x,

zl = ϕ (Wl−1 zl−1 + bl−1) , l = 2, 3, . . . , L − 1,

y =WL−1 zL−1 + bL−1,

where zl−1 and zl are the input and output of the l-th layer, respectively. Note that the information flows only in the

forward direction from x to y in the above network model, which is why the model is called as f eed f orward NN.

For the FNN, θ is the collection of Wl and bl for l = 1, 2, . . . , L − 1. The training of the FNN is to identify θ from

the measurement data
{
(xi, yi)

}
. A common approach is based on maximum likelihood estimation, which minimizes

the following cost function:

J(θ) = −Ex,y∼ p̂data log pmodel (y | x, θ) ,

where p̂data is the data-based empirical distribution of x and y, and pmodel is the probability distribution of y over the

parameter space θ based on the FNN model. Under some assumptions, J(θ) can reduce to a mean squared error cost:

J(θ) =
1
N

N∑
i=1

∥∥∥yi − g (xi, θ)
∥∥∥2
.

The minimization is usually achieved using stochastic gradient descent algorithms. The computation of the gradient

can be complicated, especially for multi-layer FNNs, but it can still be done efficiently by the back-propagation

algorithm or its generalizations.

3. Hybrid Modeling via SPMT+FNN

Based on the HYBRID-1 and HYBRID-2 frameworks, we integrate the SPMT model with an FNN to build two

hybrid models, named as SPMTNet-1 and SPMTNet-2, respectively. The proposed models are validated via extensive

simulations.
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3.1. The SPMTNet-1 and SPMTNet-2 Models

Developed in [6], the SPMT model couples the SPM model with a bulk thermal model to predict the electrochem-

ical and thermal behaviors simultaneously. The SPM simplifies each electrode of a LiB cell as a spherical particle

and disregards the electrolyte dynamics. The transport of the lithium ions inside a particle is governed by the Fick’s

diffusion law in spherical coordinates:

∂c±s
∂t

(r, t) =
1
r2

∂

∂r

[
D±s r2 ∂c±s

∂r
(r, t)

]
, (4)

where c±s (r, t) is the solid-phase lithium-ion concentration of positive (+) or negative (−) electrode, and D±s is the

solid-phase diffusion coefficient. The boundary conditions of (4) are given by

∂c±s
∂r

(0, t) = 0 and
∂c±s
∂r

(R±s , t) = −
1

D±s
j±n ,

where R±s is the particle radius and j±n is the molar flux at the particle surface. Here,

j±n = ∓
I(t)

a±s FAL±
,

where a±s is the specific interfacial area, F is the Faraday’s constant, A is an electrode’s surface area, and L± is the

electrode’s thickness. Further, j±n results from the electrochemical kinetics and depends on the overpotential of the

electrodes η±. The relation is characterized by the Butler-Volmer equation:

j±n =
1
F

i±0
[
exp

(
αaF
RT

η±
)
− exp

(
−αcF
RT

η±
)]
. (5)

Here, αa and αc are the anodic and cathodic charge transfer coefficients, respectively, and i±0 is the exchange current

density given by

i±0 = k±
(
c0

e

)αa (
c±ss(t)

)αc
(
c±s,max − c±ss(t)

)αa
,

where k± is the kinetic reaction rate, c0
e is the constant electrolyte-phase lithium-ion concentration, c±ss(t) = c±s

(
R±s , t

)
is the solid-phase lithium-ion concentration at the particle surface and c±s,max is the maximum solid-phase lithium-ion

concentration. By assuming αa = αc = 0.5, (5) indicates that η± can be expressed as

η± =
2RT

F
sinh−1

(
F

2i±0
j±n

)
.

The terminal voltage V is

VSPMT(t) = U+(c+ss(t)) − U−(c−ss(t)) + η
+ − η− −

 R+f
a+s L+

+
R−f

a−s L−

 I(t), (6)

where U+ and U− are the equilibrium potentials, and R+f and R−f are the solid-electrolyte interphase film resistances.

