
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Optimal control of PDEs using physics-informed neural
networks

Mowlavi, Saviz; Nabi, Saleh

TR2022-143 November 15, 2022

Abstract
Physics-informed neural networks (PINNs) have recently become a popular method for solving
forward and inverse problems governed by partial differential equations (PDEs). By incor-
porating the residual of the PDE into the loss function of a neural network-based surrogate
model for the unknown state, PINNs can seamlessly blend measurement data with physical
constraints. Here, we extend this framework to PDE-constrained optimal control problems,
for which the governing PDE is fully known and the goal is to find a control variable that
minimizes a desired cost objective. We provide a set of guidelines for obtaining a good optimal
control solution; first by selecting an appropriate PINN architecture and training parameters
based on a forward problem, second by choosing the best value for a critical scalar weight in
the loss function using a simple but effective two-step line search strategy. We then validate
the performance of the PINN framework by comparing it to adjoint-based nonlinear optimal
control, which performs gradient descent on the discretized control variable while satisfying
the discretized PDE. This comparison is carried out on several distributed control examples
based on the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations. Finally,
we discuss the advantages and caveats of using the PINN and adjoint-based approaches for
solving optimal control problems constrained by nonlinear PDEs.

Journal of Computational Physics 2022

c© 2022L̇icensed under the Creative Commons BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Optimal control of PDEs using physics-informed neural networks

Saviz Mowlavi1,2 and Saleh Nabi1

1Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
1Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA

Abstract

Physics-informed neural networks (PINNs) have recently become a popular method for solving forward
and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of
the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs
can seamlessly blend measurement data with physical constraints. Here, we extend this framework to
PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal
is to find a control variable that minimizes a desired cost objective. We provide a set of guidelines
for obtaining a good optimal control solution; first by selecting an appropriate PINN architecture and
training parameters based on a forward problem, second by choosing the best value for a critical scalar
weight in the loss function using a simple but effective two-step line search strategy. We then validate
the performance of the PINN framework by comparing it to adjoint-based nonlinear optimal control,
which performs gradient descent on the discretized control variable while satisfying the discretized PDE.
This comparison is carried out on several distributed control examples based on the Laplace, Burgers,
Kuramoto-Sivashinsky, and Navier-Stokes equations. Finally, we discuss the advantages and caveats
of using the PINN and adjoint-based approaches for solving optimal control problems constrained by
nonlinear PDEs.

1 Introduction

Owing to increases in computational power and wealth of available data as well as advances in algorithms,
machine learning and deep learning specifically have revolutionized a number of fields over the last decade [1]
– image and speech recognition [2, 3], natural language processing [4], and drug discovery [5] are just a few
examples. In the physical sciences, however, data is more scarce while physical models are often available in
the form of partial differential equations (PDEs) [6]. Leveraging these governing equations, physics-informed
neural networks (PINNs) were recently proposed in [7] as a deep learning framework for solving forward and
inverse problems without requiring much data (or not at all, in the case of forward problems). Building on
a line of research that originated in the nineties [8, 9, 10, 11] and is rooted in the universal approximation
theorem for neural networks [12, 13], the basic idea behind PINNs is to approximate the solution to a given
problem with a feed-forward neural network. This neural network is then trained by minimizing a composite
loss function that not only penalizes the prediction error with respect to the available data but also enforces
the governing equations and boundary conditions – in effect, the governing equations act as an implicit
prior that regularizes the training procedure in the data-limited regime. A great benefit of PINNs is their
flexibility: they can either solve forward problems in the absence of any data when the governing equations
are fully known, or leverage available data to solve inverse problems involving unknown model parameters
or physical quantities (for reviews on PINNs, see [14] and [15]). PINNs have since found applications in
numerous fields such as fluid mechanics [16, 17, 18], heat transfer [15], solid mechanics [19, 20], medicine
[21, 22], and chemistry [23], and they have been extended to account for noisy data [24] as well as various
types of governing equations such as stochastic PDEs [25] and fractional PDEs [26].

In this paper, we investigate the potential of PINNs to solve PDE-constrained optimal control problems,
for which the governing PDEs are fully known and the goal is to find a control variable that minimizes a
desired cost objective. Such problems arise in a variety of fields including fluid mechanics [27], transition to
turbulence [28], heat transfer [29], electromagnetism [30], topology optimization [31], and mesh refinement

1

[32]. The control variable to optimize might represent a distributed boundary actuation, an external body
force or an initial condition of the system [33, 34]. The highly nonlinear and multi-scale nature of such
problems requires sophisticated numerical tools to determine control inputs that yield optimal performance
according to application-specific criteria. Optimal control problems are usually solved by combining gradient-
descent algorithms with adjoint-based sensitivity analysis, which computes the gradient of the cost objective
function with respect to the control variable using only two PDE simulations [35]. This adjoint-based
optimization framework is therefore very efficient when the control is a space- and/or time-dependent field,
but its complexity has limited its adoption by the engineering community. By contrast, a major strength of
PINNs is their ease of implementation, and we show here that the PINN framework can be readily extended
to the optimal control setting by approximating the control field with its own neural network in addition
to the neural network for the unknown state variable. These two networks are then simultaneously trained
using a composite loss function that includes the cost objective functional in addition to the PDE residual
and initial/boundary conditions. In this way, the training process finds a control and a state that satisfy the
PDE constraint while minimizing the cost objective. A similar approach was recently proposed by [36] and
[37] in the context of inverse design and parametric optimal control, respectively. In light of these recent
works, the novelties of the present study are two-fold:

1. We propose a set of guidelines consisting of two parts for obtaining a good optimal control solution
using the PINN framework. First, we select an appropriate neural network architecture and training
parameters by solving a forward problem based on the same PDE. Second, we solve the optimal control
problem using a simple but effective line search strategy to find the best value for the scalar weight of
the cost objective functional inside the loss function, which is a critical parameter to obtain a feasible
optimal solution that simultaneously satisfies the PDE constraint while minimizing the cost objective.
Specifically, we find the best scalar weight by evaluating the cost objective corresponding to the PINN
optimal control using a separate PINN forward computation that takes the PINN optimal control as
input.

2. We apply these guidelines to solving a range of optimal control problems based on the Laplace, Burgers,
Kuramoto-Sivashinsky, and Navier-Stokes equations using the PINN framework. In each case, we
compare the quality of the optimal control found by PINNs with corresponding results obtained from
adjoint-based optimization, which we implement on all examples. Finally, we leverage our experience
from this comparative study to discuss the pros and cons of the PINN- and adjoint-based approaches
for solving PDE-constrained optimal control problems. Such a careful and systematic comparison of
the two methods enables researchers to better evaluate and position PINN-based optimal control within
the larger context of PDE-constrained optimization.

This paper is structured as follows. The methodology and guidelines for solving optimal control problems
with PINNs are presented in Section 2, along with a review of the classical adjoint-based optimization
framework. The PINNs and adjoint-based approaches are then applied to a range of optimal control problems
in Section 3, following which their pros and cons are discussed in Section 4. Conclusions close the paper in
Section 5.

2 Methodology

2.1 Optimal control problem statement

Consider a physical system defined over a domain Ω ⊂ Rd, and governed by a PDE of the form

F [u(x, t); cv(x, t)] = 0, x ∈ Ω, t ∈ [0, T], (1a)

B[u(x, t); cb(x, t)] = 0, x ∈ ∂Ω, t ∈ [0, T], (1b)

I[u(x, 0); c0(x)] = 0, x ∈ Ω, (1c)

where x and t denote respectively space and time, u ∈ U is the state vector, cv, cb and c0 are respectively
volume, boundary and initial control vectors, F is the PDE residual which contains several differential
operators, B are the boundary conditions, and I is the initial condition. The solution of the PDE (1)

2

depends on the control variable c = (cv, cb, c0) ∈ C. U and C are appropriate Hilbert spaces. For the
discretized solution of PDEs, we assume such spaces to be, respectively, Euclidean spaces Rn and Rp.
In PDE-constrained optimal control, we seek the optimal c∗ that minimizes a user-defined cost objective
functional J (u, c). This constrained optimization problem can be formulated as

c∗ = arg min
c
J (u, c) subject to (1). (2)

A trivial approach to solve the above optimization problem is to calculate solutions of (1) for a number of
different control variables c, and pick the one that leads to the lowest value of J . However, when c is a
continuous field defined over a finite volume and/or boundary, the resulting infinite dimensionality of the
search space makes this approach impractical. We present in Section 2.2 a methodology to solve the optimal
control problem (2) based on PINNs, followed in Section 2.3 by the classical framework of adjoint-based
optimization which will provide our benchmark solutions in Section 3.

Before proceeding further, we discuss the dependence of the cost objective functional on the control
variable c in (2). In general, the goal of the problem is to find a control that results in a certain behavior
for the state u, which can be formulated, e.g., as a quadratic objective of the form J (u). However, the
nonlinearity of the governing PDE can lead to the existence of multiple optimal control solutions c∗. To
guarantee the uniqueness of the optimal control solution, it is common practice to include a regularization
term that depends on c, resulting in a cost objective of the form J (u, c). The regularization term can also
be motivated by smoothness requirements for the control c. For the three nonlinear PDEs considered in
this paper, we included such a regularization term in the Kuramoto-Sivashinski example but we deliberately
chose not to do so in the Burgers and Navier-Stokes examples for two reasons. First, one of our aims
in this study is to compare the performance of the PINN and adjoint-based approaches at finding the best
possible optimal control measured from a performance standpoint (i.e., how close the state u is to the desired
behavior), which would be penalized by the presence of any regularization. Second, deep neural networks are
empirically known to possess intrinsic regularization properties; a separate objective of this study is therefore
to assess whether such inherent regularization would be reflected in the shape of the PINN optimal solution
versus the adjoint-based solution, in the absence of explicit regularization. This being said, our problem
formulation (2) can be appplied to any choice of regularization.

2.2 Physics-informed neural networks for optimal control

Let us first consider the forward problem defined by the PDE (1) with prescribed control variable c. In the
framework of physics-informed neural networks, the solution u(x, t) of this forward problem is represented
by a surrogate model uNN(x, t;θu) in the form of a fully-connected neural network that takes (x, t) as input
and returns an approximation for u at this x and t as output. The vector θu denotes the set of trainable
parameters of the network, which propagates the input data through its ` layers according to the sequence
of operations

z0 = (x, t), (3a)

zk = σ(Wkzk−1 + bk), 1 ≤ k ≤ `− 1, (3b)

z` = W`z`−1 + b`. (3c)

Each layer outputs a vector zk ∈ Rqk , where qk is the number of ‘neurons’, and is defined by a weight matrix
Wk ∈ Rqk×qk−1 , a bias vector bk ∈ Rqk , and a nonlinear activation function σ(·). Finally, the output of
the last layer is used to represent the solution, that is, uNN(x, t;θu) = z`. For prescribed control variables
c = (cv, cb, c0), the network parameters θu = {Wk,b}`k=1 are trained by minimizing the loss function

L(θu, c) =
1

Nr

Nr∑
i=1

|F [uNN(xri , t
r
i ;θu); cv]|2 +

wb
Nb

Nb∑
i=1

|B[uNN(xbi , t
b
i ;θu); cb]|2

+
w0

N0

N0∑
i=1

|I[uNN(x0
i , 0;θu); c0]|2, (4)

3

where {xri , tri }Nr
i=1, {xbi , tbi}Nb

i=1, {x0
i }N0
i=1 each represent an arbitrary number of training points over which to

enforce the PDE residual (1a), boundary conditions (1b), and initial condition (1c), respectively, and wb, w0

are scalar weights for the boundary and initial loss components. A critical underpinning of PINNs is the use
of automatic differentiation (AD) to compute the loss (4). By using the chain rule to compose the derivatives
of successive algebraic operations, AD calculates the exact derivatives of the network output uNN(x, t;θu)
with respect to its inputs x and t. Thus, the various loss components in (4) can be computed exactly without
inheriting the truncation error incurred by standard numerical discretization schemes. Another advantage
of computing derivatives with AD is that the residual points {xi, ti}Nr

i=1 can be chosen arbitrarily, conferring
PINNs their convenient mesh-free nature. Starting from randomly initialized parameters θu, we can now
use gradient-based optimization to find an optimum set of values θ∗u that minimizes (4). At each iteration
k, the parameters are updated as

θk+1
u = θku − α(k)∇θuL(θku; c), (5)

where α(k) is an adaptive learning rate set by the chosen optimizer. At the end of the training procedure,
the trained neural network uNN(x, t;θ∗u) approximately solves the forward problem (1).

