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1. Introduction

Vapor compression systems (VCSs) provide essential
functionality in many energy transfer systems, such as
heat pumps, refrigeration, and organic Rankine cycles, due
to their cost-effectiveness and ability to operate reliably
and efficiently over a long period of time [1]. While a
wide variety of cycle architectures can be adopted for dif-
ferent applications, typical components of these architec-
tures include: compressors for pressurizing and pumping a
working fluid, valves for metering flow and regulating pres-
sures in different parts of the system, and heat exchangers
that enable the exchange of thermal energy between two
or more media. The design of these VCSs have contin-
ued to evolve to meet increasingly stringent specifications,
and key trends that characterize recent developments in-
clude the use of multiple interacting fluid circuits, environ-
mentally friendly working fluids, and variable actuators to
achieve better control and energy performance [2, 3].

Variable actuators play a particularly important role
in contemporary VCSs because they enable the factory-
produced equipment performance to adapt to real-world
disturbances and uncertainties. However, such variable
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actuators introduce additional complexity into the system
design because they require the use of feedback controllers
to regulate the system’s dynamic behavior to prescribed
actuator setpoints. These setpoints represent an addi-
tional degree of design flexibility, and properly assigned
setpoints for the VCS actuators can optimize closed-loop
performance without further alterations to the feedback
controller [4].

Since the VCS dynamics are coupled to the dynamics of
the surrounding environment, controllers must be designed
to ensure robust performance despite a wide array of dis-
turbances that affect the system. Decentralized feedback
loops with proportional-integral controllers [5] and model
predictive controllers [6, 7] have both proven to be effective
in these applications. These controllers comprise multiple
tunable ‘outer loop’ parameters (e.g., setpoints) that can
be adjusted to optimize performance after the ‘inner-loop’
parameters (e.g., PID gains) are fixed. For VCS applica-
tions, the compressor speed is often controlled to regulate
the heating capacity of a heat pump in response to dis-
turbances in ambient conditions or room occupancy, while
the setpoints for the remaining actuators can be chosen
to optimize the system performance. In comparison to the
feedback control design problem, the task of obtaining this
set of optimal setpoints as a function of the regulated in-
puts and the driving conditions is challenging due to the
nonlinear, multi-variable, and often unmodeled dynamics
of the closed-loop system.

Recent studies have documented the use of extremum-
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seeking control (ESC) design techniques to compute energy-
efficient operating points of complex physical systems [8–
12]. Extremum seeking algorithms are model-free tech-
niques that perform a gradient descent on an unknown
convex map representing the steady-state relationship be-
tween manipulated inputs and a performance output. Since
ESC works without an a priori characterization of this
map, the approach is inherently robust to disturbances
and the wide variation of environments in which vapor
compression systems are deployed. However, convergence
to the optimizer using the common perturbation-based ex-
tremum seeking control occurs at a rate two timescales
slower than the dominant plant dynamics—a severe limi-
tation for thermal systems with time constants of tens or
hundreds of minutes [9]. To address this, a proportional-
integral extremum seeking control (PI-ESC) has been de-
veloped that converges to the optimizer at the same time-
scale as the dominant plant dynamics [13]. Unlike the prior
work in [9, 11, 13] which relied on trial-and-error based
tuning methods for PI-ESC using a simplified reduced-
order dynamical model of the VCS, the main contribu-
tion of this paper is the development of an automated
tuning procedure for the algorithm. The tuning proce-
dure employs a Bayesian optimization approach applied
to a high-fidelity black-box simulation model to assign ev-
ery parameter of the PI-ESC used as decision variables
of the closed-loop system. This provides a holistic ap-
proach to ESC tuning that considers simultaneously the
gains of estimation and control as well as the parameters
of the dither signal tuning strategy. The resulting optimal
tuning guarantees closed-loop transient performance when
implemented to physical system.

While ESC offers an efficient data-driven optimization
technique for systems with unmodeled dynamics with ob-
jective functions whose analytical forms are difficult to
obtain, applying ESC to practical problems remains chal-
lenging. In particular, the tuning of ESC techniques can
be exceptionally difficult in the absence of adequate in-
formation about the dynamics of the system or the non-
linearity of the objective function. ESC requires a min-
imum number of underlying assumptions that should be
met to guarantee its performance. Since these assump-
tions cannot be checked explicitly in the absence of ac-
curate process models, many situations arise where the
unknown system violates the assumptions. This problem
can cause deterioration of the performance of the resulting
ESC. The remedying strategy would then be to attempt
to improve its performance by using some alternative tun-
ing of the ESC parameters. This problem is shared by
all ESC design techniques to varying degrees. The pri-
mary contribution of this study is a systematic formalism
to improve the tuning of PI-ESC in vapor compression
systems. Of primary interest is the estimation-based tech-
nique proposed in [9, 11, 13]. This class of techniques has
been shown to perform well in VCS in practice. However,
it is important to note that the proposed approach could
be used for other newer dual-mode based techniques such

as the perturbation-based approach [14] and Lie bracket
averaging techniques [15]. Such techniques, while limited
to continuous-time systems, can be implemented using a
smaller number of tuning parameters. They also require
specific choices of high frequency sinusoidal dither signals
that may not be suitable for application in physical sys-
tems such as vapor compression systems.

PI-ESC (or dual-mode ESC) has been shown to offer
significant improvements in convergence rates in VCS [9].
However, it remains difficult to tune because its multiple
parameters interact in non-intuitive ways and, in some in-
stances, certain combinations have been observed to render
the closed-loop system unstable. In this paper, we present
a Bayesian optimization (BO) approach that automati-
cally discovers combinations of PI-ESC gains that achieve
rapid convergence and outperforms gains obtained by ex-
tensive manual tuning. Since BO is a global, derivative-
free optimization methodology that is designed to obtain
solutions without a large number of function evaluations
or iterations, it has been reported to perform well on con-
troller tuning problems for many industrial applications [16,
17]. BO’s data-driven nature implies that it is agnostic to
the control architecture under consideration and immune
to unmodeled dynamics of the closed-loop system [18–
20], and additional constraints can be incorporated into
the optimization process such as context, robustness, and
safety [21–23]. In fact, BO has been successfully imple-
mented on a simplified heat pump model in [18] for PID
controller tuning. Our work differs significantly from this
prior work, however, in two respects: (i) we tune PI-ESC
control parameters in the outer-loop and not the inner-
loop PID controllers, out of the practical concern that,
post-production, inner-loop VCS controller gains are usu-
ally not easy to alter; and, (ii) prior work has not explicitly
considered potential instabilities that arise during the tun-
ing process: our proposed failure-robust BO (FRBO) al-
gorithm [24] is designed specifically to learn from unstable
combinations of ESC parameters, and avoid them in future
iterations. The application of FRBO for the tuning of PI-
ESC significantly improves the implementation potential
of ESC for a large class of systems. While earlier studies
[9, 11, 13] were primarily focused on the theoretical analy-
sis of PI-ESC. The present study overcomes the practical
limitations arising from the tuning of PI-ESC and provides
optimally tuned ESC-based systems for general classes of
unknown discrete-time nonlinear dynamical systems.