The charging/discharging of LiBs is accompanied by the heat generation and transfer. The change in temperature

can be intense at large currents and notably affects the lithium-ion diffusion and electrochemical kinetics. Here, the

temperature dependence of D±s and k± is governed by the Arrhenius law:

ψ = ψref exp
[

Eψ

R

(
1

Tref
−

1
T (t)

)]
, (7)
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Figure 4: Block diagrams of (a) the SPMTNet-1 model and (b) the SPMTNet-2 model.

where ψ is the D±s or k±, T (t) is the lumped temperature, R is the universal gas constant, and Eψ is the activation

energy. Based on the energy balance principle, the change of T (t) is assumed to follow

ρavgcp
dT (t)

dt
= q̇gen + q̇conv, (8)

where ρavg is the cell bulk density, cp is the lumped specific heat capacity, q̇gen denotes the heat generation rate due to

ohmic and entropic heating, and q̇conv is the convective heat removal rate with the ambience. Further, q̇gen and q̇conv

are given by

q̇gen = I(t)
[
V(t) − (U+(c̄+s (t)) − U−(c̄−s (t)))

]
+ I(t)T (t)

∂

∂T
[
U+(c̄+s (t)) − U−(c̄−s (t))

]
,

q̇conv = −hcell (T (t) − Tamb(t)) ,

where Tamb is the ambient temperature, hcell is the convective heat transfer coefficient, and the bulk concentration c̄±s (t)

is given by:

c̄±s (t) =
3

(R±s )3

∫ R±s

0
r2c±s (r, t)dr.

We define the anodic surface SoC and bulk SoC as

SoCsurf =
c−ss(t)
c−s,max

, SoCbulk =
c̄−s (t)
c−s,max

. (9)

Summarizing (4)-(9), we obtain a complete formulation of the SPMT model. This model is among the most

computationally fast electrochemical models. It can offer good accuracy when low to medium currents are applied.

However, its prediction performance at high C-rates or in the presence of uncertainty will deteriorate seriously, due to

some simplifications inherent to it.

Building upon the HYBRID-1 and HYBRID-2 frameworks, we propose SPMTNet-1 and SPMTNet-2, with their

structures shown in Figs. 4a and 4b. These two hybrid models both combine the SPMT model with an FNN.

SPMTNet-1 is designed to capture the residual between the actual voltage and the SPMT’s prediction, and SPMTNet-

2 is made to approximate the terminal voltage. For both, the FNN takes SoCbulk, SoCsurf and T derived from the

SPMT model as its input variables, leveraging an awareness of the physical model’s state to make prediction.
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(a)

Current

profile

RMSE

(SPMT)

RMSE

(SPMTNet-2)

RER

(%)

Tr
ai

ni
ng

0.2 C 5.80 mV 2.86 mV 50.69

1 C 20.34 mV 3.36 mV 83.48

2 C 31.80 mV 5.56 mV 82.52

4 C 62.48 mV 4.55 mV 92.72

6 C 106.38 mV 3.73 mV 96.49

8 C 157.58 mV 3.81 mV 97.58

10 C 212.65 mV 3.41 mV 98.40

US06 30.18 mV 10.71 mV 64.51

LA92 23.54 mV 7.17 mV 69.54

Te
st

in
g

0.5 C 11.12 mV 5.07 mV 54.41

3 C 44.91 mV 6.03 mV 86.57

5 C 83.31 mV 4.38 mV 94.74

7 C 131.25 mV 3.49 mV 97.34

9 C 184.78 mV 4.38 mV 97.63

UDDS 27.68 mV 8.73 mV 68.46

SC04 26.27 mV 9.77 mV 62.81

(b)

Table 1: Training/testing performance of (a) the SPMTNet-1 model and (b) the SPMTNet-2 model under different current profiles, in comparison

with the SPMT model.

Remark 4. The choice is non-unique for the variables used to represent the SPMT’s electrochemical state and fed to

the FNN. For instance, an expedient way is to just use the full electrochemical state of the SPMT. This, however, will

cause extremely high training and computational costs. Our study shows that just several simple, aggregated state

variables will suffice. This feature in effect reduces demands for training data and computation considerably, making

the proposed hybrid modeling frameworks amenable to practical applications. After much trial-and-error search, we

identify that the pair of SoCbulk, SoCsurf and T is a favorable choice for SPMTNet-1 and SPMTNet-2 in terms of both

computational efficiency and prediction performance.

3.2. Simulation Validation

We performed simulation to validate the effectiveness of the proposed SPMTNet-1 and SPMTNet-2 models. The

simulation settings are as follows:

• The DFN model with thermal dynamics, which is acknowledged as a generic and reliable electrochemical-

thermal model, was used as the benchmark to assess the SPMTNet-1 and SPMTNet-2 models.