The PINN framework can be readily extended to the optimal control problem (2). Our approach is
conceptually similar to the methodology proposed in [36] for solving PDE-constrained inverse design problems
with PINNs, in which case c represents a set of design variables. For clarity of exposure, let us assume that we
only have volume control, that is, c = cv (the treatment is similar for boundary or initial control). In addition
to the neural network for u(x, t), we construct a second fully-connected neural network to approximate the
control variable c(x, t). The neural network for c is denoted by cNN(x, t;θc), with θc the corresponding set
of trainable parameters. Since we desire a solution for u and c that minimizes the cost functional J (u, c)
in addition to solving the PDE (1), we simply add a term LJ penalizing the cost functional to the standard
PINN loss (4), leading to the augmented loss function

L(θu,θc) =
wr
Nr

Nr∑
i=1

|F [uNN(xri , t
r
i ;θu); cNN(xri , t

r
i ;θc)]|2 +

wb
Nb

Nb∑
i=1

|B[uNN(xbi , t
b
i ;θu)]|2

+
w0

N0

N0∑
i=1

|I[uNN(x0
i , 0;θu)]|2 + wJLJ (θu,θc), (6)

where we have introduced a new scalar weight wJ for the cost functional term. Due to the dependence of the
PDE residual (1a) on the control c, the first loss term is now a function of both θu and θc. The calculation
of the term LJ (θu,θc) depends on the form on the objective functional and may involve residual points
{xri , tri }Nr

i=1 or boundary points {xbi , tbi}Nb
i=1. Starting from randomly initialized parameters (θu,θc), we can

now use gradient-based optimization to find an optimum set of values (θ∗u,θ
∗
c) that minimizes (6). At each

iteration k, the parameters from both networks are concurrently updated as

θk+1
u = θku − α(k)∇θuL(θku,θ

k
c), (7a)

θk+1
c = θkc − α(k)∇θcL(θku,θ

k
c). (7b)

At the end of the training procedure, the trained neural networks uNN(x, t;θ∗u) and cNN(x, t;θ∗c) approxi-
mately solve the optimal control problem (2).

In all results to follow, we use Glorot initialization of the parameters [38], select a tanh activation function,
and employ the Adam optimizer [39]. We also normalize the input (x, t) before passing it to the first layer
of the neural network for u (and c), so that (3a) becomes

z0 =

(
x− µx

σx
,
t− µt
σt

)
, (8)

where µx, σx, µt, and σt are the mean and standard deviation of the residual training points {xi, ti}Nr
i=1.

2.3 Adjoint-based optimal control

The framework of adjoint-based optimal control is a direct extension of the method of Lagrange multipliers
for constrained optimization to the case where the equality constraints are formulated as PDEs [35]. Applying

4

this method to the constrained problem (2), one first constructs the Lagrangian

L(u, c,λ) = J (u, c)− 〈λ,F [u; c]〉, (9)

where u is required to satisfy the boundary and initial conditions (1b) and (1c), λ = λ(x, t) is the Lagrange
multiplier or adjoint field, and the inner product 〈·, ·〉 is defined as

〈a,b〉 =

∫ T

0

∫
Ω

a(x, t)Tb(x, t)dxdt. (10)

Then, the constrained problem (2) is equivalent to the unconstrained problem

u∗, c∗,λ∗ = arg min
u,c,λ

L(u, c,λ), (11)

whose solution is given by the stationary point(s) of the Lagrangian. This yields the relations〈
∂L
∂u

, δu

〉
= 0 ∀ δu, (12a)〈

∂L
∂c

, δc

〉
= 0 ∀ δc, (12b)〈

∂L
∂λ

, δλ

〉
= 0 ∀ δλ, (12c)

where the admissible variation u + δu has to satisfy the boundary and initial conditions (1b) and (1c). The
Fréchet derivative 〈∂L/∂u, ·〉 is defined so that〈

∂L
∂u

, δu

〉
= lim
ε→0

L(u + εδu, c,λ)− L(u, c,λ)

ε
∀ δu, (13)

and similarly for 〈∂L/∂c, ·〉 and 〈∂L/∂λ, ·〉. Expanding the stationarity conditions (12) leads to〈
∂L
∂u

, δu

〉
=

〈
∂J
∂u

, δu

〉
−
〈
λ,
∂F
∂u

δu

〉
=

〈
∂J
∂u
− ∂F
∂u

†
λ, δu

〉
= 0 ∀ δu, (14a)〈

∂L
∂c

, δc

〉
=

〈
∂J
∂c

, δc

〉
−
〈
λ,
∂F
∂c

δc

〉
=

〈
∂J
∂c
− ∂F
∂c

†
λ, δc

〉
= 0 ∀ δc, (14b)〈

∂L
∂λ

, δλ

〉
= −〈δλ,F〉 = 0 ∀ δλ, (14c)

where we have defined the adjoint A† of a linear operator A as

〈a,Ab〉 = 〈A†a,b〉 ∀a,b, (15)

where a satisfies the boundary conditions carried by the operator A. The process of finding the adjoint
operator A† involves integration by part and yields terminal and boundary conditions for the adjoint field
b. Thus, satisfying (14a) for given u and c gives the adjoint equation

∂J (u, c)

∂u
− ∂F [u, c]

∂u

†
λ = 0, (16)

for the adjoint field λ, with associated terminal and boundary conditions. The third stationary condition
(14c) simply enforces the governing equation (1) for u given c, that is,

F [u, c] = 0, (17)

with associated initial and boundary conditions. When (14a) and (14c) are satisfied, we have J = L, and
(14b) therefore gives the total gradient of the cost objective with respect to the control c,

dJ (u, c)

dc
=
∂L(u, c)

∂c
=
∂J (u, c)

∂c
− ∂F [u, c]

∂c

†
λ. (18)

5

For the optimal solution, dJ (u∗, c∗)/dc = 0 holds.
There exists various adjoint-based algorithms for obtaining the optimal solution u∗, c∗,λ∗ to the PDE-

constrained optimization problem (2). These algorithms solve the same set of equations, namely the direct
(forward) PDE (17) and adjoint PDE (16), to determine the sensitivity of the cost function to the design
parameters, given by (18). The difference is, however, in the manner by which the optimal solution is
obtained by each algorithm. In this work, we use the direct-adjoint-looping (DAL) algorithm [27, 40, 29],
which proceeds as follows. At each iteration k, one first solves the forward PDE (17) for uk, given the
current control ck. With uk and ck in hand, one then solves the adjoint PDE (16) for λk in backward time
since the adjoint PDE contains a terminal condition instead of an initial condition. Finally, one computes
the gradient of the cost objective using (18), which is then used to update the control as

ck+1 = ck − β dJ (uk, ck)

dc
, (19)

with β a learning rate that we will keep fixed. It should be noted that the convergence rate can be increased
by employing more sophisticated update formulas such as quasi-Newton methods [41]. In our case, every
gradient update only requires two PDE solutions, one for the forward PDE and one for the adjoint PDE.
We end the iterations once the cost objective has stopped decreasing, or alternatively once the gradient (18)
becomes small enough.

2.4 Guidelines for training and evaluating the PINN optimal solution

The PINN methodology presented in Section 2.2 involves training neural networks that approximate the
state variable u and the control variable c by minimizing the augmented loss function (6), which can be
written as

L(θu,θc) = LF/B/I(θu,θc) + wJLJ (θu,θc), (20)

where LF/B/I(θu,θc) includes the first three terms in (6) relating to the PDE residual, boundary conditions
and initial condition. Thus, (20) is a multi-objective loss that seeks to simultaneously enforce the governing
PDE and decrease the cost objective. However, incorporating various terms in the loss function makes the
neural networks harder to train krishnapriyan2021characterizing, and the quality of the optimal solution
is not guaranteed since the cost objective might be minimized at the expense of satisfying the PDE or
vice-versa. Issues arising from a composite loss function are not new to PINNs – even forward problems
are characterized by loss functions containing various components accounting for the PDE residual and
initial/boundary conditions; see (4). Yet, optimal control problems pose an additional challenge due to the
possible scale difference between the PDE loss LF/B/I which should ideally vanish, and the cost objective
loss LJ which might remain finite in the true optimal solution. Several recent studies try to address the issue
of balancing different objectives when training PINNs, using adaptive weighting strategies [42, 43, 44, 45],
augmented Lagrangian methods [36, 46], or bi-level approaches that decouple the different objectives [47, 48].

In the present paper, however, our goal is to evaluate the feasibility and performance of the original PINN
framework in solving optimal control problems. We therefore leave aside the aforementioned recent advances,
and instead propose simple yet effective guidelines for obtaining an optimal solution that minimizes the cost
objective while satisfying the PDE constraint. These guidelines are illustrated in Figure 1 and consist of two
parts:

1. First, we ensure that the network architecture employed for uNN and training procedure are appropriate
for the type of PDE constraining the optimal control problem of interest. This can be accomplished by
first computing a PINN solution to a forward problem based on the same PDE, ideally with a known
solution, using the forward loss (4) (which is equal to LF/B/I for a prescribed control c). During this
process, one finds a network architecture, distribution of residual points, training hyperparameters
(number of epochs, batch size, etc), and weights wb, w0 that are tailored for the PDE at hand and
can be then carried over to the solution of the optimal control problem. We emphasize that the PINN
solution of forward problems governed by PDEs has been extensively treated in the literature [15, 49].

