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Abstract
Motor current signature analysis (MCSA) has been widely used in motor fault detection in-
cluding bearing fault, broken-bar, and eccentricity, etc. When a motor’s fault is in its early
stage or a faulty motor is operating in varying load conditions, fault signature may be sub-
merged in the background noise and interference, making fault detection a very challenging
problem. In this paper, we address the problem of extracting small fault signature of fre-
quency components under a varying load condition and a noisy background. To this end, we
segment the time-domain stator current into overlapped sequences, and treat each sequence
as an independent measurement of an imaginary sensor. A minimum variance beam-forming
method is then employed to generate the current frequency spectrum with robust performance
under varying-load operations. Our method is validated with experimental data collected on
a motor with a minor eccentricity fault operating in varying conditions.
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Abstract—Motor current signature analysis (MCSA) has been
widely used in motor fault detection including bearing fault,
broken-bar, and eccentricity, etc. When a motor’s fault is in
its early stage or a faulty motor is operating in varying load
conditions, fault signature may be submerged in the background
noise and interference, making fault detection a very challenging
problem. In this paper, we address the problem of extracting
small fault signature of frequency components under a varying
load condition and a noisy background. To this end, we segment
the time-domain stator current into overlapped sequences, and
treat each sequence as an independent measurement of an
imaginary sensor. A minimum variance beam-forming method is
then employed to generate the current frequency spectrum with
robust performance under varying-load operations. Our method
is validated with experimental data collected on a motor with a
minor eccentricity fault operating in varying conditions.

Index Terms—Current spectrum analysis, fault detection, vary-
ing operation, minimum variance beam forming

I. INTRODUCTION

Motor current signature analysis (MCSA) has been a pre-
vailing method during the past decades for detecting motor
faults such as bearing fault, eccentricity, and broken-bar fault,
etc [1]. When any kind of these motor faults occurs, the
rotating flux in the air gap becomes asymmetric, and con-
sequently induces extra frequency components in the stator
current. MCSA-based fault detection methods aim to extract
fault signatures in the frequency domain by analyzing the
stator current.

In practice, the extraction of fault frequency components
can be very challenging due to the following reasons. First,
motor fault frequency components are generally much weaker
than the operating frequency component, especially at the early
stage of motor fault development. Second, the weak fault
signature can be easily submerged in the background noise
or interference. For example, when the motor is driven by an
inverter, its fault signature may be interfered by harmonics of
the power electronic devices due to their switching operations.
Third, motors are generally operating in varying load and vary-
ing speed conditions. The non-periodic time varying factor will
inevitably introduce spectrum distortion in MCSA. Therefore,
it is desirable to develop a robust fault signature extraction

method for motors under varying operating conditions to
effectively extract fault signatures from noisy measurements.

Frequency spectral analysis is a classic signal processing
problem and widely used in all kinds of applications [2].
The most common spectral analysis method in MCSA-based
fault detection is the Fourier transform for its simplicity. This
method works well in most cases when the motor under
test is operating at a steady status, but not very satisfactory
for varying-load operations. For varying-load operations, a
straightforward way is to measure multiple time sequences
and take the average such that the influence of noise and
varying operations can be averaged down [3]–[5]. This method
however requires longer time measurements and may not
work effectively for extracting small fault signatures. Other
advanced signal-processing methods such as ESPRIT [6], MU-
SIC [7], and compressive sensing (CS) [8], etc., are introduced
by researchers to the motor fault detection community to
achieve high-resolved spectrum. However, these methods are
either sensitive to noise or heavily relying on the signal model.
A low noise level or a small load fluctuation that occurred
during the measurement period could interfere the accuracy
of fault detection.