• We used parameters from the DUALFOIL simulation package [54] to run the DFN model representing an

LCO/graphite battery that operates between 4.1 and 3.2 V to generate synthetic data as the ground truth.

• The synthetic data were divided into the training and test datasets. The training datasets were produced by
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(b) Testing results of the SPMTNet-1 model under SC04 discharging.
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(c) Testing results of the SPMTNet-2 model under discharging by the

UDDS profile.

Figure 5: Testing results of the SPMTNet-1 and SPMTNet-2 models.

applying constant discharging currents at 0.2/1/2/4/6/8/10 C and variable currents created based on the US06

and LA92 driving cycles [55]. The test datasets were obtained by applying constant discharging currents at

12



0.5/3/5/7/9 C and variable currents created based on the UDDS and SC04 [55]. Here, all variable current profiles

were scaled to a maximum current of around 10 C. In all cases, the initial temperature T (0) = Tamb = 25◦C.

• Both the SPMTNet-1 and SPMTNet-2 models employ a four-layer FNN as shown in Fig. 3. Each of the two

hidden layers has 32 neurons. The input and output of the FNN are as specified in Section 3.1. The rectified

linear unit (ReLU) function was chosen as the activation function for the two hidden layers, and the linear

activation function chosen for the output layer. Keras, a Python-based deep learning library, was used to create,

train and implement the FNN. Because the magnitudes of the FNN’s input variables vary across different orders

of magnitude, the input data were pre-processed by normalization, as often recommended in the practice of

NNs.

• We utilized the root-mean-square error as a metric to evaluate a model’s performance:

RMSE =

√√√
1
N

N∑
i=1

(
Vtrue,i − Vmodel,i

)2,

where Vtrue,i is the true voltage at time i, Vmodel,i is the model-based voltage prediction, and N is the total number

of data points. Furthermore, a relative error reduction (RER) was introduced to quantify the improvement of

the SPMTNet-1 and SPMTNet-2 over the SPMT, which is defined as

RER =
RMSESPMT − RMSESPMTNet

RMSESPMT
× 100%.

We began with validating the SPMTNet-1 model. Table 1a summarizes its performance over all the training

datasets and compares it with the baseline SPMT model. We observed that the SPMTNet-1 model offers remarkable

accuracy in all training scenarios. It consistently outperforms the SPMT model by a considerable margin, especially

at medium to very high currents. Further, we applied the trained SPMTNet-1 model to the test datasets to appraise its

prediction performance. Table 1a shows a quantitative evaluation, and Figs. 5a-5b demonstrate a visual assessment in

the cases of constant 0.5/3/7 C and the SC04 profiles. As is seen, the SPMTNet-1 still retains high accuracy in the

testing phase, proving its strong predictive ability.

For the SPMTNet-2 model, Table 1b further shows its training/testing performance across different test datasets,

and Fig. 5c displays its prediction under the UDDS-based test dataset. These results show that the SPMTNet-2 is also

greatly effective in grasping and forecasting the dynamics of LiBs.

Finally, we emphasize that the SPMTNet-1 and SPMTNet-2 models provide higher testing accuracy and better

voltage predictive performance than the existing hybrid models for LiBs, e.g., [46], as extensive simulation reveals.

This underscores the efficacy of the proposed design that feeding a physics-based model’s state information into the

ML model.
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Figure 6: (a) The NDC model, (b) the NDCNet-1 model and (c) the NDCNet-2 model.

4. Hybrid Modeling via NDC+FNN

Section 3 shows the effectiveness of integrating electrochemical modeling with ML for modeling of LiBs. A

subsequent question of interest is whether we can integrate ECMs with ML based on the proposed HYBRID-1 and

HYBRID-2 frameworks. ECMs have simplistic structures and fast computation, and hybrid models based on them

can be beneficial for various real-world battery management tasks. In this section, we blend the NDC model, an

ECM developed recently in [28, 29], with an FNN to develop two hybrid models, named NDCNet-1 and NDCNet-2,

respectively, and experimentally investigate their performance.

4.1. The NDCNet-1 and NDCNet-2 Models

The NDC model maps the diffusion and electrical processes in a LiB cell to a circuit of electrical components.