2. For the PINN solution of the optimal control problem, the only remaining parameters to choose are
the network architecture for cNN and the weight wJ in the loss (20). In particular, the choice of wJ is

6

<latexit sha1_base64="ubmnmGxqjujqpbrT7jwKiSefOfw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvQQymJFPVY8OKxgmkLbSib7aZdutmE3YkYSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFySCa3Scb6uwsbm1vVPcLe3tHxwelY9P2jpOFWUejUWsugHRTHDJPOQoWDdRjESBYJ1gcjv3O49MaR7LB8wS5kdkJHnIKUEjeU+1rIaDcsWpOwvY68TNSQVytAblr/4wpmnEJFJBtO65ToL+lCjkVLBZqZ9qlhA6ISPWM1SSiGl/ujh2Zl8YZWiHsTIl0V6ovyemJNI6iwLTGREc61VvLv7n9VIMb/wpl0mKTNLlojAVNsb2/HN7yBWjKDJDCFXc3GrTMVGEosmnZEJwV19eJ+3LuntVb9w3Ks1qHkcRzuAcquDCNTThDlrgAQUOz/AKb5a0Xqx362PZWrDymVP4A+vzB2U0jlg=</latexit>

x, y, t

Input Layer ∈ ℝ³Hidden Layer ∈ ℝ⁶Hidden Layer ∈ ℝ⁶Output Layer ∈ ℝ²

Input Layer ∈ ℝ³Hidden Layer ∈ ℝ⁶Hidden Layer ∈ ℝ⁶Output Layer ∈ ℝ²

<latexit sha1_base64="YX8Y/MQcA3Q79wx9TGdjv2dOyzU=">AAACMnicbVDLSgMxFM3UV62vUZdugkWoIGVGRAURCm50UyrYVuiUkkkzbTDzILkjlqHf5MYvEVzoQhG3foSZ6YBaPRBycu695NzjRoIrsKxnozAzOze/UFwsLS2vrK6Z6xstFcaSsiYNRSivXaKY4AFrAgfBriPJiO8K1nZvztJ6+5ZJxcPgCkYR6/pkEHCPUwJa6pkXjk9g6HpJPMan+PvRy6j0k3p9XLnbG+3BieOGoq9Gvr4SB4YMSN6VDez2zLJVtTLgv8TOSRnlaPTMR6cf0thnAVBBlOrYVgTdhEjgVLBxyYkViwi9IQPW0TQgPlPdJFt5jHe00sdeKPUJAGfqz4mE+Cr1qjtTi2q6lor/1ToxeMfdhAdRDCygk4+8WGAIcZof7nPJKIiRJoRKrr1iOiSSUNApl3QI9vTKf0lrv2ofVg8uD8q1Sh5HEW2hbVRBNjpCNXSOGqiJKLpHT+gVvRkPxovxbnxMWgtGPrOJfsH4/AKQ3Kwf</latexit>

u = uNN(x, y, t;✓u)
Comparison with high-

fidelity reference solution
(analytical or numerical)

Training loss: forward
problem with prescribed cFind appropriate PINN

architecture by solving a
forward problem with

prescribed control

<latexit sha1_base64="ubmnmGxqjujqpbrT7jwKiSefOfw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvQQymJFPVY8OKxgmkLbSib7aZdutmE3YkYSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFySCa3Scb6uwsbm1vVPcLe3tHxwelY9P2jpOFWUejUWsugHRTHDJPOQoWDdRjESBYJ1gcjv3O49MaR7LB8wS5kdkJHnIKUEjeU+1rIaDcsWpOwvY68TNSQVytAblr/4wpmnEJFJBtO65ToL+lCjkVLBZqZ9qlhA6ISPWM1SSiGl/ujh2Zl8YZWiHsTIl0V6ovyemJNI6iwLTGREc61VvLv7n9VIMb/wpl0mKTNLlojAVNsb2/HN7yBWjKDJDCFXc3GrTMVGEosmnZEJwV19eJ+3LuntVb9w3Ks1qHkcRzuAcquDCNTThDlrgAQUOz/AKb5a0Xqx362PZWrDymVP4A+vzB2U0jlg=</latexit>

x, y, t

Input Layer ∈ ℝ³Hidden Layer ∈ ℝ⁶Hidden Layer ∈ ℝ⁶Output Layer ∈ ℝ²

<latexit sha1_base64="YX8Y/MQcA3Q79wx9TGdjv2dOyzU=">AAACMnicbVDLSgMxFM3UV62vUZdugkWoIGVGRAURCm50UyrYVuiUkkkzbTDzILkjlqHf5MYvEVzoQhG3foSZ6YBaPRBycu695NzjRoIrsKxnozAzOze/UFwsLS2vrK6Z6xstFcaSsiYNRSivXaKY4AFrAgfBriPJiO8K1nZvztJ6+5ZJxcPgCkYR6/pkEHCPUwJa6pkXjk9g6HpJPMan+PvRy6j0k3p9XLnbG+3BieOGoq9Gvr4SB4YMSN6VDez2zLJVtTLgv8TOSRnlaPTMR6cf0thnAVBBlOrYVgTdhEjgVLBxyYkViwi9IQPW0TQgPlPdJFt5jHe00sdeKPUJAGfqz4mE+Cr1qjtTi2q6lor/1ToxeMfdhAdRDCygk4+8WGAIcZof7nPJKIiRJoRKrr1iOiSSUNApl3QI9vTKf0lrv2ofVg8uD8q1Sh5HEW2hbVRBNjpCNXSOGqiJKLpHT+gVvRkPxovxbnxMWgtGPrOJfsH4/AKQ3Kwf</latexit>

u = uNN(x, y, t;✓u)

<latexit sha1_base64="ubmnmGxqjujqpbrT7jwKiSefOfw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvQQymJFPVY8OKxgmkLbSib7aZdutmE3YkYSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFySCa3Scb6uwsbm1vVPcLe3tHxwelY9P2jpOFWUejUWsugHRTHDJPOQoWDdRjESBYJ1gcjv3O49MaR7LB8wS5kdkJHnIKUEjeU+1rIaDcsWpOwvY68TNSQVytAblr/4wpmnEJFJBtO65ToL+lCjkVLBZqZ9qlhA6ISPWM1SSiGl/ujh2Zl8YZWiHsTIl0V6ovyemJNI6iwLTGREc61VvLv7n9VIMb/wpl0mKTNLlojAVNsb2/HN7yBWjKDJDCFXc3GrTMVGEosmnZEJwV19eJ+3LuntVb9w3Ks1qHkcRzuAcquDCNTThDlrgAQUOz/AKb5a0Xqx362PZWrDymVP4A+vzB2U0jlg=</latexit>

x, y, t

Input Layer ∈ ℝ³Hidden Layer ∈ ℝ⁶Hidden Layer ∈ ℝ⁶Output Layer ∈ ℝ²

Training loss: optimal
control problem

<latexit sha1_base64="jdia+kixiHnhPQIJVTI9q5BYaAY=">AAADD3icpVLLSgMxFM2M7/pqdekmWISKUmakqBtBFETFhYJVoVOGTJqxwcyD5I5ShvkDN/6KGxeKuHXrzr8xU6vUB268EHJyzn0luV4suALLejXMgcGh4ZHRscL4xOTUdLE0c6KiRFJWp5GI5JlHFBM8ZHXgINhZLBkJPMFOvYvtXD+9ZFLxKDyGTsyaATkPuc8pAU25JWPBCQi0KRHpQVZxvEi0VCfQW+pAmwHJ3K7u+WmSLf8l02wRb+C+ZG76edjRoR94qw/vZf8uuYSv3M98+9mXBvr5f9Zxi2WranUN/wR2D5RRzw7d4ovTimgSsBCoIEo1bCuGZkokcCpYVnASxWJCL8g5a2gYkoCpZtr9zwwvaKaF/UjqFQLusv0RKQlU3qv2zFtU37Wc/E1rJOCvN1MexgmwkL4X8hOBIcL5cOAWl4yC6GhAqOS6V0zbRBIKeoQK+hHs71f+CU5WqvZqtXZUK29Wes8xiubQPKogG62hTbSLDlEdUePauDXujQfzxrwzH82nd1fT6MXMoi9mPr8BmyoCvw==</latexit>

L(✓u,✓c) = LF,B,I(✓u,✓c) + wJ LJ (✓u,✓c)

<latexit sha1_base64="kKB/ri+zUn8DAQiFAQmqdYTZVGA=">AAACMnicbVDLSgMxFM3Ud31VXboJFqFCKTNSVBBBcKMbUbBW6AxDJs20oZkHyR2xDP0mN36J4EIXirj1I8xMB3zUAyEn595Lzj1eLLgC03w2SlPTM7Nz8wvlxaXlldXK2vq1ihJJWYtGIpI3HlFM8JC1gINgN7FkJPAEa3uDk6zevmVS8Si8gmHMnID0Qu5zSkBLbuXMDgj0PT+lI3yEvx9uTmWQnp+Panf1YR0ObS8SXTUM9JXa0GdAiq58YMetVM2GmQNPEqsgVVTgwq082t2IJgELgQqiVMcyY3BSIoFTwUZlO1EsJnRAeqyjaUgCppw0X3mEt7XSxX4k9QkB5+rPiZQEKvOqOzOL6m8tE/+rdRLwD5yUh3ECLKTjj/xEYIhwlh/ucskoiKEmhEquvWLaJ5JQ0CmXdQjW35UnyfVuw9prNC+b1eNaEcc82kRbqIYstI+O0Sm6QC1E0T16Qq/ozXgwXox342PcWjKKmQ30C8bnFzbKq+k=</latexit>

c = cNN(x, y, t;✓c)

<latexit sha1_base64="pkVrqmRHuJqlCGqYBmKzTSm33cc=">AAACHnicbVDLSgMxFM34rPU16tJNsAjVRZmR+sBVwY24KBXsA9rpkEkzbWjmQZJRSpgvceOvuHGhiOBK/8a0nYW2HggczjmX3Hu8mFEhLevbWFhcWl5Zza3l1zc2t7bNnd2GiBKOSR1HLOItDwnCaEjqkkpGWjEnKPAYaXrDq7HfvCdc0Ci8k6OYOAHqh9SnGEktuebpg9sJkBxgxNRN2lVF+yi9hGqieb7C6dTmgapW0+5xlnDNglWyJoDzxM5IAWSoueZnpxfhJCChxAwJ0batWDoKcUkxI2m+kwgSIzxEfdLWNEQBEY6anJfCQ630oB9x/UIJJ+rvCYUCIUaBp5PjXcWsNxb/89qJ9C8cRcM4kSTE04/8hEEZwXFXsEc5wZKNNEGYU70rxAPEEZa60bwuwZ49eZ40Tkr2Wal8Wy5UilkdObAPDkAR2OAcVMA1qIE6wOARPINX8GY8GS/Gu/ExjS4Y2cwe+APj6wdUrKKF</latexit>

w
(1)
J : c⇤NN

(1)

<latexit sha1_base64="bxanUW43T4PrTrlFV0Mzfy1Psk0=">AAACHnicbVDLSgMxFM3UV62vqks3wSJUF2Wm1AeuCm7ERalgH9BOSybNtKGZB0lGKWG+xI2/4saFIoIr/RvT6Sy09UDgcM655N7jhIwKaZrfRmZpeWV1Lbue29jc2t7J7+41RRBxTBo4YAFvO0gQRn3SkFQy0g45QZ7DSMsZX0391j3hggb+nZyExPbQ0KcuxUhqqZ8/feh3PSRHGDF1E/dUsXwcX0KVaI6rcDyzuadqtbh3kib6+YJZMhPARWKlpABS1Pv5z+4gwJFHfIkZEqJjmaG0FeKSYkbiXDcSJER4jIako6mPPCJslZwXwyOtDKAbcP18CRP194RCnhATz9HJ6a5i3puK/3mdSLoXtqJ+GEni49lHbsSgDOC0KzignGDJJpogzKneFeIR4ghL3WhOl2DNn7xImuWSdVaq3FYK1WJaRxYcgENQBBY4B1VwDeqgATB4BM/gFbwZT8aL8W58zKIZI53ZB39gfP0AV9qihw==</latexit>

w
(2)
J : c⇤NN

(2)

