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proposed method comes from the ability to incorporate additional modalities, e.g., infrared
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Abstract

We introduce a scalable multi-modal approach to learn
dense, i.e., pixel-level, correspondences and occlusion
maps, between images in a video sequence. The problems of
finding dense correspondences and occlusion maps are fun-
damental in computer vision. In this work we jointly train
a deep network to tackle both, with a shared feature extrac-
tion stage. We use depth and color images with ground truth
optical flow and occlusion maps to train the network end-to-
end. From the multi-modal input, the network learns to es-
timate occlusion maps, optical flows, and a correspondence
embedding providing a meaningful latent feature space. We
evaluate the performance on a dataset of images derived
from synthetic characters, and perform a thorough abla-
tion study to demonstrate that the proposed components of
our architecture combine to achieve the lowest correspon-
dence error. The scalability of our proposed method comes
from the ability to incorporate additional modalities, e.g.,
infrared images.

1. Introduction
Tracking of humans in a video sequence is a fundamen-

tal problem in surveillance applications. Especially in mul-
timodal applications, tracking in one modality can assist
imaging in another. For example, in combined optical and
radar applications, tracking is easier in the optical domain,
whereas detection of occluded objects is easier in the radar
domain. In this paper we focus on the tracking compo-
nent of such systems, providing a method to determine both
dense correspondences between video frames (i.e., pixel-to-
pixel correspondences), and occlusion maps which indicate
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which parts (i.e., pixels) of one frame are not visible in the
next and which parts in the next frame are new and do not
appear in the first.

Determining dense, i.e., pixel-to-pixel, correspondences
between images in a video sequence is a fundamental prob-
lem in computer vision. We are particularly interested in
dense correspondence between frames of walking people.
Most “classical” people tracking methods are sparse, ei-
ther tracking a bounding box or parts/skeletons for pose
tracking, e.g. [12, 11]. Other human tracking methods
have been introduced to recover correspondences, such as
random forests for volumetric pose tracking [2], but these
tracking methods do not estimate dense pixel-to-pixel cor-
respondences. Instead, optical flow (OF) is a well-studied
alternative that computes a dense pixel flow between pairs
of successive frames; see [1] for a comprehensive list of
references.

In addition, we are interested in detecting which parts
in one frame are occluded in the next, and vice versa. As
a person is walking in front of an optical sensor, different
parts of the body are occluded at different frames, as each
part has a separate motion. For example, an arm could be
occluding part of the torso in one frame but not in another.
While, in principle, it is possible to detect such occlusions
using only accurate optical flow or dense correspondences,
we found that explicit detection provides better results.

Deep learning has significantly improved the state-of-
the-art for dense correspondences. In particular, recent deep
learning based OF approaches can estimate flow even in the
presence of larger displacements [3, 6]. Other deep learn-
ing approaches estimate dense correspondences as a means
to ultimately recover 3D human pose [5, 14]. The dense
correspondences are estimates of so-called uv-maps which
have a direct relation to 3D human shape parts. The empha-
sis is on recovering accurate 3D human pose, rather than
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Figure 1. Our proposed scalable multi-modal network architecture. The RGB and depth images are encoded to per-pixel feature vectors,
with a separate encoder for each modality. The per-pixel features are concatenated and input to a correspondence embedding, optical flow,
and occlusion map estimation. We add supervision on reconstruction to force auto-encoders to learn features representing the whole image.

accurate dense correspondences. The method proposed by
Wei et al. [13] on the other hand, aims to estimate dense
correspondences using depth images as input. The corre-
spondence problem is formulated as a many-class classifi-
cation problem. A water-tight mesh is segmented into many
small regions and training aims to learn an embedding of
how depth pixels relate to neighboring depth pixels through
the segmentation and classification. The method has draw-
backs: the need for water-tight meshes, and training that is
both multi-pass and computationally very expensive.

The methods above can handle challenging pose differ-
ences between frames, but sacrifice accuracy, particularly
at the extremities such as arms and hands. Lack of accu-
racy is especially prominent when tracking walking people.
Our work aims to address this by a) exploiting multi-modal
input, e.g., depth and color, and b) augmenting the optical
flow estimation with an additional correspondence embed-
ding using a contrastive learning approach. The proposed
architecture (Fig. 1) consists of auto-encoders to extract
meaningful per-pixel features. The per-pixel features are
concatenated to learn three tasks: multi-modal optical flow,
occlusion detection, and embedding via contrastive learn-
ing. Our contributions are summarized as follows:

• A scalable multi-modal network architecture, combin-
ing optical flow and occlusion estimation with a con-
trastive based correspondence embedding.