As shown in Fig. 6a, the circuit includes two coupled parts. The first (left) part simulates the diffusion in the cell’s

electrode, which comprises two R-C pairs, Rb-Cb and Rs-Cs, configured in parallel. The Rb-Cb analogously represents

the bulk inner region of the electrode, and the Rs-Cs represents the surface region of the electrode. As such, Cb ≫ Cs

and Rb ≫ Rs, where Rs can often be set as 0 [28]. The charge transfer between Cb and Cs mimics the diffusion of

lithium ions in the electrode [56]. The second (right) part simulates the dynamic output voltage of the battery, which

consists of a voltage source U, a resistor R0, and an R-C pair R1-C1 pair connected in series. Here, U = h(Vs) plays the

role of the open-circuit voltage source. In addition, the R1-C1 approximates the voltage transients caused by charge

transfer on the electrode/electrolyte interface, and R0 accounts for the ohmic resistance and solid electrolyte interface
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resistance.

The state-space equations of the NDC model are given by
V̇b(t)

V̇s(t)

V̇1(t)

 = A


Vb(t)

Vs(t)

V1(t)

 + BI(t), (10a)

VNDC(t) = h(Vs(t)) − V1(t) + R0I(t), (10b)

where Vb, Vs and V1 are the voltage across Cb, Cs and C1, respectively. Here,

A =


−1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
0

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)

0

0 0 −1
R1C1

 , B =


Rs
Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

−1
C1

 .
In this study, we parameterize the h(Vs) as

h(Vs) =
α1V2

s + α2Vs + α3

V3
s + α4V2

s + α5Vs + α6
,

where αi for i = 1, 2, ..., 6 are the coefficients. Further, we have Vb = Vs = 0 V when the cell is depleted (SoC = 0%),

and Vb = Vs = 1 V when the cell is fully charged (SoC = 100%). The total charge capacity of the cell thus is Cb +Cs.

Then, the SoC is given by

SoC =
CbVb +CsVs

Cb +Cs
× 100%. (11)

Finally, the internal resistance R0 is assumed to be SoC-dependent:

R0 = γ1 + γ2e−γ3SoC + γ4e−γ5(1−SoC). (12)

The NDC model, as summarized in (10)-(11), simulates the charge diffusion in an electrode and the nonlinear

voltage dynamics simultaneously. With this characteristic, it presents higher voltage predictive accuracy at low to

medium C-rates than earlier ECMs, including the Thevenin’s model, and has found desirable use in SoC estimation

and optimal charging [57, 58]. However, as with the SPM, its accuracy will decline at high C-rates. We are hence

intrigued to develop NDC-based hybrid models to improve the predictive performance.

We construct the NDCNet-1 and NDCNet-2, based on the HYBRID-1 and HYBRID-2 frameworks, respectively.

Their structures are shown in Figs. 6b-6c. Here, the NDCNet-1 is designed to capture the NDC model’s residual

relative to the true terminal voltage directly, and the NDCNet-2 is made to learn and reproduce the terminal voltage.

As the frameworks mandate, we feed the state variables of the NDC model, Vb, Vs and V1, to the FNN so that the FNN

can perform physics-informed prediction. Besides, the temperature T is fed to the FNN so that the FNN can capture

the effect of the temperature in its voltage prediction.
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Current

profile

RMSE

(NDC)

RMSE

(NDCNet-1)

RER

(%)

Tr
ai

ni
ng

1 C 20.47 mV 3.56 mV 82.61

2 C 68.77 mV 5.05 mV 92.66

5 C 194.67 mV 5.17 mV 97.34

7 C 274.75 mV 4.35 mV 98.42

8 C 318.85 mV 5.62 mV 98.24

US06 33.70 mV 8.67 mV 74.27

SC04 38.19 mV 6.68 mV 82.50

Te
st

in
g

3 C 112.67 mV 11.25 mV 90.02

4 C 150.63 mV 10.87 mV 92.78

6 C 236.51 mV 7.83 mV 96.69

UDDS 32.92 mV 10.96 mV 66.71

LA92 28.36 mV 9.30 mV 67.21

(a)

Current

profile

RMSE

(NDC)

RMSE

(NDCNet-2)

RER

(%)

Tr
ai

ni
ng

1 C 20.47 mV 3.96 mV 80.65

2 C 68.77 mV 4.80 mV 93.02

5 C 194.67 mV 5.24 mV 97.31

7 C 274.75 mV 2.77 mV 99.00

8 C 318.85 mV 4.08 mV 98.72

US06 33.70 mV 9.24 mV 72.58

SC04 38.19 mV 5.99 mV 84.32

Te
st

in
g

3 C 112.67 mV 14.05 mV 87.53

4 C 150.63 mV 10.72 mV 92.88

6 C 236.51 mV 9.14 mV 96.14

UDDS 32.92 mV 10.85 mV 67.04

LA92 28.36 mV 8.60 mV 69.68

(b)

Table 2: Training/testing performance of (a) the NDCNet-1 model and (b) the NDCNet-2 model under different current profiles, in comparison

with the NDC model.