Motivated by array signal processing methodologies, we
propose to use the minimum-variance beam-forming method
[9] to perform motor current spectral analysis. The detailed
idea is described as follows. We first segment the time-
domain stator current under test into multiple overlapped time
sequences with a fixed time shift. Each sequence is treated as
an independent measurement of an imaginary current sensor.
Since the time difference between adjacent sequences is iden-
tical, these imaginary sensors form a linear imaginary sensor
array. The spectrum analysis problem is then converted to
a beam-forming problem of a linear array in the frequency
domain. We borrow the idea of the minimum-variance(MV)
beam forming method from array signal processing techniques
to improve the detection performance under noisy measure-
ments. Due to the variation of motor operating conditions,
each sensor has a different and unknown frequency-dependent
gain factor. MV-based spectrum analysis aims to achieve a
robust spectrum by using a weighted sum of spectrum of each



time sequence, where the weights are frequency-dependent
and optimized by minimizing the noise variance of the output
spectrum.

To validate our proposed method, we take the motor ec-
centricity issue as an example to perform MCSA-based fault
detection. In particular, a motor with a minor eccentricity fault
is considered in our experiments and a magnet powder brake
is mounted with the motor as its load. The motor stator current
is then measured under various load conditions by changing
the input current of the magnet powder brake. By comparing
MCSA results on the experimental data using different meth-
ods, we demonstrate that our method can effectively extract
fault frequency components under varying load conditions
even under strong noise interference.

The rest of the paper is organized as follows. Section II
introduces motor signatures for different kinds of motor faults.
Section III describes frequency spectrum analysis methods,
including classic Fourier transform based methods as well as
our proposed robust minimum variance based method. Section
IV describes our experiment setup and presents our results
of MCSA using different methods, with conclusion drawn in
Section V.

II. MOTOR CURRENT SIGNATURE ANALYSIS

Motor current signature analysis (MCSA) has been widely
used in motor fault detection for decades because of its
effectiveness and noninvasive property. Based on the stator
current frequency spectrum, MCSA methods aim to extract
characteristic frequency components for different types of
faults [10].

For example, when there exists a broken bar fault in a
squirrel-cage induction motor, a set of new frequency com-
ponents besides the operating frequency component appear in
the spectrum of stator currents [11],

fbar = (1± 2ks)fs, (1)

where k = 1, 2, . . .; s is the slip; and fs is the fundamental
supply frequency. MSCA-based broken-bar fault detection
techniques focus on detecting the dominant frequency com-
ponent in the stator current, which is fb1 = (1− 2s)fs.

For bearing fault, depending on the fault location or fault
type in the bearing, some periodic vibration pulses are gener-
ated as a result of the impact, and consequently a characteristic
frequency fc is induced in the stator current. For different
types of bearing fault mentioned above, fc is listed as follows
[12].
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where fr is the mechanical frequency of the rotor, d is the
ball diameter, D is the pitch or cage diameter, Nb denotes the
number of balls, and θ is the contact angle characterizing the
point of contact between the ball and the raceway.

For eccentricity fault in most induction machines, the fault
signature frequency in the current signal is [13]

fecc = ((kR± nd)
1− s
p
± ν)fs, (7)

where R is the number of rotor slots, p is number of pole
pairs, k is any positive integer, nd is the eccentricity order
(nd = 0 in case of static eccentricity and nd = 1, 2, 3, ...,
in case of dynamic eccentricity), and ν is the order of stator
time harmonics. Without the number of rotor slots, a simplified
version is given by [14], [15]

f ′ecc = [1±m(
1− s
p

)]fs = fs ±mfr, (8)

where fr = 1−s
p fs is the rotor frequency related to the

rotational speed.
Therefore, for most motor fault detection problems, the

objective of MCSA-based methods is to extract the corre-
sponding fault signature components via effectively frequency
spectral analysis. Once a fault frequency component over a
certain threshold is detected, it is claimed that there exists
a corresponding fault. The fault severity level can be further
estimated depending on the magnitude of the fault frequency
component as well as other operating conditions.

III. FREQUENCY SPECTRUM ANALYSIS

A. Classic frequency spectrum analysis

Frequency spectrum analysis is a classic problem in signal
processing. Let is(t) represent the time-domain stator current
of a motor in an ideal steady-state operation. Note that the
current could be a single phase current or a combination
of three phase current after proper phase alignment such as
Park transform. For the healthy motor, the time-domain stator
current can be represented as

ish(t) = Is cos(2πfst+ φs), (9)

where Is is the stator current amplitude related to the motor
load condition, fs is the operating frequency, and φs is the
initial phase of the operating frequency component.