• A dense correspondence inference method which takes
both latent space distance, as well as Euclidean dis-

tance into account.

• A thorough evaluation of performance on synthetic
ground truth data.

Using multiple modalities is not unique in our approach
nor is it constraining. Since RGBD sensors are becoming
inexpensive and ubiquitous, many methods propose to ex-
ploit both depth and color [4, 10]. The additional infor-
mation in the depth dimension provides robust information
that significantly improves the performance of such meth-
ods. Furthermore, optical flow estimates are often used for
learning tasks that involve temporal image data, e.g., [8].

The next section introduces our approach, including the
network architecture, the training method and the inference
process. Section 3 provides experimental results and abla-
tion studies that validate our approach, and Section 4 dis-
cusses our results and concludes.

2. Network Design
To produce the dense correspondences and the occlu-

sion maps we propose a scalable deep neural network archi-
tecture that is trained end-to-end using multi-modal image
pairs as input. Currently, the multi-modal input consists of
pairs of both RGB and depth images.

The depth and color input images are first encoded using
an auto-encoder—a U-net [9] in our case. The auto-encoder
learns per-pixel image structure represented by an mMod-
dimensional latent space, where Mod refers to the modality



of the input, i.e., RGB or depth. We train separate U-nets for
depth and for color. The weights for the U-nets are shared
between the pairs of input, see Fig. 1. Additional supervi-
sion to reconstruct the original input images is provided by
1× 1 convolutions after the encoding.

The per-pixel mMod-dimensional feature vectors from
the depth and color images are concatenated into a final fea-
ture vector of dimension md +mc and input to three train-
able tasks: optical flow estimation, correspondence embed-
ding via sampling, and occlusion detection.

Both optical flow estimation and occlusion detection are
networks based on the FlowNet architecture [6]. The only
difference is that the occlusion detection network, which we
call OcclusionNet, outputs a scalar output in [0, 1] for every
pixel indicating occlusions, whereas FlowNet outputs a 2D
vector output estimating the flow for every pixel of the in-
put. Furthermore, we found that including the FlowNet out-
put in the OcclusionNet, by concatenating it with the feature
vectors from the U-nets improves the OcclusionNet results.

During training, we use both directions for flow and oc-
clusion detection (i.e., from the first to the second frame
and from the second to the first), thus providing additional
training data to train the network. To do so, we use the same
FlowNet and OcclusionNet twice, with reversed inputs and
shared weights, as indicated in Fig. 1. If an application only
requires one-directional flow or occlusion estimation, the
branches estimating the reverse direction can be eliminated
during inference.

2.1. Losses

The loss function used for training comprises four kinds
of losses: a reconstruction loss in the output of the U-nets,
that forces autoencoders to represent the whole input, an
embedding correspondence loss, that promotes embeddings
that correctly represent correspondences between points in
the frames, an optical flow loss, which promotes models that
accurately learn the optical flow, and an occlusion estima-
tion loss, which promotes models that accurately estimate
occlusions.

The reconstruction loss Lr is a mean squared error loss
between the original and reconstructed image, and is com-
puted separately for the color (Lc

r) and the depth image
(Ld

r). The correspondence embedding loss is contrastive,
of the form:

Le =

N∑
i=1

yi∥D(p1,i)−D(p2,i)∥22

+ (1− yi)max(0, C − ∥D(p1,i)−D(p2,i)∥22)

s.t.
{

yi = 1 if p1,i ⇐⇒ p2,i
yi = 0 otherwise

(1)

The functions D(·) represent the encoding using U-nets
and subsequent concatenation of latent vectors. If the ith

Figure 2. Sampling a non-corresponding pixel. The blue ar-
row denotes the correspondence based on the ground truth opti-
cal flow. A non-corresponding pixel is selected within the range
[min dist,max dist]

pixel pair (p1,i, p2,i) between the images 1 and 2 is in cor-
respondence, we set its corresponding label to yi = 1, and
yi = 0 otherwise. In (1), C denotes the contrastive margin,
a hyper-parameter to help stabilize the learning. Thus, (1)
aims to promote similar feature vectors in each image for
pixels in correspondence, and dissimilar feature vectors for
ones not in correspondence.