We are also aware of the ‘safe’ BO literature that has
been applied to robotics and battery charging problems,
c.f. [25, 26]. While these applications can make use of con-
strained BO formulations, these algorithms cannot be used
to solve the problem considered in our work without major
modifications. Specifically, the authors in [25, 26] assume
that evaluating the constraint function will yield continu-
ous values, which can subsequently be approximated by
a kernelized regressor like a Gaussian process. This is
not the case in the FR-BO setting, because our constraint
function is an indicator function that yields discontinuous
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values ‘+1’ or ‘-1’ depending on whether the final PI-ESC
design is stable or not.

The first contribution of this work is a failure-robust
Bayesian optimization algorithm that determines ESC con-
troller parameters which render the ESC outer loop stable.
The FRBO algorithms automatically learns combinations
of ESC parameters that are likely to result in unstable
closed-loop trajectories, and leverages probabilistic ma-
chine learning to learn and avoid these regions in the ESC
parameter space. Second, by sampling on the admissible
set of initial conditions of the control system, FRBO is also
designed to seek ESC parameters that result in closed-loop
stable trajectories from a wide range of initial conditions,
which is a significant advantage over manual tuning ef-
forts which typically yield ESC parameters that perform
well for a few initial conditions, often just one initial con-
dition. Such initial condition-specific manual tuning often
results in ESC parameters that do not generalize well to
other initial conditions, as we demonstrate in simulation.
A final contribution is the validation of the proposed FR-
BO approach in the tuning of actuator reference inputs
for optimizing energy consumption of production-level va-
por compression systems. We report that hand-tuning
yielded unstable PI-ESC trajectories despite tens of at-
tempts, and while using BO to find good ESC parameters
was somewhat successful, FRBO outperforms the best so-
lution found by BO by a significant margin, yielding a co-
efficient of performance (CoP) over 6.5 compared to BO’s
CoP of below 5.5.

We review the PI-ESC formulation in Section 2 and
highlight the parameters to be tuned. Section 3 formu-
lates the Bayesian optimization gain tuning problems and
explains how FRBO can improve the convergence rate of
performance-driven PI-ESC parameter tuning. We vali-
date on a benchmark 2D problem as well as a real-world
application for optimizing energy in a production-level va-
por compression system in Section 4.

2. Proportional-Integral Extremum Seeking Con-
trol

This section outlines the development of an extremum
seeking controller based on a time-varying estimate of the
gradient of the cost and a PI control law to drive the sys-
tem to its optimum operating point; c.f. [13] for the full
development and stability and convergence analysis in dis-
crete time.

2.1. PI-ESC Development

The problem of energy minimization of the VCS de-
scribed in the previous section can be abstracted as follows.
The underlying VCS dynamical system can be modeled by
the closed-loop system

xt+1 = f(xt, rt) (1a)

yt = h(xt, rt), (1b)

where t is the time index, xt ∈ Rnx is the vector of state
variables at time t, rt is the setpoint variable at time t
taking values in R ⊂ Rnr and yt ∈ R≥0 is a scalar power
output of the VCS at time t; our objective is to minimize
y. We assume that the dynamics f and the setpoint-to-
energy function h are both unmodeled (therefore, unknown
at design time). We do assume, however, that h exhibits
sufficient smoothness to warrant the use of data-driven
gradient estimates for energy optimization. In practice,
the energy function h is usually smooth, and often, locally
strongly convex; c.f. [11]. More formally, there exists some
scalar β > 0 such that ∇2h(r) > βI for any r ∈ R′ ⊂ R.
Furthermore, there exists some unique r⋆ ∈ R′ such that
∇h(r⋆) = 0.

The principle of ESC is based on obtaining a sequence
of setpoints rt for t ≥ 0 such that each rt moves along a
direction of negative gradient of the function h. That is, a
first-order ESC control law has the form rt+1 = −kggt+dt,
where gt is an estimate of the gradient of h w.r.t. r, kg is
a control gain or step-size, and dt is a persistently exciting
dither signal [12]. Clearly, by the convexity properties of
h, this control law will asymptotically yield a solution in
the neighborhood of a local minimum, where the size of
the neighborhood depends on the magnitude of d; this
has been proven in [27]. By incorporating integral action
to the afore-mentioned control law, its convergence rate
has been significantly accelerated, as demonstrated in [13].
The proportional-integral ESC (PI-ESC) law is given, in
velocity form, by

rt+1 = rt − kg(gt+1 − gt)−
1

τI
gt + dt, (2)

where τI is a time constant of the integral term. The ques-
tion that remains is how to obtain the gradient estimate gt
and its update gt+1 despite the unmodeled dynamics and
cost.

To this end, we exploit the smoothness of h to write a
Taylor series approximation of the difference in cost values,
ignoring second- and higher-order terms, as

∆yt := yt+1 − yt =
∂h

∂x
∆xt +

∂h

∂r
∆rt. (3)

Since f and h are unmodeled functions, we cannot obtain
a numerical or analytical derivative of ∂h/∂x or ∂h/∂r.
Instead, we estimate the unknown quantities in (3) directly
from data {(rt, yt)} obtained during experiments with the
closed-loop system. Concretely, we can rewrite (3) as

∆yt = gxt + grt∆rt. (4)

One can then use the data to formulate a linear regression
problem that involves solving the matrix equation∆yt−Nℓ+1

...
∆yt

 =

1 ∆r⊤t−Nℓ+1
...

...
1 ∆r⊤t

[
gxt
grt

]
︸︷︷︸
gt

,
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from which estimates of the gradient gt can be obtained
efficiently, for example, by using recursive least-squares
(RLS) estimators.