Optimal control
solutions for various

critical
weight

<latexit sha1_base64="gFen6+32Wpqp3qkRapEY5iD/4DE=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7IrRT0WvIinCrYV2qVk02wbms2uSbZSlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJ+LHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSDz7RTHDJWoYbwR5ixUjoC9bxx9eZ35kwpXkk7800Zl5IhpIHnBJjJe+p3wuJGVEi0ttZv1xxas4ceJW4OalAjma//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lEvexl4n9eNzHBlZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0j6vuRe1+l290qjmdRThBE6hCi5cQgNuoAktoPAIz/AKb2iCXtA7+liMFlC+cwx/gD5/ABEokjk=</latexit>

wJ

<latexit sha1_base64="FPM2Q6mQixugyl/cES6KXIrHFyM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyWRoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27DXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQuG95Vo3nfrLXqRR1lOINzqIMH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD+yEjrE=</latexit>. . .

carry over architecture
and training parameters

Solve the optimal control
problem using a two-step

line search strategy to find
the best weight <latexit sha1_base64="gFen6+32Wpqp3qkRapEY5iD/4DE=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7IrRT0WvIinCrYV2qVk02wbms2uSbZSlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJ+LHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSDz7RTHDJWoYbwR5ixUjoC9bxx9eZ35kwpXkk7800Zl5IhpIHnBJjJe+p3wuJGVEi0ttZv1xxas4ceJW4OalAjma//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lEvexl4n9eNzHBlZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0j6vuRe1+l290qjmdRThBE6hCi5cQgNuoAktoPAIz/AKb2iCXtA7+liMFlC+cwx/gD5/ABEokjk=</latexit>

wJ

Step 1: solve optimal
control problem for

various <latexit sha1_base64="gFen6+32Wpqp3qkRapEY5iD/4DE=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7IrRT0WvIinCrYV2qVk02wbms2uSbZSlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJ+LHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSDz7RTHDJWoYbwR5ixUjoC9bxx9eZ35kwpXkk7800Zl5IhpIHnBJjJe+p3wuJGVEi0ttZv1xxas4ceJW4OalAjma//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lEvexl4n9eNzHBlZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0j6vuRe1+l290qjmdRThBE6hCi5cQgNuoAktoPAIz/AKb2iCXtA7+liMFlC+cwx/gD5/ABEokjk=</latexit>

wJ

Step 2: each optimal control
solution is evaluated in a

forward problem

<latexit sha1_base64="ubmnmGxqjujqpbrT7jwKiSefOfw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvQQymJFPVY8OKxgmkLbSib7aZdutmE3YkYSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZFySCa3Scb6uwsbm1vVPcLe3tHxwelY9P2jpOFWUejUWsugHRTHDJPOQoWDdRjESBYJ1gcjv3O49MaR7LB8wS5kdkJHnIKUEjeU+1rIaDcsWpOwvY68TNSQVytAblr/4wpmnEJFJBtO65ToL+lCjkVLBZqZ9qlhA6ISPWM1SSiGl/ujh2Zl8YZWiHsTIl0V6ovyemJNI6iwLTGREc61VvLv7n9VIMb/wpl0mKTNLlojAVNsb2/HN7yBWjKDJDCFXc3GrTMVGEosmnZEJwV19eJ+3LuntVb9w3Ks1qHkcRzuAcquDCNTThDlrgAQUOz/AKb5a0Xqx362PZWrDymVP4A+vzB2U0jlg=</latexit>

x, y, t

Input Layer ∈ ℝ³Hidden Layer ∈ ℝ⁶Hidden Layer ∈ ℝ⁶Output Layer ∈ ℝ²

<latexit sha1_base64="qN9+3pLvuebSlAH5Z3adYWKYxrI=">AAACNHicbVDLSgMxFM34rPVVdekmWMQKpcxIUUGEghtBKBVsK3RKyaQZG5p5kNwRy9CPcuOHuBHBhSJu/QYz0wEf9UDIybn3knOPEwquwDSfjZnZufmFxdxSfnlldW29sLHZUkEkKWvSQATy2iGKCe6zJnAQ7DqUjHiOYG1neJbU27dMKh74VzAKWdcjNz53OSWgpV7hwvYIDBw3jsZ7+BR/v3oplV5cr4/3SnflURlObCcQfTXy9BXbMGBAsrZ0Yr9XKJoVMwWeJlZGiihDo1d4tPsBjTzmAxVEqY5lhtCNiQROBRvn7UixkNAhuWEdTX3iMdWN06XHeFcrfewGUh8fcKr+nIiJpxKvujOxqP7WEvG/WicC97gbcz+MgPl08pEbCQwBThLEfS4ZBTHShFDJtVdMB0QSCjrnvA7B+rvyNGkdVKzDSvWyWqyVsjhyaBvtoBKy0BGqoXPUQE1E0T16Qq/ozXgwXox342PSOmNkM1voF4zPL3PbrIE=</latexit>

u0 = u0
NN(x, y, t;✓u)

Training loss: forward problem with
each optimal obtained in Step 1c*NN

Cost objective estimate for
each optimal control solution

<latexit sha1_base64="FPM2Q6mQixugyl/cES6KXIrHFyM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSxCTyWRoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27DXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQuG95Vo3nfrLXqRR1lOINzqIMH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD+yEjrE=</latexit>. . .

<latexit sha1_base64="sUdJR/7gLu0U3iJmOMdtlL4fLAY=">AAACmnicnVFbS8MwFE7rfd6mPvigD8EhTJHRiqgvgih4QREFp8I6S5qlWzC9kJwKI/RH+Vd889+Yzirz8uSBkC/fd07OLUgFV+A4b5Y9Mjo2PjE5VZmemZ2bry4s3qkkk5Q1aSIS+RAQxQSPWRM4CPaQSkaiQLD74Om40O+fmVQ8iW+hn7J2RLoxDzklYCi/+uJFBHqUCH2Z170gER3Vj8ylPegxILk/0INQZ/nWJ6QlKyN9dZU/bm7gAzz0ja+/HidlUIGPhvB5/v9kfrXmNJyB4d/ALUENlXbtV1+9TkKziMVABVGq5ToptDWRwKlgecXLFEsJfSJd1jIwJhFTbT0YbY7XDdPBYSLNiQEP2OEITSJVNGE8iyrVT60g/9JaGYT7bc3jNAMW049EYSYwJLjYE+5wySiIvgGESm5qxbRHJKFgtlkxQ3B/tvwb3G033N3Gzs1O7bBejmMSraA1VEcu2kOH6Axdoyai1rJ1YJ1Yp/aqfWSf2xcfrrZVxiyhb2bfvgMB6tBC</latexit>

L(✓u, c⇤NN) = LF,B,I(✓u, c⇤NN)

<latexit sha1_base64="/NpRUOteJksWVgPTj9+Jez+b2bU=">AAACS3icbVBLSwMxGMxWq7W+qh69BIvYipRdKSqeCl7EQ6lgH9AX2TTbhmYfJFmlhP1/Xrx480948aCIB9N2kT4cCExm5iNfxg4YFdI034zEympybT21kd7c2t7Zzezt14Qfckyq2Gc+b9hIEEY9UpVUMtIIOEGuzUjdHt6M/foj4YL63oMcBaTtor5HHYqR1FI3Yz91Wy6SA4yYuos6Kmflo2s4I+XU5GI7KoymUe6qcjk6icNnfz6e8zuncSDfzWTNgjkBXCZWTLIgRqWbeW31fBy6xJOYISGalhnItkJcUsxIlG6FggQID1GfNDX1kEtEW026iOCxVnrQ8bk+noQTdXZCIVeIkWvr5HhZseiNxf+8Ziidq7aiXhBK4uHpQ07IoPThuFjYo5xgyUaaIMyp3hXiAeIIS11/WpdgLX55mdTOC9ZFoXhfzJZycR0pcAiOQA5Y4BKUwC2ogCrA4Bm8g0/wZbwYH8a38TONJox45gDMIZH8BbcCtEc=</latexit>

w
(1)
J : J (u0

NN
(1)

, c⇤NN
(1))

<latexit sha1_base64="mDp/BgH2yoj7EjuFvaX+49vlyp8=">AAACS3icbVBLSwMxGMxWq7W+qh69BIvYipTdUlQ8FbyIh1LBPqAvsmm2Dc0+SLJKCfv/vHjx5p/w4kERD6btIm11IDCZmY98GTtgVEjTfDUSK6vJtfXURnpza3tnN7O3Xxd+yDGpYZ/5vGkjQRj1SE1SyUgz4AS5NiMNe3Q98RsPhAvqe/dyHJCOiwYedShGUku9jP3Ya7tIDjFi6jbqqlwxH13BOSmnphfbUWE0i3JXVSrRSRw++/Xxgt89jQP5XiZrFswp4F9ixSQLYlR7mZd238ehSzyJGRKiZZmB7CjEJcWMROl2KEiA8AgNSEtTD7lEdNS0iwgea6UPHZ/r40k4VecnFHKFGLu2Tk6WFcveRPzPa4XSuewo6gWhJB6ePeSEDEofToqFfcoJlmysCcKc6l0hHiKOsNT1p3UJ1vKX/5J6sWCdF0p3pWw5F9eRAofgCOSABS5AGdyAKqgBDJ7AG/gAn8az8W58Gd+zaMKIZw7AAhLJH7wGtEo=</latexit>

w
(2)
J : J (u0

NN
(2)

, c⇤NN
(2))

Choose and corresponding with
the lowest cost objective estimate

c*NN
<latexit sha1_base64="gFen6+32Wpqp3qkRapEY5iD/4DE=">AAAB9HicbVBNSwMxFHypX7V+VT16CRahp7IrRT0WvIinCrYV2qVk02wbms2uSbZSlv4OLx4U8eqP8ea/MdvuQVsHAsPMe7zJ+LHg2jjONyqsrW9sbhW3Szu7e/sH5cOjto4SRVmLRiJSDz7RTHDJWoYbwR5ixUjoC9bxx9eZ35kwpXkk7800Zl5IhpIHnBJjJe+p3wuJGVEi0ttZv1xxas4ceJW4OalAjma//NUbRDQJmTRUEK27rhMbLyXKcCrYrNRLNIsJHZMh61oqSci0l85Dz/CZVQY4iJR90uC5+nsjJaHW09C3k1lEvexl4n9eNzHBlZdyGSeGSbo4FCQCmwhnDeABV4waMbWEUMVtVkxHRBFqbE8lW4K7/OVV0j6vuRe1+l290qjmdRThBE6hCi5cQgNuoAktoPAIz/AKb2iCXtA7+liMFlC+cwx/gD5/ABEokjk=</latexit>

wJ

<latexit sha1_base64="g50zs9nPdbOpVSfioasBwEZJKwc=">AAACfniclZFLSwMxEMez66vWV9Wjl2hR6qvuiqgXQRREwYOCtUK3LNk024ZmHySzQln2Y/jFvPlZvJhtV6mPiwMhv/xnJpnMeLHgCizrzTAnJqemZ0qz5bn5hcWlyvLKo4oSSVmDRiKSTx5RTPCQNYCDYE+xZCTwBGt6/cvc33xmUvEofIBBzNoB6Ybc55SAltzKixMQ6FEi0tus5niR6KhBoLfUgR4DkrlDv+enSbb3iTTbxmd4LNFNvw5XRVjOF2N8k/3nerdSterW0PBvsAuoosLu3Mqr04loErAQqCBKtWwrhnZKJHAqWFZ2EsViQvuky1oaQxIw1U6H7cvwplY62I+kXiHgoTqekZJA5WXryLxE9dOXi3/5Wgn4p+2Uh3ECLKSjh/xEYIhwPgvc4ZJREAMNhEqua8W0RyShoCdW1k2wf375Nzwe1u3j+tH9UfW8VrSjhNbQBqohG52gc3SN7lADUfRurBs7xq6JzC1z3zwYhZpGkbOKvpl5+gGx6MVp</latexit>

L(✓u, c) = LF,B,I(✓u, c)

Figure 1 – Guidelines for obtaining a good optimal control solution using the PINN framework.

critical since it controls a trade-off between the two potentially conflicting objectives LF/B/I and LJ :
large wJ means that LJ is minimized at the expense of LF/B/I , while small wJ leads to the opposite
behavior. To find the optimal wJ yielding a solution that simultaneously minimizes the cost objective
and satisfies the PDE constraint, we propose a two-step line search strategy.