During training, we sample a total of N pixel pairs: Nco

in known correspondence, and Nnc = N − Nco in known
non-correspondence. The pairs are sampled randomly, but
we adopt the following sampling strategy:

• avoid sampling too close to previously sampled pairs
to reduce bias, and

• for the non-corresponding samples, sample at least
min dist away from the known correspondence, and
at most max dist.

The strategy is illustrated in Fig. 2. Both min dist and
max dist are hyper-parameters. We want to simultane-
ously promote smoothness in the dissimilarity and only con-
sider non-corresponding points that would be meaningful
by being sufficiently close to corresponding ones. Allowing
non-corresponding points too far away would contribute lit-
tle to the learning.

Since our optical flow network is based on FlowNet [3]
we employ the same end-point L2 loss as FlowNet. Since
occlusion detection is a binary-valued detection problem,
we use the entropic loss at its output.

The total loss is therefore composed as a weighted sum:

L = weLe + wrL
d
r + wrL

c
r + wofLof + wocLoc, (2)

with weights w for each loss.

2.1.1 Multi-Task Losses

The authors in [7] recognized that treating the weights in (2)
as fixed hyper-parameters may hinder learning. They pro-
pose a multi-task loss approach where the weights are si-
multaneously learned during training. We adopt their ap-
proach and formulate the loss as:



Figure 3. An example pair of input data. In addition to color and
depth, we provide optical flow and occlusion maps between the
image pairs in both directions. The color wheel insert indicates
direction and magnitude for the optical flow.

L =Le · exp(− log σ2
1) + Ld

r · exp(− log σ2
2)

+ Lc
r · exp(− log σ2

3) + Lof · exp(− log σ2
4)

+ Loc · exp(− log σ2
5) +

5∑
i=1

log σ2
i .

(3)

The parameters σi in (3) require a reasonable initial guess.

2.2. Training

To train the network, we input depth and RGB im-
age pairs of dimension 512 × 512. The U-net auto-
encoders output is 512× 512× 32, and we stack those into
64−dimensional per-pixel features.

Our training data requires ground-truth optical flow and
occlusion maps in both directions per image pair, corre-
sponding to input RGB and depth images. To obtain suffi-
cient training examples, we use synthetic training data. The
optical flow, occlusion maps, color and depth images are
used for supervision in the training. We have generated 38
synthetic characters with a variety of clothing appearances.
We hold out data associated with two synthetic characters
for testing. Fig. 3 depicts data for an example image pair.

2.3. Flow Inference

Inference of dense correspondences combines informa-
tion from both optical flow estimation and the features com-
puted by the U-nets. Combining this information allows us
to improve the outcome, compared to only using one of the
two sources of information.

The features computed by the U-nets are used through
the Feature Distance FD between pixel i in frame 1, and
pixel j in frame 2. Given two sets of pixels P1,P2, corre-
sponding to the two frames, the Feature Distance FD(i,j)

between i ∈ P1 and j ∈ P2 is defined as

FD(i,j) = ∥D(p1,i)−D(p2,j)∥22. (4)

Absent optical flow information, the corresponding pixel
to a pixel i ∈ P1 in frame 1 is the closest pixel
j in frame 2 with respect to the feature distance, i.e.,
argminj∈P2

FDi,j .
This estimate of corresponding points does not impose

any local smoothness constraints. Thus, outlier matches
may occur, in which pixels are selected as corresponding
even though they are far away from nearby corresponding
ones. Thus, incorrect correspondences may be selected.
This is the main source of errors using this approach.

The optical flow estimate ÔF directly provides a high-
quality estimate of correspondences. Compared to the es-
timation described above, this estimate is much smoother
and makes different kind of errors which are in the vicinity
of the ground truth and do not suffer from outliers of large
magnitude. Thus, this estimate can be used as a smoothness
constraint to regularize the estimate above.