2.2. Data-Driven Gradient Estimator for PI-ESC

We denote ĝrt and ĝxt as the estimates of gxt and grt ,
respectively, and denote ĝt to be the estimate of gt. We
use the following RLS estimator at time t− 1 to estimate
the gradient at time t:

wt = wt−1 − Fwt−1 + ϕt−1, (5a)

Pt = αPt−1 + wt−1w
⊤
t−1 + ϵI, (5b)

et = yt − ŷt, (5c)

Kt =
P−1
t wt−1

α+ w⊤
t−1P

−1
t wt−1

, (5d)

ĝt = ĝt−1 +Ktet. (5e)

Here, ϕt−1 ≜
[
1 rt−1

]
, ϵ is a small scalar-valued term

that seeks to ensure good numerical conditioning of Pt,
and F is a scalar filter gain coefficient. Subsequently, the
predictor

ŷt+1 = ŷt + Fet + ϕ⊤
t ĝt−1 + w⊤

t (ĝt − ĝt−1).

is used to estimate the cost ŷt at time t based on the
estimated gradient (5e).

As long as the system is persistently excited, that is,
there exist constants βT > 0 and T ∈ N, such that

1

T

t0+T−1∑
t=t0

wtw
⊤
t ≥ βT I, ∀t > T, (6)

we know from [13, Theorem 4.1] that the cost associated
with closed-loop system with the gradient estimator (5)
and control law (2) asymptotically enters a neighborhood
of the optimal cost. In order to maintain the persistence
of excitation condition (6), the dither signal is chosen to
be non-zero and small at all time. To this end, we employ
a dither signal of the form

dt = D sin(ωt) + φ0,

where ω is a vector of unique frequencies of the sinusoidal
dither, φ0 is a vector of unique initial phases of the sinu-
soidal dither, and D is a user-defined small amplitude.

We deduce that the following quantities parameterize
a PI-ESC: (i) the integral time constant τI , (ii) the con-
trol gain kg, (iii) the forgetting factor α, (iv) the filter
coefficient F , and (v–vii) the dither variables D, ω, and
φ. Unfortunately, the question of how to select these vari-
ables remains unclear. Empirically, we have observed that
the PI-ESC performance is strongly correlated with the
selection of each of these variables. In fact, if these vari-
ables are not carefully selected, the PI-ESC can result in
numerical instability and the closed-loop system can ex-
hibit unstable dynamics. An additional complication is

that seemingly arbitrary combinations of the parameters
(i)–(vii) can render the closed-loop unstable; indeed, we
have noticed that there is no easily identifiable region in
the space of these PI-ESC parameters where any combi-
nation of parameters results in stable behavior. Identify-
ing such a region is problem-specific, and therefore, using
problem-specific data provides a suitable option to attack
this problem. Consequently, we propose a performance-
(data)-driven Bayesian optimization algorithm for auto-
matically identifying regions of safe combinations of PI-
ESC parameters, and search efficiently within such safe
regions to tuning PI-ESC algorithms. We demonstrate
that our failure-robust BO (FRBO) framework outper-
forms hand-tuning in both benchmark and real-world ex-
amples, while offering a systematic tuning procedure that
can be integrated seamlessly to a wide range of tuning
problems.

3. Performance-Driven Controller Tuning with Fail-
ure Robustness

3.1. Performance-Driven Bayesian Optimization

In this section, we describe how to use Bayesian op-
timization (BO) for tuning the set of parameters listed
in the previous paragraph, so that the PI-ESC algorithm
demonstrates good closed-loop performance. We do so by
iteratively performing experiments with different PI-ESC
parameters, and for each experiment, we assign a value to
the closed-loop performance (e.g. integral-time absolute
error) to be optimized. Tuples of PI-ESC parameters and
their corresponding performance values are subsequently
optimized by FRBO.

For the ensuing discussion, we will search for the fol-
lowing PI-ESC parameters:

θ ≜
[
τI kg α F D⊤ ω⊤ φ⊤]⊤ ,

where the dimension of θ = 1+nr+1+1+nr+nr+nr =
3+4nr. We assume that the set of admissible parameters,
which forms the search space for BO, Θ is known to the
designer. Clearly, even for small nr, the search space is not
low-dimensional enough to justify trying to tune the PI-
ESC parameters manually. In fact, for VCS applications,
we have observed that attempts made to tune by hand of-
ten results in catastrophic failures i.e. unstable closed-loop
dynamics or frequent triggering of failsafe mechanisms due
to impractically large PI-ESC control actions.

For the j-th BO iteration, let θj denote the candidate
set of PI-ESC parameters. With these parameters, an ex-
periment is performed, that is, the PI-ESC closed-loop sys-
tem parameterized by θj is observed on a time interval of
interest [T0, Tf ], and measurements

yT0:Tf
:= {yT0 , yT0+1, · · · , yTf

}

obtained from the system over this time interval are used
to compute a performance value Jj . By learning a prob-
abilistic surrogate model from θ to J and exploiting the
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statistics of the learned surrogate model, BO generates a
sequence of θ candidates that converge2 to the optimal
(in the sense of the performance metric chosen) PI-ESC
parameters θ⋆.

For performance-driven BO, the objective function (to
be minimized) we have found to be useful has the form

J(x) = η1Javg(x) + η2Josc(x),

where x is an initial condition of the system and η1 and
η2 are positive weights on each component. Here, Javg is
designed to filter out the dithering effect in steady state
and promote lower steady state J values. This component
of the cost is obtained by computing the mean of the final
T ′ cost values, that is

Javg ≜ E[JTf−T ′:Tf
],

where E is the expectation operator. The second compo-
nent of the cost

Josc ≜
1

(Tf − T0)

Tf∑
t=T0+1

|Jt|

is designed to penalize oscillations in the closed-loop PI-
ESC response. Since we aim to evaluate performance over
multiple initial conditions within an admissible set of ini-
tial conditions, X, we repeat these simulations for a set
of Nx ∈ N initial conditions {xi}Nx

i=1 and compute the to-
tal cost over this set. That is, the cost assigned to the
parameter θj is given by

Jj =

Nx∑
i=1

Javg(xi) + Josc(xi), (7)

where the two components are defined above.
Classical BO methods assume the presence of a single

global optimum, and smoothness of the θ to J map. Since
J is typically assumed to be continuous, one can leverage
the data at the j-th iteration to construct a surrogate GP
model of the cost, given by

Ĵj := GP (µ(θ;Dj), σ(θ, θ
′;Dj)) , (8)

where µ(·) is the predictive mean function, and σ(·, ·) is the
predictive variance function, andDj containing {θ[0:j], J[0:j]}
is the dataset collected thus far. Typically, the variance is
expressed through the use of kernel functions [29].