4.2. Experimental Validation

We evaluated the proposed NDCNet-1 and NDCNet-2 models through experimental validation. The experimental

settings are as follows:

• All the experimental data were collected on a Samsung INR18650-25R LiB cell using the PEC SBT4050 battery

tester. The cell has a nominal capacity of 2.5 Ah and an operating range from 4.2 V to 2.8 V, with a maximum

continuous discharging current of 20 A (8 C).

• The NDC model was extracted from experimental data using the parameter identification 1.0 approach in [28].

• The training datasets were collected from experiments by applying constant discharging currents at 1/2/5/7/8 C

and variable current profiles based on the US06 and SC04. The test datasets were based on constant discharging

currents at 3/4/6 C and variable current profiles UDDS and LA92. Here, all variable current profiles were scaled

to be between 0∼8 C. The datasets were purposefully designed so as to validate the proposed models across low

to very high C-rates.

• In order to capture the influence of temperature, all types of current profiles were applied twice with an electric

cooling fan on and off. The temperature was measured by a thermocouple attached to the cell’s surface. During

the experiments, the cell’s temperature varied between 19∼55◦C.

• Both the NDCNet-1 and NDCNet-2 models adopt the same FNN architecture as in the SPMTNet-1 and SPMTNet-

2. The performance metrics for evaluation are RMSE and RER as defined in Section 3.2.
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(a) Testing results of the NDCNet-1 model under discharging by the

LA92 profile with the cooling fan off.
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(b) Testing results of the NDCNet-2 model under discharging by the

UDDS profile with the cooling fan off.

Figure 7: Testing results of the NDCNet-1 and the NDCNet-2 models.

The validation results of the NDCNet-1 and NDCNet-2 models are summarized in Tables 2a and 2b, respectively.

Both models show considerable training accuracy—compared to the NDC model, they substantially decrease the

prediction errors as measured by RMSE, especially when high C-rates are applied. The testing accuracy for both

slightly declines but still remains high. Figs. 7a-7b further display the voltage prediction of the NDCNet-1 and

NDCNet-2 models in comparison with the NDC model when the LA92 and UDDS profiles are applied. It is seen that

the two models consistently deliver much better prediction and, in particular, bring more performance enhancements at

large currents. These results demonstrate the NDCNet-1 and NDCNet-2 models as effective and powerful for voltage

prediction. Note that both models are more parsimonious in structure than the SPMTNet-1 and SPMTNet-2 models,

due to the simplicity of the NDC model. This makes them potentially more amenable to computation and real-world

applications.

Further, we compared the NDCNet-1 model with pure FNN modeling to evaluate our hybrid modeling design.

Here, we trained the NDCNet-1 model with 8/32/64 neurons in each hidden layer of the FNN. The pure FNN models

were designed to use the present and history information to predict the terminal voltage. They were set up as below:

• The FNN-A model: Input: I(k), I(k − 1) ,T (k), T (k − 1), SoC(k), and SoC(k − 1), where k is the discrete time
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Figure 8: (a) Training and (b) testing accuracy of pure FNN models and NDCNet-1 under variable current profiles when the cooling fan was off.

The numbers of neurons in each hidden layer are shown in the parentheses.

index, and SoC is based on Coulomb counting. Output: V(k). Structure: two hidden layers with 128 neurons in

each layer.

• The FNN-B model: Input and output: the same as the FNN-A model. Structure: two hidden layers with 256

neurons in each layer.

• The FNN-C model: Input: I(k), I(k − 1) ,T (k), T (k − 1), SoC(k), SoC(k − 1), and V(k − 1). Output: V(k).

Structure: two hidden layers with 128 neurons in each layer.

• The FNN-D model: Input and output: the same as the FNN-C model. Structure: two hidden layers with 256

neurons in each layer.