To impose this smoothness constraint we penalize corre-
spondence candidates that are far away from the estimated
optical flow, ÔF , obtained during inference. We define

OD(i,j) = ∥(p1,i + ÔF (p1,i))− p2,j∥22, (5)

by simply adding the estimated optical flow vector for p1,i
to p1,i. We can now define the combined distance

CD(i) = min
j∈P2

(FD(i,j) + λOD(i,j)), ∀i ∈ P1. (6)

Furthermore, the correct distance measurement OD should
take into account the three-dimensional distance of points
in or (5), i.e., the distance over the volume seen by the im-
age, rather than a simple pixel distance. To compute this
distance we use the 2D pixel location is given as p = (x, y)
concatenated with a normalized depth value z̃ to define a
‘3D’ pixel location p = (x, y, z̃). The normalized depth
value is computed to have the same scale as the pixels

z̃ =
dpi

dmax − dmin
∗ Hpixel

Hreal
, (7)

where dpi is the depth at pixel pi, dmax, dmin are the largest
and smallest depth resp., Hpixel is the height of the person
in pixels, and finally Hreal is the height of the person in me-
ters. We discuss these parameters in more detail in Sec. 3.

2.4. Occlusions

The ground truth optical flow incorporates information
for the occlusion maps and can be used to derive them, even
if not available from the ground truth generation. Specifi-
cally, for any two frames 1 and 2, when generating the syn-
thetic training data we compute optical flow for both 1 → 2
and 2 → 1. A pixel at position p1 in frame 1 that moves to
position p2 in frame 2 using the optical flow OF1→2 is visi-
ble in both frames if and only if the optical flow from frame



2 to frame 1, OF2→1 returns pixel p2 in frame 2 back to p1
in frame 1. In other words, p1 in frame 1 is not occluded in
frame 2 only if p2 + OF2→1(p1 + OF1→2(p1)) is equal to
p1. This condition imposes cycle-consistency in the optical
flow for pixels that are not occluded.

The cycle-consistency condition above assumes that pix-
els are continuous or that optical flow is discretized. In prac-
tice the flow from one frame to the other is discretized to the
nearest pixel. Therefore, a tolerance factor is necessary in
implementing the condition. Taking into account the round-
ing effects, we mark a pixel as occluded if

∥[p2 +OF2→1([p1 +OF1→2(p1)])]− p1∥∞ ≥ 1, (8)

where [·] denotes rounding to the nearest integer. In other
words, we allow 1 pixel discrepancy in either direction in
the round-trip flow to account for the rounding effects. This
approach allows us to generate ground truth occlusion maps
for training.

Occlusion maps are also important in evaluating optical
flow estimates both during training and during evaluation.
In particular, true optical flow in areas where an occlusion
occurs between subsequent frames is undefined. We only
consider unoccluded pixels when we determine flow errors
in the evaluation, as we discuss next.

3. Experiments
We implemented our network in PyTorch and performed

several experiments to evaluate the performance. Our train-
ing data consists of color, depth and optical flow images
related to 36 synthetic characters, for a total of 3.5k multi-
modal images. We train for 120 epochs and validate every
epoch, to verify if any overfitting occurs. For Eq. 6 we use
λ = 1

cFD0, where FD0 denotes a feature match (according
to Eq. 4) with smallest distance to p1,i + ÔF (p1,i). We use
c = 5 in all our experiments. The parameters for Eq. 7 can
mostly be determined from the input images. The Hpixel

could be determined from a bounding box around the per-
son, for example if we were to use a region proposal based
object detector to detect people. The Hreal could be deter-
mined if camera intrinsics were given in metric space, or if
a known scale could be identified in the images. We instead
took an average over the height of our synthetic characters
and used this average in all experiments.

3.1. Flow Estimation

We first evaluated the performance on flow estimation
by eliminating the OcclusionNet from the network. Our
evaluation is on data for two held out synthetic characters.
Table 1 shows the performance of our proposed approach.
The table lists the RMS pixel error using only the estimated
optical flow (ÔF ), only the the feature descriptor distance

Name ÔF FD CD
A Best model 3.88 3.46 1.95
B U-Net d=4 3.92 13.39 2.87
C U-Net d=2 18.80 25.83 8.79
D 50 samples 4.04 17.03 2.89
E L2 reg. 4.20 22.24 3.00
F No rec.loss 3.96 3.97 2.98
G Depth only - 3.39 -
H Color + OF 3.99 37.89 3.06
I Color + Contr. - 3.98 -
J Color + OF + Contr. 3.93 3.22 2.36
K Color + Depth + OF 4.09 24.13 3.04
L 16-dim 3.92 10.05 2.61
M 8-dim 3.91 10.89 2.59

Table 1. Results for trained network. Reported numbers represent
RMS pixel error for estimated optical flow only, feature descrip-
tor distance only, and combined optical flow and feature distance
respectively. See text for details.