At the j-th learning iteration, for a new query sample
θ ∈ Θ, the GP model predicts the mean and variance of
the reward to be

µ(θ) = kj(θ)
⊤K−1

j J0:j

and
σ(θ) = K(θ, θ)− kj(θ)K

−1
j kj(θ)

⊤,

2Typically, the convergence proofs are for simple, or cumulative,
regret; c.f. [28].

where

kj(θ) =
[
K(θ0, θ) K(θ1, θ) · · · K(θj , θ)

]
,

and Kj is given by

Kj =

K(θ0, θ0) · · · K(θ0, θj)
...

. . .
...

K(θj , θ0) · · · K(θj , θj)

 , (9)

The accuracy of predicted mean and variance is strongly
linked to the selection of the kernel and the best (in some
sense) set of hyperparameters such as length scales and
variance parameters of the kernels and estimated noise.
We obtain these hyperparameters by maximizing the log
marginal likelihood function (MLL)

−1

2
log |Kj | −

1

2
J(θ)⊤K−1

j J(θ)− nθ

2
log 2π.

This problem is non-convex but can be solved using quasi-
Newton methods or adaptive gradient methods [30].

In Bayesian optimization, we use the mean and vari-
ance of the surrogate model Ĵj in (8) to construct an acqui-
sition function to inform the selection of a θj that increases
the likelihood of minimizing the current best cost. To this
end, we compute the incumbent Ĵ⋆

j := minθ∈Θ µ(θ;Dj)
and use it to define an expected improvement (EI) acqui-
sition function that has the form

EI(θ, j) =

{
σ(θ)γ(z) + (Ĵ⋆

j − µ(θ))Γ(z), if σ(θ) > 0,

0 if σ(θ) = 0.

where z =
Ĵ⋆
j −µ(θ)

σ(θ) , and γ(·), Γ(·) are the PDF and the

CDF of the zero-mean unit-variance normal distribution,
respectively.

In the j-th iteration of learning, we use the data Dj to
construct the EI acquisition function using the surrogate
Ĵj . Subsequently, we compute the optimizer candidate

θj+1 = argmax
θ∈Θ

EI(θ, j), (10)

which serves as the parameter estimate θ in the next BO
iteration.

Remark 1. Other acquisition functions such as the lower
confidence bound or knowledge gradients could also be used
instead of EI [29].

3.2. Failure Robust Bayesian Optimization

While one could, in theory, apply classical Bayesian
optimization directly in order to find an optimal set of PI-
ESC parameters θ⋆, we have (empirically) found that this
approach has severe limitations. Frequently, the classical
BO procedure tends to select θ candidates that make the
PI-ESC closed-loop system unstable. These instabilities
culminate in simulation failures, that is, the closed-loop
system states attain arbitrarily large magnitudes and the
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Algorithm 1 PI-ESC Tuning with FRBO

Require: Initial and total FRBO iterations, N0, N∞
Require: Admissible initial conditions, X
Require: Search space for PI-ESC parameters, Θ
Require: Cost function surrogate GP model, GP
Require: Failure region learning algorithm, F
Require: Time interval of experiment, [T0, Tf ]
Require: Frequency of retraining F , NF
1: Generate fixed set of initial conditions, XNx

Generate initial dataset {θt, ℓt, Jt}N0
t=0

2: for t = 1 to N0 do
3: Randomly select θt ∈ Θ
4: procedure CollectData(θt)
5: Perform experiment with PI-ESC parameter θt

for all initial conditions in XNx

6: if experiment fails then
7: Label failure, ℓt = +1
8: Assign failure cost, Jt = NaN

9: else
10: Label success, ℓt = −1
11: Compute cost, Jt using (7)
12: end if
13: end procedure
14: end for

Run FRBO

15: Train F with {θt, ℓt}N0
t=0

16: Train GP with {θt, Jt} for real-valued costs only
17: for t = N0 to N∞ do
18: Compute candidate using FREI (12), θt+1

19: Collect data, ℓt+1, Jt+1 ← CollectData(θt+1)
20: Append dataset, {θt, ℓt, Jt}N0+t+1

t=0

21: Train GP with {θt, Jt} for real-valued costs so far
22: if modulo(t,NF ) = 0 then ▷ Infrequent retraining
23: Train F with all {θt, ℓt} data so far
24: end if
25: end for
26: Best cost index, t⋆ = argmint{Jt}
27: Return Optimal PI-ESC parameters, θt⋆

experiments trigger failsafe mechanisms before the termi-
nation time Tf . To reiterate, the failures described are not
only numerical intractabilities in simulation experiments,
but originate from a common physical phenomenon that
has been observed experimentally. Poor combinations of
PI-ESC gains will destabilize the operation of the VCS,
causing loss of cooling capacity. In hardware, this trig-
gers failsafe operation, or in simulated systems this results
in non-physical states that violate component model as-
sumptions. Additionally, the failed simulations result in
arbitrarily large, and often, nonsensical e.g. NaN cost val-
ues that render the (θ, J) datapoint useless for consequent
BO iterations. Since seemingly arbitrary combinations of
the components of θ result in these instabilities, classical
BO wastes a lot of iterations evaluating candidates that

cause instability, resulting in very slow convergence rates.
Rather than employing heuristics to avoid the regions

in parameter space that are likely to result in simulation
failures, we adopt a data-driven approach to estimate these
regions and avoid them by means of a modified acquisition
function tailored to promote ‘failure robustness’. We refer
to this algorithm as failure-robust BO (FRBO) and pro-
vide a few key details about the algorithm herein. A more
detailed description is available in [24].