Figs. 8a-8b illustrate the comparison results. We highlight two observations. First, all the versions of the NDCNet-

1 model, despite having much smaller numbers of neurons and being trained on the same datasets, considerably

outperform all the four pure FNN models in both training and testing. Second, pure ML models are prone to giving

unreasonable predictions in testing scenarios. For instance, the FNN-D model has only slightly less accuracy than

the NDCNet-1 model when tested by the LA92 profile, but has much poorer performance under UDDS profile. The

comparison shows that our hybrid modeling design can provide better prediction performance with simpler model

structure and offer good consistency in accuracy between training and testing.

5. Aging-Aware Hybrid Modeling

LiB cells age during cycling, which causes changes in material properties and affects the processes in charg-

ing/discharging [1, 32, 59]. Aging manifests itself in capacity fade, internal resistance growth, and fast heat buildup.
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Figure 9: Block diagram of the AA-NDCNet-1.

A LiB cell hence represents a time-varying system indeed. However, it has been found non-trivial to perform aging-

aware LiB modeling, even though the problem has attracted some research. A main difficulty lies in characterizing

physical relationships between aging and changes in a model’s different parameters, which are often convoluted or

elusive. Yet, the notion of hybrid modeling proposed in this paper can potentially allow to include an aging awareness

into ML-based prediction, without tediously analyzing the underlying physics. To validate this promise, we further

investigate aging-aware hybrid modeling in this section and focus on expanding the NDCNet-1 model, with similar

results consistently obtained for the other proposed hybrid models if they are modified in the same way.

To quantify the aging condition, we consider SoH defined as the ratio between a cell’s current capacity Qa and its

initial capacity Qinit:

SoH =
Qa

Qinit
× 100%.

While SoH can be described in different ways, this definition suffices for our hybrid modeling, and its conciseness

helps ensure model parsimony. Proceeding forward, we expand the NDCNet-1 model by including the above SoH.

The new model is named as aging-aware NDCNet-1 (AA-NDCNet-1) and shown in Fig. 9. It presents two main

features. First, we apply SoH, which is calculated on a regular basis, as an additional input to the FNN. As such, the

FNN becomes informed and aware of SoH when making prediction. Second, for the AA-NDCNet-1 model, we do not

have to update the NDC model continually based on the aging condition. Instead, we solely use the FNN to capture

the effect of SoH on the terminal voltage. This would bring significant convenience in practical use of the proposed

model.

Next, we present the experimental validation of the AA-NDCNet-1 model. The experimental settings are as

follows.

• We collected the experimental data from two Samsung INR18650-25R LiB cells labeled as #1 and #2, respec-

tively. Both cells underwent the same 450 charging/discharging cycles until their capacity Qa reached about

81% of the initial capacity Qinit. For a cycle, the cells were first charged based on the constant-current/constant-

voltage charging protocol. Then, they were discharged by repeatedly and periodically applying the constant

1/2/3/4/5/6 C and UDDS/US06/LA92/SC04-based variable current profiles one after another. The cell’s actual
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Figure 10: Comparison of (a) the NDC model and (b) the AA-NDCNet-1 model under different testing current profiles and SoH values.

capacity Qa can be determined based on constant-current discharging at 4 C, as suggested by the cell’s data

sheet.

• Cell #1 was intended to generate training data, and cell #2 was used to test the model. Here, we only used part

of the datasets from cell #1 to train the model; they included 1/2/4/6 C constant current profiles and variable

current profiles based on the UDDS and US06 for SoH=81∼100%. The testing datasets from cell #2 contained

constant discharging current profiles at 3/5 C and variable current profiles based on the LA92 and SC04 for SoH

= 81∼100%. All variable current profiles were scaled to be between 0 and 6 C in magnitude. The datasets span

low to high C-rates in order to sufficiently assess the performance of the AA-NDCNet-1 model.

• The NDC model was identified only once, using the data gathered from cell #1 when SoH=100%. The FNN

hence aimed to capture the residual between VNDC and Vtrue for different SoH values. For all scenarios, SoC and

C-rates were calculated relative to the initial capacity Qinit.

• The AA-NDCNet-1 used the same FNN architecture as the NDCNet-1 in Section 4.2 and was evaluated by

RMSE.

Figs. 10a-10b show the testing performance of AA-NDCNet-1 model compared with the NDC model when SoH =

99/95/93/90/88/86/84/81%. Two observations are noteworthy. First, the RMSE of the identified NDC model steadily

increases as the cell ages. However, the AA-NDCNet-1 model not only produces much smaller RMSE, almost con-

sistently below 20 mV in all scenarios, but also preserves high accuracy throughout the aging process. Second, the

AA-NDCNet-1 model, even though trained on cell #1, is capable of well predicting the voltage behaviors of cell

#2 throughout its cycle life. This suggests the promise of making the AA-NDCNet-1 model a “universal” hybrid
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model—one learned from a cell but widely applicable to other cells of the same type.