When there exists a motor fault, the motor current signal
includes extract frequency components

isf (t) = ish(t) +
∑
k

If,k cos(2πff,kt+ φf,k), (10)



where If,k represents the magnitude of the kth fault frequency
component ff,k, as mentioned in Sec. II , and φf,k is the initial
phase of the kth fault frequency component.

The frequency spectrum of the stator current is (= ish or
isf depending on the health condition) can be achieved by the
Fourier transform as

Is(ω) =

∫
is(t)e

−jωtdt. (11)

For periodic signals in motor operations, a discrete Fourier
transform (DFT) is typically used to compute the Fourier
spectrum based on discrete time samplings is(n). We ignore
the detailed correspondence between the frequency and the
sampling rate, and simplify the expression of Fourier spectrum
as

ŜF (ω) = DFT [is(n)]. (12)

B. Spectrum analysis under varying conditions

Note that the fault signature component is typically very
weak compare to the operating signal, and the value of If,k
could be 40dB to 60dB lower than that of Is, depending
on the fault type and the fault severity. Therefore, it is very
common that the fault signature component is interfered by
the operating signal or other noise, especially under varying
operating conditions.

Under varying load conditions, the stator current amplitude
Is is not a constant any more, but varying with the load condi-
tion. In such situations, the performance of fault detection via
simple DFT will be degraded since the small fault component
could be submerged into the background noise. To effectively
analyze the stator current spectrum, we introduce a parameter
α(t) to reflect the impact of varying load, and express the
practical measurement of time-domain stator current as

i(t) = α(t)⊗ is(t) + ν(t), (13)

where α(t) is a time-domain function showing the impact of
varying load, ν(t) is measured noise, and ⊗ is the convolution
operation. In the frequency domain, we have

I(ω) = A(ω)S(ω) + V (ω), (14)

where I(ω) and S(ω) stand for the Fourier spectrum of i(t)
and is(t) respectively. Our objective is then to estimate S(ω)
from measurement i(t) such that the fault signature in S(ω),
if there is any, can be extracted effectively.

A straightforward way to estimate S(ω) is to average
multiple spectra to reduce the impact varying load. Assume
that we have a serial of N equal-length time sequences
{i1(t), i2(t), ..., in(t), ..., iN (t)}. The frequency spectrum of
each sequence can be represented by

In(ω) =

∫
in(t)e

−jωtdt

≈An(ω)Sn(ω) + Vn(ω). (15)

Note that An(ω) is the Fourier spectrum of αn(t) due to
varying loads as mentioned before. Specially, when the motor
is operating at steady status with a constant load and a constant

speed, An(ω) is a constant. Otherwise, An(ω) varies due to
the varying operation. The averaged spectrum is given by

Ŝavg(ω) =
1

N

∑
n

|In(ω)| =
1

N

∑
n

|An(ω)Sn(ω) + Vn(ω)|.

(16)

C. Robust spectrum estimation

To make use of array signal processing techniques, we
generate N time sequences {i1(τ), i2(τ), ..., in(τ), ..., iN (τ)}
by putting a sliding time window on the measured current i(t),
where the nth time sequence in(τ) can be expressed as

in(τ) = i(τ + (n− 1)ts), for τ ∈ [0, tw], n = 1, ..., N.
(17)

Here tw is the window size in time, and ts is the time
step between two consecutive time windows. The frequency
spectrum of each segment can be represented by the spectrum
of the first sequence with proper phase shift as

In(ω) =

∫
in(τ)e

−jωτdτ

≈An(ω)Sn(ω) + Vn(ω)

=An(ω)e
jω(n−1)tsS1(ω) + Vn(ω). (18)

With proper phase compensation, we combine all N spectra
to form the stator current spectrum in the frequency domain
as

ŜMV (ω) =

N∑
n=1

βn(ω)In(ω)e
−jω(n−1)ts , (19)

where the weight βn is optimized by minimizing the noise
variance of spectrum at each frequency ω

min
βn

∑
n

|βn(ω)In(ω)e−jω(n−1)ts |2, s.t.
∑
n

βn(ω) = 1.