The first step of the FRBO algorithm involves con-
structing a dataset for failure region estimation, which
we will pose as a supervised learning problem. We begin
by randomly sampling a set of initial conditions XNx

:=
{xi}Nx

i=1 within the space of admissible initial conditions X;
this set is then kept fixed. At the j-th FRBO iteration, we
simulate the PI-ESC closed-loop system on [T0, Tf ] where
the PI-ESC is parameterized by the candidate parameter
θj . If the simulation fails, we assign a label ℓj = 1 and
store a nonsense value in the cost Jj = NaN. If the simula-
tion is successful, we assign a label ℓj = −1 and store the
real-valued cost Jj described in (7). Thus, at the end of the

j-th FRBO iteration, we have a dataset {(θk, ℓk, Jk)}jk=0.
We can use the (θ, ℓ) components of this dataset to

estimate the failure region boundary by casting the es-
timation problem as a supervised learning problem. In
particular, we need to construct a probabilistic learning
machine F : Θ → [0, 1], where the output of the learner
is the probability that θ ∈ Θ is inside the failure region.
That is, F(θ) is the learned probability that the closed-
loop PI-ESC parameterized by θ will be unstable (and
therefore, fail). A few considerations go into the selec-
tion of a learning algorithm suited for the task of failure
region estimation. First, F should be able to generate
meaningful estimates of the failure region despite being
trained on limited (θ, ℓ) data, since the FRBO algorithm
is designed to converge without requiring a large num-
ber of iteration. Second, F needs to be retrained often,
so a learner that requires a large number of training it-
erations before yielding accurate predictions is not ideal
for FRBO. Third, F needs to be able to generate deci-
sion boundaries exhibiting complex geometries, since the
failure region may have irregular contours. One or more
of these pre-requisites restrict the utility of deep neural
networks (needs large datasets) or linear classifiers (can-
not generate nonlinear decision boundaries). Instead, we
have found that a nonparametric kernel-based probabilis-
tic classifier such as a variational Gaussian process clas-
sifier (VGPCs) [24, 31] works well in practice for failure
region estimation in the context of FRBO. Over compara-
ble classifiers like a probabilistic support vector machine,
the VGPC has the advantage that its outputs—a mean
and variance—is easily interpretable since the variational
proxy distribution is taken to be Gaussian.

Once the failure region estimator is trained, the FRBO
algorithm utilizes a failure-robust expected-improvement
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(FREI) acquisition function that has the form

FREI(θ, j) = EI(θ, j) · (1− PF(θ, j)), (11)

where PF(θ, j) = F(θj) is the probability of failure cal-
culated by training F using (θ, ℓ) data up to the j-th it-
eration, and EI is described in (10). Note that the GP
surrogate of the cost (8) is trained on (θ, J) data which
resulted in stable closed-loop trajectories, that is, exclud-
ing those data points where ℓj = +1. Upon maximizing
this acquisition function, FR-BO selects the next optimizer
candidate

θj+1 = argmax
θ∈Θ

FREI(θ, j). (12)

This maximization problem is often solved in low dimen-
sions by sampling on Θ, evaluating the acquisition function
on those samples, and choosing the maximizer on that fi-
nite set of samples. In such an approach, the samples on
Θ are selected randomly at each FRBO iteration to en-
courage exploration.

We note that maximizing FREI indicates that the com-
ponent EI should be large, and that the component PF
should be small, i.e., near zero. The former indicates that
the considered θ is likely to minimize the cost function (7),
and the latter implies that such a θ is likely to result in a
successful simulation. By combining both these beneficial
qualities into the selection of the next candidate θ, FRBO
automatically increases the likelihood of choosing θ values
that do not result in instabilities of the closed-loop system,
while remaining likely to optimize the cost function. A full
pseudocode is provided in Algorithm (1).

3.3. A heuristic for retraining F
It is not necessary to retrain F at every FRBO itera-

tion. In fact, we have found that a combination of active
learning and retraining infrequently results in significant
speedup of the FRBO algorithm. Active learning involves
selecting θ values that the learner is most uncertain about,
and therefore these θ values are most useful for determin-
ing the failure region boundary. If F is a VGPC, then the
most informative sample obtained by active learning is

θ⋆j = argmax
θ∈Θ

1

2
log (2π Var(θ)) , (13)

which is the sample that exhibits highest variance (i.e.
uncertainty). The active learning step does not directly
improve convergence speed of FRBO as the most informa-
tive sample for determining the failure region is unlikely
to be a sample that optimizes the cost function. However,
a few actively learned samples can quickly lead to a good
estimate of the failure region, which consequently reduces
the amount of time wasted evaluating parameters that re-
sult in instability. One effective heuristic for every 100
FRBO iterations is to: (i) generate 80–90 θ candidates via
the FREI acquisition function (12); (ii) generate the rest
of the θ candidates via active learning (13); (iii) retrain
the surrogate cost GP at every iteration, and (iv) retrain
F once at the end of the 100 iterations.

4. Simulation Results

4.1. Nonlinear System

To demonstrate the effect of the proposed method on a
multi-variable tuning problem, we consider the dynamical
system

x1,t+1 = x2
3,t + r1,t,

x2,t+1 = x2,t + r1,t,

x3,t+1 = 2x3,t

(
r1,t + x1,tx2,tr2,t

)
,

yt =
1

2
x⊤
t xt

studied in [13, 32]. The optimal solution of this system
is y⋆ = 0 at r∗ = 0, but the quadratic terms in both
the state dynamics and cost function imply that without
careful tuning of the PI-ESC algorithm, the state and cost
can become arbitrarily large very quickly.

Since we do not have an accurate estimate of Θ, we
search over a wide range of θ values, namely

Θ = [1, 103]×[0.01, 10]×[0, 1]×[0, 1]×[0.01, 10]2×[1, 103]2.

Since nr = 2 and we force kg to be a scalar, so θ is 8-
dimensional, since φ is fixed to be zero. We initially con-
struct a dataset with N0 = 100 samples, and our set of
initial conditions is extracted from X = [−1.5, 1.5]3 using
Nx = 200 low-discrepancy points in order to attain good
coverage over the entire space; see [33, 34] for more details
about low-discrepancy sequences and their advantages.

Once this initial sampling is complete, we train a VGPC
and a GP regressor to obtain an estimate of the failure
region and surrogate cost, respectively. Our specific im-
plementation of the failure region classifier uses a VGPC
with a squared exponential kernel, 200 inducing points,
a Bernoulli likelihood function, and a variational ELBO
loss function. The variational ELBO is optimized with an
Adam optimizer for 2000 iterations initially (before FRBO
is run) and then 500 iterations everyNF = 100 FRBO iter-
ations; the learning rate is fixed at 0.01 initially, and 0.005
thereafter. For the GP regressor, we use a Matern-3/2
kernel with Gaussian likelihood, a marginal log likelihood
loss function that is maximized using stochastic gradient
descent (SGD) with a learning rate of 0.05 throughout the
FRBO algorithm, for 500 training iterations. While hy-
perparameter optimization could prove useful in improv-
ing performance even further, we have noticed empirically
that manual selection of these hyperparameters, especially
kernels, training iterations, and learning rates, is possible,
as the FRBO algorithm is not sensitive within reasonable
ranges of these hyperparameters. The FRBO is run for
900 iterations, with 1000 samples drawn randomly at each
iteration to maximize the FREI acquisition function on Θ.
The closed-loop system is run for T0 = 0 to Tf = 5000
time instants, and the first component of the cost (7) is
evaluated on the final T ′ = 50 time indices.