(FD), and combined optical flow and feature distance as
described in Section 2.3 (CD). The best model (row A)
obtains a RMS pixel error of 1.95 for the combined fea-
ture and optical flow distance (Eq. 6). Our best model uses
C = 2.0 (Eq. 1), min dist = 5 and max dist = 50. We
performed ablation studies to understand the effect of the
hyper-parameters on network performance. We found that
performance is robust over a range of values for the margin
C. We reduced the U-net depth from 5 to 4 (B) and 2 (C)
layers resp., which clearly impacts performance. For train-
ing we use Nco = 250 and Nnc = 250, and thus N = 500
for Eq. 1. Reducing to N = 50 (D) drastically decreases
performance. Increasing the number of samples beyond
N = 500 however, showed no effect. We use the Adam
optimizer for training. Imposing L2 regularization (E) has
a surprisingly detrimental effect on performance. Omitting
the supervision for reconstruction after U-net encoding (F)
results in a performance loss.

We further performed ablation studies by omitting parts
of the network. Using only depth image and contrastive
loss (G) results in a good embedding. For ablations H, I, J
we omit depth input, and train with optical flow only (H),
contrastive loss only (I) and both (J). It’s clear that combin-
ing both losses performs best in this case as well, but not
as good as our best model A. Finally, we omit contrastive
loss, and train with all modalities and optical flow (K). The
model clearly underperforms our best model.

We use a latent space dimension of 32 for each U-net
encoding, and hence when stacking color and depth we ob-
tain 64-dimensional per-pixel features. Results for 16 (32
stacked), and 8 (16 stacked) dimensions are shown in rows
L and M. Fewer dimensions clearly impact performance for



Figure 4. Qualitative example performance. Top row shows the input depth and color frame 1 and 2 images resp., and ground truth optical
flow 1 → 2. The first two images in the middle row show reconstructed frame 1 depth and color images. The next two images show errors
for Eq. 6 and optical flow only. The right-most image in middle row is the estimated optical flow ÔF . The bottom row left-most image
is the reconstructed frame 1 color image using Eq. 6. The remaining images show horizontal and vertical errors for the error image in the
middle row. As demonstrated, the error in optical flow on the character’s leg is significantly reduced when combining with feature distance.

the feature distance only correspondence estimates. How-
ever, optical flow and our proposed combined inference
method, Eq. 6, mitigate the decrease. However, both models
clearly underperform our best model.

We should note that the ablation studies also provide an
indirect comparison with the state of the art in this area. In
particular, omitting optical flow for inference and instead
using only the feature distance can be regarded as a com-
parison to the method in [13]. Similarly, using only optical
flow is equivalent to [6]. Nevertheless, we should compare
performance directly, which we note as future work.

Figure 4 shows a qualitative result for our proposed ap-
proach. Please refer to the figure caption for an explanation
of the layout. Although the reconstructed images look vi-
sually similar, the error images reveal that the our proposed
method reduces the error in the optical flow estimation, par-
ticularly evident on the character’s leg.

3.2. Occlusion Estimation

Next, we incorporated the OcclusionNet in the architec-
ture, to evaluate its effect, both on the performance of the
correspondence estimation, as well as the performance of
the occlusion estimation. The effect on correspondence es-
timation is quantified in Table 2. Row A uses the same
configuration in row A of Table 1 as the baseline. Row
D further incorporates the complete OcclusionNet, as il-
lustrated in Fig. 1. In addition, we perform two ablation
studies. In one we only use the features computed by the

Name ÔF FD CD
A No OcclusionNet 3.88 3.46 1.95
B Features Only 3.97 3.84 1.87
C Flow Only 4.04 6.56 2.27
D Features + Flow 3.86 4.82 1.93
E No sampling network 3.77 34.14 4.31

Table 2. Correspondence results for trained network with the addi-
tion of the OcclusionNet. Reported numbers represent RMS pixel
error for estimated optical flow only, feature descriptor distance
only, and combined optical flow and feature distance respectively.
See text for details

U-nets as input to the OcclusionNet, eliminating the output
of the FlowNet from the OcclusionNet input (row B). In the
other we only use the output of the FlownNet as input to the
OcclusionNet, eliminating the features from its input (row
C). Finally, we completely eliminate the sampling network
from the system (light orange in Fig. 1), keeping both fea-
ture and flow inputs to the OcclusionNet (row E).