Step 1. Following the PINN methodology presented in Section 2.2, we compute a solution c∗NN to the
optimal control problem by creating a first neural network uNN for the state variable with the archi-
tecture obtained previously, a second neural network cNN for the control variable, and by minimizing
the loss (20). We repeat this process for a range of values of wJ .

Step 2. We evaluate the performance of the optimal control c∗NN obtained for each wJ by solving the
forward problem corresponding to c∗NN with another PINN. Specifically, we train a separate neural
network u′NN to minimize the loss (4) with fixed c = c∗NN (which corresponds to LF/B/I with fixed
control). We then use the solution to this forward problem to compute an approximate cost objective
J (u′NN, c

∗
NN). Finally, we select as our final solution the optimal control c∗NN given by the value of wJ

that yields the smallest approximate J .

3 Results

We apply the PINN and adjoint-based approaches for solving optimal control problems to four PDEs model-
ing a range of physical systems – the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations.
In each case, we follow the guidelines presented in Section 2.4 to obtain the PINN solution. That is, we first
validate our PINN architecture by solving a forward problem without (or with given) control and comparing
the PINN solution with a reference solution (which is either obtained analytically or from a high-fidelity nu-
merical code). We then solve the optimal control problem using the two-step line search strategy described
above.

We compare rigorously the performance of the optimal control solutions c∗ obtained from the PINN and
adjoint-based DAL frameworks, which is quantified by the value of the cost objective J corresponding to
c∗. To compute an accurate estimate of J , we use a high-fidelity numerical code (based on finite-element or
spectral methods) to compute the solution uHF to the forward problem with fixed control equal to c∗ coming

7

from the PINN or DAL solution, yielding an accurate cost objective estimate J (uHF, c
∗). This ensures a

rigorous evaluation and fair comparison of the PINN and DAL optimal control solutions c∗.

3.1 Laplace equation

Let us first consider the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, (21)

where the potential u(x, y) is defined in a square domain (x, y) ∈ [0, 1] × [0, 1]. The boundary conditions
will be specified below. The linearity of the Laplace equation implies that any derivative optimal control
problem defined by a quadratic cost objective will be convex [33], which makes it an ideal setting for a first
comparison between the PINN and DAL frameworks.

3.1.1 Forward problem

We first solve the forward problem defined by the boundary conditions

u(x, 1) = sinπx, u(x, 0) = u(0, y) = u(1, y) = 0. (22)

For these boundary conditions, the Laplace equation admits the analytical solution

ua(x, y) = cos(πx) sinh(πy), (23)

which we will use as a benchmark to evaluate the PINN solution.
To solve the problem in the PINN framework, we represent u(x, y) with a neural network containing 4

hidden layers of 50 neurons each, which we train using the loss (4) according to the gradient update formula
(5). To evaluate the loss, we sample Nr = 10000 residual training points (xi, ti) ∈ [0, 1] × [0, 1] using a
Latin hypercube sampling (LHS) strategy, and we select Nb = 160 equally-spaced boundary training points
(xi, ti) on the boundary of the domain. The entire set of Nr residual points is randomly separated into 10
minibatches of Nr/10 = 1000 points each. During each gradient update (5), the residual loss component
is calculated using one minibatch of residual points. One epoch of training is defined as a complete pass
through the entire set of Nr residual points, that is, through all 10 minibatches. At the beginning of each
epoch, the Nr residual points are shuffled and separated into 10 new minibatches. We set uniform scalar
weights wr = wb = 1. Finally, we choose an initial learning rate of α = 10−3 and decrease it by a factor 10
after 3000 epochs, for a total of 6000 training epochs.

The different loss components during the training process are shown in Figure 2(a), and the relative L2

error of the PINN solution versus its analytical counterpart, ||u − ua||2/||ua||2, is displayed in Figure 2(b).
The L2 error is equivalent to a test error since it is computed on a 100×100 cartesian grid independent from
the residual training points. Figures 2(a,b) reveal that decreasing loss components are directly correlated
with a decreasing test error, and can thus be monitored during training to gauge the accuracy of the PINN
solution. The analytical solution ua and the trained PINN solution u are displayed in Figures 2(c,d), while
the point-wise absolute difference between the two is reported in Figure 2(e). The excellent accuracy of the
PINN forward solution validates the choice of neural network parameters and training points.

3.1.2 Optimal control problem

Next, we use the same PINN architecture to solve an optimal control problem constrained on the Laplace
equation. Consider now the boundary conditions

u(x, 0) = sinπx, u(x, 1) = f(x), u(0, y) = u(1, y),
∂u

∂x
(0, y) =

∂u

∂x
(1, y) (24)

where f(x) is a control potential applied to the top wall, and the boundary conditions are now periodic along
the x direction. We then seek to solve the convex optimal control problem defined as

f∗ = arg min
f
J (u) subject to (21) and (24), (25)

8

(c) (d) (e)

(a) (b)

Figure 2 – Forward solution of the Laplace equation (21). (a,b) Convergence of the loss and relative L2

test error during training of the PINN solution. (c) Analytical solution ua, (d) trained PINN solution u and
(e) its local absolute error |u− ua|.

where the cost objective is

J (u) =

∫ 1

0

∣∣∣∣∂u∂y (x, 1)− qd(x)

∣∣∣∣2 dx, qd(x) = cos(πx). (26)

In other words, we want to find the optimal potential f∗(x) at the top wall that produces the desired flux
qd(x). This problem has the analytical optimal solution

f∗a (x) = sech(2π) sin(2πx) +
1

2π
tanh(2π) cos(2πx), (27a)

u∗a(x, y) =
1

2
sech(2π) sin(2πx)(e2π(y−1) + e2π(1−y)) +

1

4π
sech(2π) cos(2πx)(e2πy − e−2πy), (27b)

which we will use to evaluate the accuracy of the PINN and DAL optimal solutions.
To solve the optimal control problem with PINNs, we define a second neural network for f(x) consisting

of 3 hidden layers of 30 neurons each. Following the guidelines presented in Section 2.4, we keep the same
architecture as before (albeit with newly initialized parameters) for the network representing u(x, y). We
then train simultaneously both neural networks using the loss (6) and the gradient update formula (7). We
use the same training points as before, and evaluate the integral in the cost objective (26) using the midpoint
rule at NJ = 41 equally-spaced training points xi ∈ [0, 1]. We use uniform scalar weights wr = wb = 1, we
choose an initial learning rate of α = 10−3 and decrease it by a factor 10 after 5000 epochs, for a total of
10000 training epochs. We repeat this procedure for 11 values of wJ between 10−3 and 107.

To find the DAL optimal solution, we implement the DAL iterative procedure in the finite-volume solver
OpenFOAM. The adjoint Laplace equation and the gradient of the cost objective are given in [50], in which
the same problem is considered. The DAL optimal solution is obtained by iteratively solving the Laplace
equation and its adjoint on a 40 × 40 grid, updating the control f(x) at each iteration with the gradient
descent formula (19). We start the iterations with a zero initial guess for f(x) and employ a learning rate
β = 1.

9

(c) (d) (e)

(a) (b)

<latexit sha1_base64="d3hZdcWndw2gzIQCTj+kubndgTs=">AAACAHicdVC7SgNBFJ2NrxhfqxYWNoNBSLXMxo0mXcBGxCKCeUCyLLOTSTJk9sHMrBCWbfwVGwtFbP0MO//GyUNR0QMXDufcy733+DFnUiH0buSWlldW1/LrhY3Nre0dc3evJaNEENokEY9Ex8eSchbSpmKK004sKA58Ttv++Hzqt2+pkCwKb9Qkpm6AhyEbMIKVljzzoBdgNSKYp1eZ98UvM88sIqtWQ45ThciqoHLZqWiCTsrVqg1tC81QBAs0PPOt149IEtBQEY6l7NooVm6KhWKE06zQSySNMRnjIe1qGuKASjedPZDBY6304SASukIFZ+r3iRQHUk4CX3dOT5S/van4l9dN1KDqpiyME0VDMl80SDhUEZymAftMUKL4RBNMBNO3QjLCAhOlMyvoED4/hf+TVtmyTy3n2inWS4s48uAQHIESsMEZqIML0ABNQEAG7sEjeDLujAfj2XiZt+aMxcw++AHj9QPCs5cb</latexit>LJ

<latexit sha1_base64="sjeeZdcHZMYYjuTgYq1TsxC8y/s=">AAACDnicdVDLSgMxFM3UV62vUZdugqXQVZ2pQ9tlURAXLirYB7SlZNK0Dc1khiQjlGG+wI2/4saFIm5du/NvzLRjUdEDgZNz7uXee9yAUaks68PIrKyurW9kN3Nb2zu7e+b+QUv6ocCkiX3mi46LJGGUk6aiipFOIAjyXEba7vQ88du3REjq8xs1C0jfQ2NORxQjpaWBWeh5SE0wYtFVPIiWn4v4ZMnP4nhg5q2SNQe0Sk7Zqpw6mtRqdrlahnZq5UGKxsB87w19HHqEK8yQlF3bClQ/QkJRzEic64WSBAhP0Zh0NeXII7Ifzc+JYUErQzjyhX5cwbn6vSNCnpQzz9WVyY7yt5eIf3ndUI1q/YjyIFSE48WgUcig8mGSDRxSQbBiM00QFlTvCvEECYSVTjCnQ/i6FP5PWuWSXSk5106+XkzjyIIjcAyKwAZVUAeXoAGaAIM78ACewLNxbzwaL8brojRjpD2H4AeMt0+88Z0f</latexit>LF/B

Figure 3 – Optimal solution of the Laplace control problem (25). (a) Components of the loss (20) obtained
at the training of the PINN optimal control solution versus weight wJ (step 1 of the line search strategy).
(b) Cost objective estimate obtained by a separate PINN solution of the forward problem with fixed control
from the PINN optimal solution versus wJ (step 2 of the line search strategy). The best optimal control,
obtained with wJ = 100, is shown by the red dot. (c) Convergence of the loss during training of the PINN
optimal control solution (for wJ = 100). (d) Convergence of the cost objective during DAL iterations. (e)
Optimal top wall potential f∗ obtained from the PINN (for wJ = 100) and DAL frameworks, compared
with the top wall potential f∗a of the analytical solution.