The optimal parameters obtained by the FR-BO algo-
rithm are τI = 109.51, kg = 0.6791, α = 0.21, F = 0.13,
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D = [0.10, 0.11], ω = [185.49, 181.11]. Note that if we
restrict the elements of D and ω to be equal, then the
FR-BO finds D = 0.11 and ω = 185.59, which yields
identical results to the full 8-dimensional version. The
closed-loop simulation results using the PI-ESC that is
parametrized by θ⋆ is shown in Figure 1 and Figure 2; fur-
thermore, we compare our results with a PI-ESC whose
gains have been reported in the prior art by carefully
hand-tuning [13], which we refer to as ‘Manual’. We also
compare with BO employing a constrained expected im-
provement (ConEI) acquisition function [35], and a scal-
able trust-region approach called TuRBO that has recently
demonstrated excellent performance on constrained global
optimization problems [36]. Both the ConEI and TuRBO
algorithms were implemented with hyperparameters as close
to FRBO’s hyperparameters as much as possible, e.g. ker-
nel type, method of optimizing the acquisition function.
However, we could not make the implementations com-
pletely identical in terms of algorithm-specific hyperpa-
rameters, so for fairness, the default values in the BoTorch
library [37] were used. The comparison of the states and
outputs is made over 1000 runs, where in each run, we ran-
domly select initial conditions x0 of the system within the
box [−1.5, 1.5]3. The median and 95% confidence intervals
are shown for the FRBO tuned PI-ESC using blue, and the
hand-tuned PI-ESC using orange. We observe from Fig-
ure 1 that the FRBO tuning results in greatly improved
closed-loop performance for two reasons. First, the output
y of the system always converges to a small neighborhood
of the optimum (the origin), and mostly does so within 50
time steps. Conversely, the gains reported by hand-tuning
in the prior art converges for 757 out of 1000 initial states,
and on those cases, the output decays to a larger neighbor-
hood of the optima more slowly, in 250 time steps. Second,
from the wide confidence intervals, we deduce that the
closed-loop output response of the hand-tuned PI-ESC is
much more oscillatory than the FRBO-tuned PI-ESC. This
indicates that the FRBO version is less sensitive to initial
condition variation, which is expected since the gains are
tuned with respect to a finite, but wide, range of initial
conditions in our proposed approach. While the state-
of-the-art constrained BO algorithms ConEI and TuRBO
perform better than the hand-tuned PI-ESC, it is evident
from the figure that ConEI and FRBO achieve the lowest
y values, with the median performance of FRBO outper-
forming ConEI. It is also noteworthy that the convergence
rate of the FRBO tuning is faster than the others. These
findings are corroborated in Figure 2, which illustrates the
2-norm of the states x and setpoints r. Clearly, the states
and setpoints of the FRBO tuned PI-ESC converge sig-
nificantly faster, and to tighter neighborhood than their
hand-tuned counterpart.

The overall FRBO training performance is also com-
pared against classical BO (with an EI acquisition func-
tion) in Figure 3. Both algorithms are run with the same
initial dataset, and the costs J are scaled to lie on the unit
line. The red vertical lines indicate iterations where the

Figure 1: Comparison of output optimized by the PI-ESC tuned by
FRBO and the other competitor algorithms for the 2D system, over
1000 runs. Note that the vertical axis is in log-scale.

Figure 2: Comparison of closed-loop states and inputs of PI-ESC
tuned by FRBO and the other competitor algorithms over 1000 runs.

θ candidate resulted in a failed simulation. The FRBO
algorithm (left subplot), due to repeated learning of the
failure region, shows a gradual reduction of the number of
failed simulations as the number of FRBO iterations in-
crease. After 750 iterations, there are no further failures
because the BO algorithm searches in a subregion that
is not failure-prone, as directed by the failure classifier
F . Contrarily, the right subplot shows that for classical
BO, since there is no estimate of the failure region, the
frequency of failures occurring throughout the optimiza-
tion is fairly constant, and since a lot of those iterations
are wasted from an optimization perspective, there are
fewer improvements in the cost function J . Consequently,
the final cost value for the FRBO algorithm is much bet-
ter (0.03) compared to classical BO (0.42), for the same
number of iterations. This demonstrates the potential of
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FRBO on practical problems where the cost cannot always
be evaluated and failures occur.

Figure 3: Comparison of cost decay curves of the FR-BO and BO
tuning procedures (costs have been scaled to [0, 1] by the same scaling
factor).

4.2. Case Study: Energy Optimization of Production-Level
Heat Pump

4.2.1. The Energy Optimization Problem

We demonstrate the practical application of the FRBO
algorithm for the parameter tuning of PI-ESC controllers
to reduce the energy consumption of a vapor-compression
cycle (VCS) under standard operating conditions. Con-
temporary vapor-compression cycles often have many vari-
able actuators, such as compressor speed, expansion valve
position, and fan speeds; since the number of actuators of-
ten exceeds the number of variables regulated by feedback
controllers, the remainder of these actuators can be used
to optimize the system performance according to a given
metric. In this case study, we regulate the cooling capac-
ity provided by the equipment to a user-provided setpoint
by controlling the compressor speed, and seek to identify
the values of the other actuators that minimize the energy
consumption.

The architecture of a conventional variable-capacity
vapor-compression cycle is provided in Figure 4-A. A vari-
able speed compressor compresses low-pressure refrigerant
vapor to a high pressure, at which the saturation temper-
ature for the refrigerant is higher than the temperature
of the air entering the heat exchanger. As the refriger-
ant leaves the compressor and passes through the tubes of
the outdoor heat exchanger, it condenses into a liquid as
thermal energy is transferred to the ambient air, which is
driven by an outdoor fan as it passes over the tubes. This
liquid refrigerant is then adiabatically expanded through
a variable-orifice expansion valve (EEV) to a pressure at

which the saturation temperature is below the tempera-
ture of the air entering the indoor heat exchanger from
the room. A variable-speed indoor fan is used to circulate
the air over this indoor heat exchanger. The difference
in between the inlet air temperature and the refrigerant
saturation temperature causes the refrigerant to absorb
thermal energy from the room air through the process of
evaporation. The refrigerant then exits the heat exchanger
in a low-pressure vapor state, after which it returns to the
compressor.