(20)
Let w = [β1(ω), ..., βn(ω), ..., βN (ω)] ∈ RN×1, R =

diag{I21 (ω), ..., I2n(ω), ..., I2N (ω)} ∈ RN×N , and a =
[1, ..., 1, ..., 1]T ∈ RN×1. Then the optimization problem in
(20) is reformulated as a standard minimum-variance beam-
forming problem [9]

min
w

wTRw s.t. wTa = 1. (21)

The closed-form solution of (21) is given by

w =
R−1a

aTR−1a
. (22)

Note that w is frequency dependent, meaning for each fre-
quency we solve (22) to get a different w.

IV. EXPERIMENTS

A. Setup

To validate our proposed method, eccentricity fault is con-
sidered as an example for MCSA-based analysis. Experiments
are carried out in lab using a motor with eccentricity fault. In
order to generate eccentricity of the rotor, two bearings that
support the rotor are taken out and replaced by two external



ones fixed outside the motor such that the air gap can be
manually adjusted within a certain range. Four gap sensors are
placed in the stator part to monitor the horizontal and vertical
air gaps at both ends to make sure the accuracy of adjustment.
A magnetic powder brake is used as the load whose torque
can be tuned by changing its input operating current. A picture
of our experiment setup is shown in Fig. 1. The whole motor
drive system is enclosed in a clear cage for safety purpose.
During operation, the three-phase time-domain stator current
is recorded for further analysis.

Fig. 1. Experiment setup

To simulate early stage eccentricity fault, we set the ec-
centricity level to 3%, where the eccentricity level is defined
by

yj =
dj
δ0
× 100%, (23)

where dj is the distance between the actual rotor axis and the
ideal rotor axis, and δ0 is the average air gap length in the
corresponding healthy motor.

Experiments are conducted under various load conditions by
adjusting the input operating current of the magnetic powder
brake.

B. Results

We collect stator current of 60s with sampling rate fsa =
10kHz for different load conditions. Fig. 2 plots two examples
of collected time-domain stator current data when we have
a constant load and a varying load respectively. We observe
that the amplitude of the current under the constant load
condition is relatively flat, while varies greatly in varying load
conditions. It is of great interest but challenging to extract the
fault signature from the stator current with varying amplitude.

To extract the fault frequency components, we consider
multiple spectral analysis methods mentioned in Sec. III. To
achieve multi-sequence data, we segment the 60s time se-
quence data into tw = 4s sequences with time step ts = 0.02s.
For comparison, we show in Fig. 3 the Fourier transform(FT)
spectrum ŜF (ω), the averaged spectrum Ŝavg(ω), and the
minimum variance (MV) spectrum ŜMV (ω) for different load
conditions. We can observed that the FM spectrum failed to
detect the fault signature under varying load conditions. While

(a) constant load

(b) varying load

Fig. 2. Stator current time series.

the averaged spectrum reduces noise to some extent and works
well in some cases but not consistently, the MV spectrum
achieved by our proposed method consistently detects the fault
signature components successfully for different varying loads,
which in our case are 30Hz and 90Hz frequency components
for eccentricity.

V. CONCLUSION

In this paper, we proposed a minimum variance based
method to analyze the frequency spectrum of the stator cur-
rent for detecting faults of motors under varying operation
conditions. Experimental results demonstrate that our method
can effectively extract fault signatures of the early stage
eccentricity fault from noisy stator current measurements even
for the motor operating in varying load conditions. Our method
can be applied to other MCSA-based methods and to extract
other fault signatures in the frequency domain.



(a) Random varying load

(b) Load with 0.3A powder brake current

(c) Load with 0.35A powder brake current

Fig. 3. Comparison of motor current spectra under varying load operations.
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