Beginning with Step 1 of the line search strategy presented in Section 2.4, we visualize in Figure 3(a) the
two components LF/B and LJ of the loss (20) obtained at the end of training of the PINN optimal control
solution, for each considered value of wJ . As expected, LF/B and LJ vary in opposite directions as wJ
increases. Moving to Step 2 of the line search strategy, we report in Figure 3(b) the cost objective value
J obtained by a separate PINN solution of the corresponding forward problem, with fixed control from the
optimal solution obtained in Step 1, for each value of wJ . We observe that the control solution obtained
with wJ = 100, shown by the red dot, yields the lowest J . It is therefore this optimal control solution that
we analyze hereafter and compare with the DAL solution.

The various loss components during training of the PINN optimal control solution (for wJ = 100)
are shown in Figure 3(c), while the convergence of the cost objective during the DAL iterations is shown
in Figure 3(d). Figure 3(e) shows the optimal top wall potentials f∗ obtained from the PINN and DAL
frameworks, together with their analytical counterpart f∗a . The excellent agreement between the three
potentials demonstrates that the PINN and DAL frameworks both found the global solution to this convex
optimal control problem.

3.2 Burgers equation

We then consider the one-dimensional Burgers equation, a prototypical nonlinear hyperbolic PDE that takes
the form

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (28)

10

(d) (e) (f)

(a) (b) (c)

Figure 4 – Forward solution of the Burgers equation (28). (a,b) Convergence of the loss and relative L2 test
error during training of the PINN solution. (c) Snapshots at final time of the trained PINN and analytical
solutions. (d) Analytical solution ua, (e) trained PINN solution u and (f) its local absolute error |u− ua|.

where u(x, t) is the velocity at position x ∈ [0, L] and time t ∈ [0, T]. We assign periodic boundary conditions
and select the viscosity ν = 0.01; the initial condition u(x, 0) = u0(x) will be specified later. We take L = 4,
for which the Burgers equation possesses the analytical solution

ua(x, t) =
2νπe−π

2ν(t−5) sin(πx)

2 + e−π2ν(t−5) cos(πx)
. (29)

3.2.1 Forward problem

For the forward problem, we compute the evolution of the system up to the time horizon T = 5 given the
initial condition u0(x) = ua(x, 0). In this way, the accuracy of the PINN solution can be evaluated against
the analytical solution (29).

The PINN solution is obtained by representing u(x, t) with a network containing 4 hidden layers of 50
neurons each, which we train using the loss (4). To evaluate the loss, we sample Nr = 20000 residual
training points (xi, ti) ∈ [0, L] × [0, T] using LHS. We select Nb = 82 equally-spaced boundary training
points (xi, ti) ∈ {0, L} × [0, T], and N0 = 41 equally-spaced initial training points (xi, ti) ∈ [0, L]× {0}. As
before, the set of Nr residual points is randomly separated into 10 minibatches of Nr/10 = 2000 points, and
we set uniform scalar weights wr = wb = w0 = 1. Finally, we choose an initial learning rate of α = 10−3 and
decrease it by a factor 10 after 5k epochs of training, for a total of 10k epochs.

The different loss components during the training process are shown in Figure 4(a), and the relative L2

error of the PINN solution versus its analytical counterpart, ||u − ua||2/||ua||2, is displayed in Figure 4(b).
As was observed in the case of the Laplace equation, decreasing loss components are directly correlated
with a decreasing solution error. Snapshots of the trained PINN and analytical solutions at final time t = 5,
shown in Figure 4(c), are in excellent agreement. This is confirmed by the contour plots of the analytical and
trained PINN solutions displayed in Figures 4(d,e), and the absolute error between them shown in Figure
4(f). The good accuracy of the PINN solution validates the choice of neural network parameters and training
points.

11

3.2.2 Optimal control problem

Next, we turn our attention to an optimal control problem, which we define as

u∗0 = arg min
u0

J (u) subject to (28), (30)

where the objective cost is

J (u) =
1

2

∫ L

0

|u(x, T)− ua(x, T)|2dx. (31)

In other words, we seek the optimal initial condition u∗0(x) that results in the same final state as the analytical
solution (29). Because of the nonlinearity of the Burgers equation, this optimal control problem is no longer
convex as was the case for the Laplace equation, and it may therefore possess multiple local minima in
addition to the global minimum given by ua(x, 0).

The PINN optimal solution is obtained by defining a second neural network for u0(x), this time consisting
of 3 hidden layers of 30 neurons each, in addition to the network for u(x, t) for which we keep the same
architecture as before. We then train simultaneously both neural networks using the loss (6), starting from
a new initialization of the parameters. We use the same training points as before, and evaluate the integral
in the cost objective (31) using the midpoint rule at NJ = 41 equally-spaced cost training points xi ∈ [0, L].
We use uniform scalar weights wr = wb = w0 = wJ = 1, choose an initial learning rate of α = 10−3 and
decrease it by a factor 10 after 20k and 25k epochs of training, for a total of 30k epochs. We repeat this
procedure for 10 values of wJ between 10−3 and 106.

The DAL optimal solution is obtained by iteratively solving the Burgers and adjoint Burgers equations,
updating the control u0(x) at each iteration with the gradient descent formula (19). The adjoint Burgers
equation and the gradient of the cost objective are given in A. A spectral solver with 256 Fourier modes and
semi-implicit Euler scheme with dt = 10−3 is used to solve the forward and adjoint Burgers equations at
each iteration. We start the iterations with a zero initial guess for the control u0(x) and employ a learning
rate β = 1.

Beginning with Step 1 of the line search strategy presented in Section 2.4, we visualize in Figure 5(a)
the two components LF/B/I and LJ of the loss (20) obtained at the end of training of the PINN optimal
control solution, for each considered value of wJ . Moving to Step 2 of the line search strategy, we report in
Figure 5(b) the cost objective value J obtained by a separate PINN solution of the corresponding forward
problem, with fixed control from the optimal solution obtained in Step 1, for each value of wJ . We observe
that the control solution obtained with wJ = 1, shown by the red dot, yields the lowest J . It is therefore
this optimal control solution that we analyze hereafter and compare with the DAL solution.

The various loss components during training of the PINN optimal solution (for wJ = 1) are displayed
in Figure 5(c), while the convergence of the cost objective during the DAL iterations is shown in Figures
5(d). Figure 5(e) compares the optimal initial conditions u∗0 obtained using the PINN and DAL frameworks,
together with the initial state ua(x, 0) of the analytical solution (29). In order to evaluate the quality of
the PINN and DAL optimal solutions, we use a spectral solver (the same used in the DAL iterations) to
compute the final state u(x, 5) corresponding to the optimal initial conditions u∗0 from the PINN and DAL
frameworks. Figure 5(f) shows the resulting computed states u(x, 5) alongside the target final state ua(x, 5)
of the analytical solution. The corresponding cost values are J = 2.27 · 10−7 and J = 7.12 · 10−8 for
the PINN and DAL optimal initial conditions, respectively. Although the initial conditions identified by
the PINN and DAL frameworks differ substantially from ua(x, 0), they both result in a final state that
is almost identical to ua(x, 5). This is a consequence of the nonlinearity of the Burgers equation, which
allows noticeably different initial conditions to result in extremely similar final states – in other words, the
optimization landscape for this problem admits multiple local minima with small cost objective values. In
this situation, it is interesting to observe that the DAL procedure finds a slightly better optimal initial
condition u∗0 than the PINN framework, but at the expense of its smoothness.

12

(e) (f)

(a) (b) (c)

(d)

<latexit sha1_base64="d3hZdcWndw2gzIQCTj+kubndgTs=">AAACAHicdVC7SgNBFJ2NrxhfqxYWNoNBSLXMxo0mXcBGxCKCeUCyLLOTSTJk9sHMrBCWbfwVGwtFbP0MO//GyUNR0QMXDufcy733+DFnUiH0buSWlldW1/LrhY3Nre0dc3evJaNEENokEY9Ex8eSchbSpmKK004sKA58Ttv++Hzqt2+pkCwKb9Qkpm6AhyEbMIKVljzzoBdgNSKYp1eZ98UvM88sIqtWQ45ThciqoHLZqWiCTsrVqg1tC81QBAs0PPOt149IEtBQEY6l7NooVm6KhWKE06zQSySNMRnjIe1qGuKASjedPZDBY6304SASukIFZ+r3iRQHUk4CX3dOT5S/van4l9dN1KDqpiyME0VDMl80SDhUEZymAftMUKL4RBNMBNO3QjLCAhOlMyvoED4/hf+TVtmyTy3n2inWS4s48uAQHIESsMEZqIML0ABNQEAG7sEjeDLujAfj2XiZt+aMxcw++AHj9QPCs5cb</latexit>LJ
<latexit sha1_base64="Y1pr3ahKxg8nG385vMo+gq0p2Vc=">AAACGnicdVDLSsNAFJ3UV62vqks3g0XoKiaxtF0WBVFwUcE+oA1hMp22QycPZiZCCfkON/6KGxeKuBM3/o2TNkoVPTBw5px7ufceN2RUSMP40HJLyyura/n1wsbm1vZOcXevLYKIY9LCAQt410WCMOqTlqSSkW7ICfJcRjru5Cz1O7eECxr4N3IaEttDI58OKUZSSU7R7HtIjjFi8VXixN+f8+T4m58u8MskcYolQzdmgIZesYzqSUWRet20ahY0M6sEMjSd4lt/EODII77EDAnRM41Q2jHikmJGkkI/EiREeIJGpKeojzwi7Hh2WgKPlDKAw4Cr50s4Uxc7YuQJMfVcVZnuKH57qfiX14vksG7H1A8jSXw8HzSMGJQBTHOCA8oJlmyqCMKcql0hHiOOsFRpFlQIX5fC/0nb0s2qXrmulBrlLI48OACHoAxMUAMNcAGaoAUwuAMP4Ak8a/fao/aivc5Lc1rWsw9+QHv/BFKtoj0=</latexit>LF/B/I

Figure 5 – Optimal solution of the Burgers control problem (30). (a) Components of the loss (20) obtained
at the end of training of the PINN optimal control solution versus weight wJ (step 1 of the line search
strategy). (b) Cost objective estimate obtained by a separate PINN solution of the forward problem with
fixed control from the PINN optimal solution versus wJ (step 2 of the line search strategy). The best optimal
control, obtained with wJ = 1, is shown by the red dot. (c) Convergence of the loss during training of the
PINN optimal control solution (for wJ = 1). (d) Convergence of the cost objective during DAL iterations.
(e) Optimal initial condition u∗0 obtained using the PINN (for wJ = 1) and DAL frameworks, compared with
the initial state of the analytical solution. (f) Snapshots at final time of two spectral solutions calculated
using the optimal initial conditions u∗0 from the PINN Convergence of the loss during training of the PINN
optimal control solution (for wJ = 1) and DAL frameworks, compared with the final state of the analytical
solution.

13

3.3 Kuromoto-Sivashinsky equation

The next example we consider is the one-dimensional Kuramoto-Sivashinsky (KS) equation, one of the
simplest PDEs that generates chaotic behavior under certain conditions. The KS equation takes the form

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= f(x, t), (32)

where u(x, t) is the velocity at position x ∈ [0, L] and time t ∈ [0, T], and f(x, t) is a distributed control
force. We use periodic boundary conditions and choose as initial condition

u0(x) = cos

(
2πx

10

)
+ sech

(
x− L/2

5

)
. (33)

Solutions to the KS equation without forcing undergo a sequence of bifurcations as L increases. The zero
state is a stable fixed-point solution for L < 2π, but becomes linearly unstable for L > 2π. For even larger L,
the solution becomes chaotic. Here, we choose L = 50 which corresponds to the chaotic regime [51], with the
aim of finding a control force f(x, t) that drives the state u towards the unstable zero fixed-point solution.