Figure 4: [A] Principal components of the vapor compression cycle.
[B] Control architecture under study.

4.2.2. Experimental Setup

A high-fidelity model for the dynamics of a prototype
VCS with the above architecture was developed in the
Modelica language [38]. Equation-based models of the
compressor, heat exchangers, valves, and fans were con-
structed using an object-oriented approach and intercon-
nected to form a complete cycle model. Geometric and
empirical parameters for these components, such as heat
exchanger geometries, heat transfer coefficients, or perfor-
mance curves, were obtained from experimental data and
adapted to this use case for the purposes of generaliza-
tion. These models were formulated using the governing
physics of the system, and implemented as a set of differ-
ential algebraic equations (DAEs) that describes a spatial
discretization of the conservation equations for mass, mo-
mentum, and energy. The dynamic behavior of the sys-
tem, represented by f in (1a), is dominated by that of the
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heat exchangers, as the transients moving mass between
these components are much slower than the other time
constants of the system. Accordingly, nonlinear algebraic
models of the compressor and expansion valve were used
to manage the size of the set of differential equations being
solved. The heat exchanger models were discretized along
the direction of refrigerant flow using finite volume meth-
ods, while the three-dimensional variations on the air-side
of the heat exchangers were represented by a complex set
of boundary conditions that characterized the conjugate
heat and mass transfer processes essential to the system
operation. 27 volumes were used in the model of the con-
densing heat exchanger to its long pipe length, while 16
volumes were used for the evaporating heat exchanger. A
Helmholtz fundamental equation-of-state models was used
to describe the algebraic constraints between the myriad
refrigerant properties (e.g., pressure, temperature, density,
specific enthalpy), while an ideal gas mixture model was
used to describe the air properties. A nonlinear algebraic
model was also used for yt in the cost (1b). Compilation
of these models and their interconnections resulted in a
total cycle model that consists of 12,114 state equations.
More information on the structure of this model and its
components can be found in [39].

Because multiple combinations of actuator positions
produce the same cooling capacity but differing values
of electrical power consumption [40], we configured the
vapor-compression cycle for realtime optimization via ex-
tremum seeking control to identify actuator values that
minimize the energy consumption as shown in Figure 4-B.
The value of the compressor frequency is computed by a
proportional-integral (PI) controller acting on the differ-
ence between a setpoint of 2 kW and the measured value of
the cooling capacity; the PI controller gains are designed
and fixed offline and demonstrate good regulatory perfor-
mance under regular operating conditions. This controller
was also implemented in Modelica, as the vapor compres-
sion system and compressor feedback are thus treated as
the optimization target for a proportional-integral extremum
seeking controller (PI-ESC) [11]. The PI-ESC algorithm
assigns EEV position, outdoor fan speed (OFS) and in-
door fan speed (IFS) such that a measurement of equip-
ment power is minimized. Assuming that zone setpoint
and system disturbances (heat load and ambient tempera-
ture) are held constant, the combination of EEV, IFS, and
OFS values at steady state are energy-optimal.

The closed-loop Modelica system model was interfaced
to the PI-ESC code using the Functional Mockup Inter-
face (FMI) standard [41]. The Dymola [42] environment
was used for the initial development of this model, which
was then exported as a Functional Mockup Unit (FMU)
containing executable simulation code as well as a DAE
solver. An advantage of the FMU-based approach is that
the original model can be designed in Modelica, which
can efficiently solve large sets of stiff nonlinear differential
equations and preserves physics-informed dynamics, while
the PI-ESC and FRBO code could be written in Python

to take advantage of existing machine learning tools.
For this example, nr = 3 as there are three setpoints

(EEV, IFS, and OFS) to be ascertained by the PI-ESC.
Thus, θ is 12-dimensional, as the phase φ is fixed at zero.
The search space Θ is identical to that in Example 1, with
the exception that the final two intervals for D and ω are
[0.01, 10]3 and [1, 103]3 because nr = 3, and the search
space for kg is [0.1, 102]3. The initial set of states is fixed
for this system in order to start the experiment on the
RAC at an equilibrium point, so all FRBO costs are cal-
culated for the same initial condition. From this initial
time T0 = 0, we simulate forward to Tf = 120 min to al-
low the system to enter a 95% settling zone. Each run of
120 min simulation time requires a wall time of 10–15 min
due to the large number of internal states in the Modelica
model. We select T ′ to be the final 20 min and power mea-
surements are assumed to be obtained every 60 s. We use
the same hyperparameters for the VGPC failure classifier
and GP regressor as in Example 1, except that both are
trained for 2000 iterations with a learning rate of 0.01. We
allow the FRBO to terminate after 500 iterations. At ter-
mination, the parameter set generated by FRBO is given
by τI = 61.3, kg = [4.15, 10.55, 25.42], α = 0.92, F = 0.99,
D = [1.31, 2.15, 4.85], ω = [10.21, 13.55, 17.96].

Perf-Index BO-Tuning FRBO-Tuning

s.s. Power [kW] 0.37 0.30
95% Settling [hr] 4.42 1.01
IAE (

∫
|e| dτ) 1.79× 103 0.89× 103

ITAE (
∫
τ |e|dτ) 3.40× 103 0.49× 103

ISE (
∫
|e|2 dτ) 2.76× 105 2.20× 105

ITSE (
∫
τ |e|2 dτ) 3.09× 105 0.99× 105

RMSE (EEV) 1.18 1.31
RMSE (OFS) 2.59 2.03
RMSE (IFS) 5.41 4.59

Table 1: Performance indices reported in the comparative study.
Here, e := (Power − Optimal Power), where the optimal power is
calculated by exhaustive sampling of the setpoint space for the pur-
poses of reporting these values. RMSE = root mean squared error.