As evident for row C in the table, eliminating the features
from the OcclusionNet input has a significant degrading ef-
fect in the performance of the correspondence estimation.
Furthermore, our preliminary studies showed that this con-
figuration also performs poorly in occlusion estimation, so
we decided to remove it from subsequent experiments.

We should note that, in principle, the flow estimates, if
accurate, should be sufficient to estimate occlusions. Af-



Figure 5. Receiver Operating Characteristic (ROC) for occlusion detection. Left plot is comparing OcclusionNet performance using only
Features as input (Green) vs using Features concatenated with estimated optical flow (Blue). Right plot is comparing the effect of including
the sampling network in the training (Blue) vs. removing it (Red). Taking into account estimated optical flow improves performance, while
the presence of the sampling circuit in training makes no difference.

Figure 6. Occlusion Detection Example. From left to right we plot the RGB image, depth image, ground truth occlusions, and estimated
occlusions for input frames 1 (top) and 2 (bottom). Occlusions are visualized as red regions superimposed on the whole depth image for
reference. The occlusions in each row indicate pixels corresponding to parts of the body in that frame that are not visible in the other frame.

ter all, as we describe in Sec. 2.4, we are able to compute
ground-truth occlusion maps from the ground-truth flow.
However, flow estimates from the FlowNet are not as ac-
curate as the ground truth. Thus, it is difficult for the Oc-
clusionNet to estimate the occlusion map using only those
estimates. On the other hand, incorporating the features—
alone (B) or with the flow (D)—seems to improve the to-
tal performance (CD), even if flow estimation (ÔF ) and
feature-based correspondences do not improve or worsen.

Eliminating the sampling network improved the flow es-
timation results, as the U-net is now generating features
specifically as inputs to flow estimation and occlusion de-
tection. As expected, these features perform poorly for cor-

respondence estimation. Even though the flow estimation is
improved, the total performance becomes worse.

To evaluate the performance of occlusion detection, we
show in Fig. 5 the receiver operating characteristic (ROC)
curves, plotting the rate of occlusion detection (true posi-
tive rate) against false positive rate, as we vary a detection
threshold in the output of the OcclusionNet.

The left plot compares the performance of combining
flow estimates and features at the input of the OcclusionNet
(table row D, blue curve in the figure) vs. using only the
features (row B, green curve). We see significant perfor-
mance improvement when flow is incorporated, which in a
practical system should be weighed against the lower per-



formance in correspondence estimation, shown in Table 2.
The plot on the right illustrates in red the results of the

ablation in row E of the table, in which we remove the sam-
pling part of the network. The effect in occlusion detection
is imperceptible, compared to including this component in
the network. Given the benefits in correspondence estima-
tion, there is no reason to remove it.

A qualitative evaluation of our occlusion detection is
shown in Fig. 6. The top and bottom rows show the first
and second input frames, respectively. From left to right
we plot the RGB image, the depth image, the depth image
with the ground truth occlusions highlighted in red, and the
depth image with the estimated occlusions highlighted in
red. The occlusions in each row indicate for this frame the
pixels corresponding to parts of the body that are not visible
in the other frame.

As evident in the picture, the detection is fairly high qual-
ity. The main issues we observed were around the edges of
large occlusions. This is especially an issue when there is
little motion and the occlusions are very few and not solid
blocks. In the figure this is evident around the arms and the
hands of the person. In contrast, the estimates around the
legs are quite accurate.

3.3. Computational Considerations

Training the network for 120 epochs takes approx. three
days on an RTX GPUs compute cluster with a batch size
of 4 image pairs. Forward passes through the network for
inference are fast. Although Eq. 6 has to be solved for all
pixels in P1, this can easily be performed in parallel on a
GPU, and this makes real-time inference possible.

4. Conclusion
We presented a scalable multi-modal network architec-

ture for learning dense correspondences and detecting oc-
cluded pixels between subsequent frames of walking peo-
ple. Our experiments show that combining contrastive loss
with optical flow loss and using multiple modalities gives
the best result. In particular, our flow inference approach
uses the smoother optical flow estimate to regularize fea-
ture matching across frames and impose local smoothness
constraints. This allows better filtering of spurious feature
matching and improved performance. The estimated fea-
tures and flow also facilitate occlusion estimation. Our ar-
chitecture can be easily extended to additional modalities,
such as infrared images, to further improve performance.
Of course, it is important to validate our approach on real
data, which have degraded optical flow ground truth.
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