3.3.1 Forward problem

For the forward problem, we solve the KS equation up to the time horizon T = 10 given the initial condition
(33) and f(x, t) = 0. The reference solution, us, is given by a spectral discretization of the KS equation,
employing 256 Fourier modes and a semi-implicit Euler scheme with time step dt = 10−4.

The PINN solution is obtained by representing u(x, t) with a network containing 5 hidden layers of 50
neurons each, which we train by minimizing the loss (4). To this end, we sample Nr = 80000 residual
training points (xi, ti) ∈ [0, L] × [0, T] using LHS. We select Nb = 82 equally-spaced boundary training
points (xi, ti) ∈ {0, L} × [0, T], and N0 = 41 equally-spaced initial training points (xi, ti) ∈ [0, L]× {0}. At
the beginning of each epoch, the entire set of Nr residual points is shuffled and divided into 20 minibatches
of Nr/20 = 4000 points each. We set scalar weights wr = wb = w0 = 1, choose an initial learning rate of
α = 10−3 and decrease it by a factor 10 after 10k and 20k epochs, for a total of 30k epochs.

The different loss components during the training of the PINN forward solution are shown in Figure 6(a).
Snapshots of the trained PINN and reference spectral solutions at final time t = 10 are shown in Figure 6(b),
displaying excellent agreement with each other. Contour plots of the spectral and trained PINN solutions
are displayed in Figures 6(c,d), and the absolute error between the two is shown in Figure 6(e). The low
error of the PINN solution validates the choice of neural network parameters and training points.

3.3.2 Optimal control problem

We define the optimal control problem as

f∗ = arg min
f
J (u, f) subject to (32), (34)

where the objective cost is

J (u, f) =
1

2

∫ T

0

∫ L

0

(|u(x, t)|2 + σ|f(x, t)|2)dxdt, (35)

in which we choose σ = 1. Thus, we seek the optimal control force f∗(x, t) that drives the system state
towards the unstable zero fixed-point solution by minimizing a quadratic cost that penalizes the norms of
both the state u and the control force f . Penalizing the norm of f is a way to regularize the optimal control
problem, without which the solution for f∗ would be one that instantaneously pushes the state to zero right
after initial time, resulting in infinitely large f∗ at initial time. In this particular example, therefore, including
such regularization in (35) is necessary to prevent the optimal control force from growing unbounded at initial
time. We note that our formulation mimics the classical problem in control theory of finding a controller
that drives the state of a dynamical system towards an unstable fixed point, which is usually solved by
minimizing a quadratic cost functional of the same form as (35).

14

(c) (d) (e)

(a) (b)

Figure 6 – Forward solution of the KS equation (32). (a) Convergence of the loss during training of the
PINN solution. (b) Snapshots at final time of the trained PINN solution and a reference spectral solution.
(d) Reference spectral solution us, (e) trained PINN solution u and (f) its local absolute error |u− us|

To solve this problem in the PINN framework, we define a second neural network for f(x, t) with the same
architecture as that for u(x, t), which was validated in the forward problem. We then train both networks
simultaneously using the loss (6), starting from a new initialization of the parameters. We use the same
training points as before, and evaluate the integral in the cost objective (35) using Monte Carlo integration
with the same minibatch of residual training points used in evaluating the residual loss component. We use
the scalar weights wr = wb = w0 = 1 and wJ = 10−3, choose an initial learning rate of 10−3 and decrease
it by a factor 10 after 10k and 20k epochs of training, for a total of 30k epochs. We repeat this procedure
for 10 values of wJ between 10−8 and 10.

The DAL optimal solution is obtained by iteratively solving the KS and adjoint KS equations, updating
the control f(x, t) at each iteration with the gradient descent formula (19). The adjoint KS equation and
the gradient of the cost objective are given in B. A spectral solver with 256 Fourier modes and semi-implicit
Euler scheme with dt = 10−4 is used to solve the forward and adjoint KS equations at each iteration. We
start the iterations with a zero initial guess for the control f(x, t) and employ a learning rate β = 0.001.

Beginning with Step 1 of the line search strategy presented in Section 2.4, we visualize in Figure 7(a)
the two components LF/B/I and LJ of the loss (20) obtained at the end of training of the PINN optimal
control solution, for each considered value of wJ . Moving to Step 2 of the line search strategy, we report in
Figure 7(b) the cost objective value J obtained by a separate PINN solution of the corresponding forward
problem, with fixed control from the optimal solution obtained in Step 1, for each value of wJ . We observe
that the control solution obtained with wJ = 10−3, shown by the red dot, yields the lowest J . It is therefore
this optimal control solution that we analyze hereafter and compare with the DAL solution.

The different loss components during training of the PINN optimal solution (for wJ = 10−3) are displayed
in Figure 7(c). The convergence of the cost objective during the DAL iterations is displayed in Figure 7(d).
The optimal forcing solutions found by the PINN and DAL frameworks are shown in Figures 7(e,f) and look
very similar. We evaluate the quality of these optimal forcings by using a spectral solver (the same used in
the DAL iterations) to compute the corresponding state u(x, t) up to the time horizon T = 10. Snapshots at
final time and contour plots of the resulting states are shown in Figures 7(g,h,i), showing that both PINN and
DAL optimal forcings manage to drive the state towards near-zero values. The corresponding cost objectives,

15

(a) (b) (c)

(e) (f)

(h) (i)

(d)

(g)

<latexit sha1_base64="d3hZdcWndw2gzIQCTj+kubndgTs=">AAACAHicdVC7SgNBFJ2NrxhfqxYWNoNBSLXMxo0mXcBGxCKCeUCyLLOTSTJk9sHMrBCWbfwVGwtFbP0MO//GyUNR0QMXDufcy733+DFnUiH0buSWlldW1/LrhY3Nre0dc3evJaNEENokEY9Ex8eSchbSpmKK004sKA58Ttv++Hzqt2+pkCwKb9Qkpm6AhyEbMIKVljzzoBdgNSKYp1eZ98UvM88sIqtWQ45ThciqoHLZqWiCTsrVqg1tC81QBAs0PPOt149IEtBQEY6l7NooVm6KhWKE06zQSySNMRnjIe1qGuKASjedPZDBY6304SASukIFZ+r3iRQHUk4CX3dOT5S/van4l9dN1KDqpiyME0VDMl80SDhUEZymAftMUKL4RBNMBNO3QjLCAhOlMyvoED4/hf+TVtmyTy3n2inWS4s48uAQHIESsMEZqIML0ABNQEAG7sEjeDLujAfj2XiZt+aMxcw++AHj9QPCs5cb</latexit>LJ<latexit sha1_base64="Y1pr3ahKxg8nG385vMo+gq0p2Vc=">AAACGnicdVDLSsNAFJ3UV62vqks3g0XoKiaxtF0WBVFwUcE+oA1hMp22QycPZiZCCfkON/6KGxeKuBM3/o2TNkoVPTBw5px7ufceN2RUSMP40HJLyyura/n1wsbm1vZOcXevLYKIY9LCAQt410WCMOqTlqSSkW7ICfJcRjru5Cz1O7eECxr4N3IaEttDI58OKUZSSU7R7HtIjjFi8VXixN+f8+T4m58u8MskcYolQzdmgIZesYzqSUWRet20ahY0M6sEMjSd4lt/EODII77EDAnRM41Q2jHikmJGkkI/EiREeIJGpKeojzwi7Hh2WgKPlDKAw4Cr50s4Uxc7YuQJMfVcVZnuKH57qfiX14vksG7H1A8jSXw8HzSMGJQBTHOCA8oJlmyqCMKcql0hHiOOsFRpFlQIX5fC/0nb0s2qXrmulBrlLI48OACHoAxMUAMNcAGaoAUwuAMP4Ak8a/fao/aivc5Lc1rWsw9+QHv/BFKtoj0=</latexit>LF/B/I

Figure 7 – Optimal solution of the KS control problem (34). (a) Components of the loss (20) obtained at
the end of training of the PINN optimal control solution versus weight wJ (step 1 of the line search strategy).
(b) Cost objective estimate obtained by a separate PINN solution of the forward problem with fixed control
from the PINN optimal solution versus wJ (step 2 of the line search strategy). The best optimal control,
obtained with wJ = 10−3, is shown by the red dot. (c) Convergence of the loss during training of the PINN
optimal control solution (for wJ = 10−3). (d) Convergence of the cost objective during DAL iterations.
(e,f) Optimal control forces f∗ obtained from the PINN (for wJ = 10−3) and DAL frameworks. (g,h,i)
Snapshots at final time and contour plots of two spectral solutions calculated using the optimal control
forces f∗ obtained from the PINN (for wJ = 10−3) and DAL frameworks.

16

x

y

Γi Γo

Γw

Γb

Γs

Lx = 1.5

Ly = 1

x = 0.5 x = 1

u in(y)
vb(x) = 0.3

vs(x) = 0.3

Ω

Figure 8 – Scheme of the setup for the Navier-Stokes equation. A prescribed horizontal velocity profile
u(y) = (uin(y), 0) is assigned to the inlet Γi. The blowing and suction boundaries Γb and Γs are assigned a
uniform vertical velocity u(x) = (0.3, 0). The flow leaves the domain at the outflow boundary Γo, and the
remaining boundaries Γw are no-slip walls.

calculated from the spectral solutions, have remarkably similar values of J = 20.58 and J = 20.64 for the
PINN and DAL optimal forcings, respectively.

3.4 Navier-Stokes equations

As a last example, we consider the steady 2D incompressible Navier-Stokes (NS) equations in the geometry
depicted in Figure 8. In non-dimensional form, these equations are expressed as

(u · ∇)u = −∇p+
1

Re
∇2u, (36a)

∇ · u = 0, (36b)

where the velocity field u(x) = (u(x, y), v(x, y)) and pressure field p(x) = p(x, y) are defined in the rectan-
gular 2D domain Ω = (Lx, Ly) = (1.5, 1) shown in Figure 8, and we choose the Reynolds number Re = 100.
The boundary conditions for the velocity are

u = (uin(y), 0) on Γi, (37a)

u = (vb(x), 0) on Γb, (37b)

u = (vs(x), 0) on Γs, (37c)

(n · ∇)u = (0, 0) on Γo, (37d)

u = (0, 0) on Γw, (37e)

while the boundary conditions for the pressure are

(n · ∇)p = 0 on Γi ∪ Γb ∪ Γs ∪ Γw, (38a)

p = pa on Γo, (38b)

where n denotes the unit surface normal, and pa is a reference pressure that we set to zero. These boundary
conditions correspond to a prescribed horizontal velocity profile uin(y) at an inlet Γi, a prescribed velocity
profile vb(x) and vs(x) at two blowing and suction boundaries Γb and Γs, an outflow boundary Γo and no-slip
walls Γw. We choose vb(x) = vs(x) = 0.3, and uin(y) will be specified later. Although pressure boundary
conditions are not usually stated explicitly, we will see below that they are important when evaluating the
accuracy of the PINN solution.

17

3.4.1 Forward problem

We begin by solving a forward problem, defined by specifying a parabolic inlet velocity profile uin(y) =
uparab(y) = 4y(1 − y)/L2

y. We compare the PINN solution to this problem with a reference numerical
solution calculated using the finite-volume code OpenFOAM [52].