6. Discussion

Based on the results in Sections 3-5, we have the following remarks.

• Predictive accuracy. The proposed catalog of hybrid models has shown not only high accuracy but also strong

physical consistency in both simulations and experiments. We highlight that this merit rests on two factors.

First, our hybrid models exploit physics-informed ML by feeding the state of a physical model into the FNN.

The awareness of the physical model’s status helps the FNN make better voltage prediction. Second, data play

a significant role in the overall prediction performance. Even though the proposed hybrid modeling frameworks

reduce the dependence on data amounts compared to pure ML models, we still must use sufficient quantities of

informative data to train the FNN. The data should effectively cover the spectrum of a LiB’s dynamics and span

the prediction ranges intended for the model in terms of C-rates, SoC, and SoH.

• Computational efficiency. For the proposed hybrid models, most of the computational burden comes from the

FNN training. The training costs can vary, depending on the quantities of data and the structure of the FNN.

However, we point out that the FNN employed in a proposed hybrid model can have a much simpler structure,

compared to the case when a pure FNN is used for dynamic modeling of LiBs. This implies significantly lower

computational costs in training. When deployed for online prediction, the hybrid models would allow fast

computation. Our experiences showed the SPMTNet-1 and SPMTNet-2 models run much faster than the DFN

model; further, the NDC-based hybrid models offer even higher computational efficiency.

• Prospective applications. As a main feature, the proposed hybrid frameworks and models are capable of

making accurate voltage prediction over wide C-rate ranges. This makes them very useful for various kinds

of practical LiB energy storage systems. In particular, they are suitable for LiB systems that must operate

at high power conditions, for which accurate modeling is still beyond the reach of today’s electrochemical

models (e.g., the SPMT model) and ECMs (e.g., the Thevenin or NDC model) because of their either high

computational costs or lack of accuracy. An application example in point is electric aircraft, which runs at up

to 5 C in the take-off and landing phases [60, 61]. For such applications, the proposed hybrid models can be

used to estimate the state-of-power and state-of-energy with their strong voltage prediction capabilities. This

will be part of our subsequent work as an extension of the presented study. The proposed models can also find

promising use in LiB systems that operate at only low to medium C-rates. For such systems, a physical model

with good fidelity is often easily available, but an FNN can be used to complement the physical model to capture

the uncertain nonlinear voltage. The resultant hybrid models will well lend themselves to voltage prediction

and SoC estimation in this case.
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• FNN architecture selection. A four-layer FNN, with the two hidden layers each having 32 neurons, was used

throughout the model validation in the study, so as to assess the models on a common ground. However, we

found out that other FNN architectures, e.g., one with fewer neurons in the hidden layers, can even lead to

comparable performance. A practitioner may want to use an architecture to strike a balance between prediction

accuracy and model size or complexity. This can be achieved by empirical tuning or deploying automated

architecture search methods [62]. Finally, our tries in the model validation with recurrent and long short-term

memory NNs showed they can also be alternatives to FNNs here, though we choose the latter to present the

study for their simplicity and tractability for practical application.

7. Conclusion

The ever-increasing adoption of LiBs across various sectors presents a pressing demand for accurate and com-

putationally efficient models. In this paper, we proposed to integrate physics-based modeling with data-driven ML

to meet this need. From this perspective, we developed the HYBRID-1 and HYBRID-2 modeling frameworks char-

acterized by informing the ML model of the physical model’s state information to significantly improve the voltage

prediction performance and simplify the ML architecture. We then applied the frameworks to investigate their via-

bility in enabling effective integration of electrochemical models and ECMs with ML, respectively. We constructed

four hybrid models, based on the notions of SPMT+FNN and NDC+FNN. We conducted extensive simulations and

experiments to illustrate that all the four hybrid models can offer exceptionally high voltage predictive accuracy for

LiBs operating at a wide range of C-rates. Further, we expanded the hybrid modeling design to embed an awareness of

a LiB’s aging condition into prediction, through making the ML informed of SoH. An NDC+FNN hybrid model was

upgraded to achieve this end and experimentally validated to be capable of making accurate prediction under different

SoH conditions. Our future work will include the application of the proposed models to different battery management

tasks.
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