4.2.3. Results and Discussion

In order to demonstrate the potential of the FRBO-
tuned PI-ESC, we compare with a baseline, where the set-
points of EEV, IFS, and OFS are kept fixed at nominal
values that have been chosen by a domain expert, and a
PI-ESC whose parameters have been tuned by classical
BO. Both classical BO and FRBO are allowed the same
number of optimization iterations, and FRBO converges to
a better solution within those iterations while BO wastes
many iterations searching for candidate parameters that
result in failure. We also tried to compare to a PI-ESC
with hand-tuned parameters before acquiring the FRBO
optimized parameters, but could not hand-tune parame-
ters that did not result in closed-loop instabilities despite
>30 attempts.

Figure 5 illustrates the comparison of closed-loop PI-
ESC with FRBO tuning, BO tuning, and the baseline. We

10



Figure 5: Comparison of closed-loop performance of PI-ESC and baseline for the multivariable space cooling application. (EEV = electronic
expansion valve position; OFS = outdoor fan speed; IFS = indoor fan speed; Qc = capacity; CF = compressor frequency.)

also provide the numerical values of corresponding perfor-
mance indices calculated from these simulations in Table 1.
It is evident from the figure that the operating power is
reduced significantly from the baseline power by the PI-
ESC with FRBO tuning. In particular, the steady-state
operating power of the FRBO-PI-ESC is 300 W, whereas
the BO-PI-ESC power is oscillating around 370 W. This is
further corroborated by calculating the coefficient of per-
formance (CoP), defined as the instantaneous thermal ca-
pacity divided by electrical energy consumed by the sys-
tem, in Figure 6. We observe that FRBO-PI-ESC con-
verges to a higher COP compared to BO-PI-ESC (6.81 v.
5.44). Since the compressor frequency is directly under
capacity control, the ESCs manipulate the fan speeds and
valve position. The outdoor fan speed is reduced, the in-
door fan speed largely settles near its initial setting, and
the electronic expansion valve opens. The latter actua-
tor in particular will reduce the pressure difference across
the compressor, reducing its apparent load and enabling
more capacity. Because the compressor is under capac-
ity feedback control, the compressor speed is subsequently
reduced, which accounts for the large increase in energy
performance. Additionally, we checked by exhaustive sam-
pling that the optimal power value is 285 W, which is
much closer to that obtained by FRBO-PI-ESC than BO-
PI-ESC, even though both algorithms were afforded the
same number of optimization iterations, indicating the ac-
celeration contributed by FRBO.

As we see from the settling time comparison in Ta-

ble 1, the FRBO-PI-ESC actually converges to the optimal
power value around 1 hour (both ESCs are switched on at
the 1 hour mark after initial transient have disappeared),
while the BO-PI-ESC has a strong oscillatory response, re-
sulting in a far slower settling time of over 4 hours. In order
to better quantify the power responses of the two ESC con-
trollers, we provide some error metrics in Table 1, where
the error e is computed by taking the difference from the
measured power output and a theoretical minimum power
obtained by exhaustive sampling. In particular, we see
from the integral-time absolute (ITAE) and integral-time
squared error (ITSE) that the FRBO-PI-ESC produces a
power signal that converges quickly to the steady state
value and remains there, whereas the larger ITSE/ITAE
values for BO-PI-ESC implies that the signal exhibits sus-
tained oscillations. Note that the capacity is consistently
maintained at 2 kW despite setpoint changes in the ESC
outer loop, except when the PI-ESC algorithms are first
switched on around 0.5 hr.

The actuators manipulated by PI-ESC experience large
amplitude swings initially, which is captured by the RMSE
in each of the actuators in Table 1, where we note that the
energy of the expansion valve and fan speed signals are
higher for FRBO than BO. However, this excitation does
not cause a loss in capacity in this case. If these swings
were deemed to be too large for practical systems, they
can be reduced with small adjustments to FRBO-PI-ESC
parameters, or intercepted by VCS protection logic. Im-
portantly, the improvement in convergence rate to about 1
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hour overcomes important obstacles to wide-scale deploy-
ments of ESC in VCS applications. Typical disturbances
acting on the system (see Fig. 4-B) are associated with
building dynamics or diurnal weather patterns and there-
fore have timescales slower than 1 hour, implying that PI-
ESC could be used to track optimal energy performance
while rejecting disturbances in this frequency band, as pre-
viously reported in [11].

Figure 6: Comparison of coefficient of performance for PI-ESC with
classical BO and FRBO tuning. Both classical BO and FRBO solu-
tions have been obtained after allowing 1000 optimization iterations.

5. Conclusions and Future Work

In this study, we propose a failure-robust version of the
Bayesian optimization (BO) algorithm to compute PI-ESC
gains that ensure the closed-loop system can be driven to
its optimum, despite lack of model knowledge. We fo-
cus on an estimation-based PI-ESC that has been proven
to be effective for optimizing efficiency in vapor compres-
sion systems, and demonstrate that the FRBO algorithm
can systematically tune PI-ESC parameters to outperform
classical BO tuning. The proposed strategy was evalu-
ated on a benchmark example, where we showed that the
FRBO algorithms learns from unstable simulations and
accelerates the tuning process compared to classical BO,
even from a wide range of initial conditions. It was also
tested on a real-world example using a Modelica model
of a heat pump, where we reported that hand-tuning of
PI-ESC is impractical, and a classical BO approach for
tuning PI-ESC results in gains that are outperformed by
FRBO tuning. In addition to discovering a more optimal
operating point, PI-ESC converges in less time.

The tuning of ESC is a very important consideration
in the application of ESC. ESC techniques are subject to
difficulties associated with the tuning of the ESC system
parameters. The tuning relies on properties of the sys-
tem that cannot be directly assessed in practical situation.

This is partially the issue faced by the application to VCS
as reported in this study. The proposed BO technique
overcomes these problems. It is a valuable tool in the
broader context of model-free real-time optimization sys-
tem design using ESC. Future work will be focussed on the
application of the BO tuning approach over a wide range
of competing ESC methodologies. This is particularly im-
portant in the application of fast ESC technique such as
PI-ESC. Many different formulations of the PI-ESC ap-
proach have been proposed in the literature including a
perturbation based and a Lie bracket approximation tech-
nique. While each technique has its own inherent limi-
tations, the BO tuning approach can be used to provide
a systematic comparison of competing approaches. It is
planned to use the proposed technique to address tuning
issues in ESC in general to provide a fair comparison of
all existing approaches. This approach could provide some
useful insights to aid in the development of general tuning
strategies for ESC techniques in a general setting.
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