The PINN solution is obtained by representing u(x, y), v(x, y), p(x, y) with a single network containing 5
hidden layers of 50 neurons each. The network takes (x, y) as input and outputs (u, v, p) at the corresponding
location. It is trained by minimizing the loss (4) using the Adam optimizer, starting from random initial
weights. To evaluate the loss, we sample Nr = 40000 residual training points (xi, yi) ∈ Ω using LHS with
30000 points distributed in the entire domain and 10000 points distributed in 4 boxes of size 0.1 × 0.02
adjacent to the endpoints of Γb and Γs. We select Nb = 328 boundary training points (xi, yi), 82 of them
equally spaced along the vertical boundaries Γi and Γo, and the rest equally spaced along the horizontal
boundaries Γb, Γs, and Γw. At the beginning of each epoch, the entire set of Nr residual points is shuffled and
divided into 10 minibatches of Nr/10 = 4000 points each. We set scalar weights λu-mom

r = λv-mom
r = λcont

r = 1
and wb = 100, with λu-mom

r , λv-mom
r and λcont

r denoting the weights of the residuals corresponding to the u-
and v-momentum equations (36a) and continuity equation (36b). Finally, we choose an initial learning rate
of α = 10−3 and decrease it by a factor 10 after 40k and 80k epochs, for a total of 100k epochs.

The finite-volume solution is carried out using the icoFOAM solver in OpenFOAM. Pressure and velocity
are decoupled using the SIMPLE algorithm [53] technique. For the convection terms, second order Gaussian
integration is used with the Sweby limiter [54] for numerical stability. For diffusion, Gaussian integration
with central-differencing interpolation is used. The discretized algebraic equations are solved using the
preconditioned biconjugate gradient (PBiCG) method. We employ a mesh of size 400 elements (20 × 20),
above which the cost function becomes independent of the mesh size. Anticipating the DAL solution of the
optimal control problem, for which we will need to compute the gradient of the cost objective with respect to
the inlet velocity profile, we perform local mesh refinements at the inlet for a better accuracy of the gradient
calculation. Further, we found that using an upwind and first order method for solving the adjoint equations
resulted in inaccurate gradients, and hence those methods were not adopted [40, 29].

The different loss components during the training of the PINN forward solution are shown in Figure 9(a).
The horizontal and vertical velocity profiles at the outlet boundary Γo predicted by the trained PINN and
reference OpenFOAM solutions are shown in Figure 9(b), displaying very good agreement with each other.
The horizontal velocity profile is noticeably skewed upward, reaching its maximum value at y = 0.7. The
velocity magnitude, streamlines and pressure fields corresponding to the OpenFOAM and PINN solutions
are shown in Figures 9(c,d,e,f), and reveal that the skewed outlet velocity profile is caused by the blowing
and suction boundaries, which deflect the parabolic inlet profile as the fluid moves through the channel.
The low absolute error between the velocity magnitudes and pressure fields from the two solutions, shown
in Figures 9(g,h), validates the choice of neural network parameters and training points.

We note that the literature on PINNs often mentions the nonnecessity of imposing pressure boundary
conditions (BCs) in the PINN framework. While this is clearly advantageous when they are unknown or
lack a clear physical motivation, pressure BCs do affect the resulting velocity profile. For our purpose of
validating the PINN solution against a reference OpenFOAM solution, we thus found it important to include
in the PINN loss function the same pressure BCs (38) employed in the OpenFOAM solver. In this way, we
ensure that the PINN and OpenFOAM solvers are compared based on the exact same system of equations.

3.4.2 Optimal control problem

We observed in the forward problem that the parabolic inlet velocity profile uin(y) = uparab(y) produces a
skewed velocity profile at the outlet, Figure 9(b). Is it then possible to find an inlet velocity profile u∗in(y)
so that the outlet velocity profile is close to parabolic? This motivates the control problem

u∗in = arg min
uin

J (u) subject to (36), (37) and (38), (39)

where the objective cost is

J (u) =
1

2

∫ Ly

0

(|u(Lx, y)− uparab(y)|2 + |v(Lx, y)|2)dy, uparab(y) =
4

L2
y

y(1− y). (40)

18

(b)(a)

u

v

(g) (h)

(c) (d)

(e) (f)

Figure 9 – Forward solution of the Navier-Stokes equation (36). (a) Convergence of the loss during training
of the PINN solution. (b) Velocity profile at the outlet Γo of the trained PINN and the reference OpenFOAM
solution. (c,e,g) Velocity magnitude and streamlines of the OpenFOAM and trained PINN solutions, and
absolute error between them. (d,f,h) Pressure field of the OpenFOAM and trained PINN solutions.

19

To solve this problem in the PINNs framework, we define a second neural network for the control (inlet
profile) ui(y), consisting of 3 hidden layers of 30 neurons each, in addition to the network for u, v, p for which
we keep the same architecture as before. We then train both networks simultaneously using the loss (6),
starting from a new initialization of the parameters. We use the same training points as before, and evaluate
the integral in the cost objective (35) using the midpoint rule at NJ = 41 equally-spaced training points on
the outflow boundary Γo. We use the scalar weights λu-mom

r = λv-mom
r = λcont

r = 1, wb = 100. We choose an
initial learning rate of 10−3 and decrease it by a factor 10 after 100k and 200k epochs of training, for a total
of 300k epochs. We repeat this procedure for 12 values of wJ between 10−3 and 105.

We implement the DAL procedure with the continuous adjoint formulation in the icoFoam solver of
OpenFOAM, based on the adjoint NS equations and the gradient of the cost objective given in C. The
adjoint equations are solved with the same numerical methods as the direct equations. The DAL optimal
solution is obtained by iteratively solving the NS equations and their adjoint, updating the control uin(y) at
each iteration with the gradient descent formula (19). We choose the parabolic velocity profile uparab(y) as
initial guess for the control uin(y) and employ a learning rate β = 0.001.

Beginning with Step 1 of the line search strategy presented in Section 2.4, we visualize in Figure 10(a)
the two components LF/B and LJ of the loss (20) obtained at the end of training of the PINN optimal
control solution, for each considered value of wJ . Moving to Step 2 of the line search strategy, we report in
Figure 10(b) the cost objective value J obtained by a separate PINN solution of the corresponding forward
problem, with fixed control from the optimal solution obtained in Step 1, for each value of wJ . We observe
that the control solution obtained with wJ = 30, shown by the red dot, yields the lowest J . It is therefore
this optimal control solution that we analyze hereafter and compare with the DAL solution.

The various loss components during training of the PINN optimal solution (for wJ = 30) are displayed in
Figure 10(c), and the convergence of the cost objective during the DAL iterations is shown in Figure 10(d).
The PINN and DAL frameworks converge to rather different optimal inlet velocity profiles u∗in(y), shown
in Figure 10(e). These profiles nonetheless share a few features: two local maxima near the centerline and
around y = 0.8, as well as a region of negative velocity for y < 0.3. We evaluate the quality of these optimal
inlet profiles by computing the corresponding flow fields in two separate forward OpenFOAM calculations.
The resulting outlet velocity profiles are displayed in Figures 10(f) and compared with the target parabolic
profile uparab(y). Both optimal inlet profiles lead to near-parabolic outlet profiles with comparable cost
values: J = 0.00278 and J = 0.00265 for the PINN and DAL inlet profiles, respectively. Yet, the PINN
inlet velocity profile is smoother and produces an outlet profile that has a more parabolic shape than its
DAL counterpart. Figures 10(g,h,i,j) display the velocity magnitude, streamlines and pressure fields of the
two OpenFOAM solutions calculated using the PINN and DAL optimal inlet profiles. In both cases, the
bottom region of negative inlet velocity attracts some of the fluid entering through the blowing boundary,
which reduces the effect of the latter on the outlet profile. The DAL inlet profile has a second region of
negative velocity around y = 0.6 and a much sharper peak near y = 0.4, but these features do not yield a
noticeably lower cost objective.

4 Discussion

A major goal of the present study is to compare the pros and cons of the PINN and DAL frameworks
for solving PDE-constrained optimal control problems, so that the novel PINN approach can be placed
in the context of the mature field of PDE-constrained optimization. To this end, in the previous section
we have systematically compared the efficacy of the two frameworks by looking at several examples with
varying degrees of complexity. In all cases, both techniques returned optimal control solutions yielding a
comparable objective cost when evaluated in a separate high-fidelity numerical solver, which required an
extra step in the PINN approach. The optimal control problem based on Laplace’s equation had a global
analytical optimal solution, which was found by both methods. The three remaining examples had more
complicated optimization landscapes due to the nonlinearity of their governing PDEs, which exposed some
differences in the characteristics of the optimal control solutions found by PINNs and DAL. For the Burgers
and Navier-Stokes equations, the optimal control distributions found by DAL yielded a lower cost objective
but were less smooth than the ones obtained from PINNs. For the Kuramoto-Sivashinsky equation, whose
optimal control problem was the classical scenario of driving the state towards an unstable fixed point while

20

(e) (f)

(c)

(d)

(b)(a)

<latexit sha1_base64="d3hZdcWndw2gzIQCTj+kubndgTs=">AAACAHicdVC7SgNBFJ2NrxhfqxYWNoNBSLXMxo0mXcBGxCKCeUCyLLOTSTJk9sHMrBCWbfwVGwtFbP0MO//GyUNR0QMXDufcy733+DFnUiH0buSWlldW1/LrhY3Nre0dc3evJaNEENokEY9Ex8eSchbSpmKK004sKA58Ttv++Hzqt2+pkCwKb9Qkpm6AhyEbMIKVljzzoBdgNSKYp1eZ98UvM88sIqtWQ45ThciqoHLZqWiCTsrVqg1tC81QBAs0PPOt149IEtBQEY6l7NooVm6KhWKE06zQSySNMRnjIe1qGuKASjedPZDBY6304SASukIFZ+r3iRQHUk4CX3dOT5S/van4l9dN1KDqpiyME0VDMl80SDhUEZymAftMUKL4RBNMBNO3QjLCAhOlMyvoED4/hf+TVtmyTy3n2inWS4s48uAQHIESsMEZqIML0ABNQEAG7sEjeDLujAfj2XiZt+aMxcw++AHj9QPCs5cb</latexit>LJ
<latexit sha1_base64="sjeeZdcHZMYYjuTgYq1TsxC8y/s=">AAACDnicdVDLSgMxFM3UV62vUZdugqXQVZ2pQ9tlURAXLirYB7SlZNK0Dc1khiQjlGG+wI2/4saFIm5du/NvzLRjUdEDgZNz7uXee9yAUaks68PIrKyurW9kN3Nb2zu7e+b+QUv6ocCkiX3mi46LJGGUk6aiipFOIAjyXEba7vQ88du3REjq8xs1C0jfQ2NORxQjpaWBWeh5SE0wYtFVPIiWn4v4ZMnP4nhg5q2SNQe0Sk7Zqpw6mtRqdrlahnZq5UGKxsB87w19HHqEK8yQlF3bClQ/QkJRzEic64WSBAhP0Zh0NeXII7Ifzc+JYUErQzjyhX5cwbn6vSNCnpQzz9WVyY7yt5eIf3ndUI1q/YjyIFSE48WgUcig8mGSDRxSQbBiM00QFlTvCvEECYSVTjCnQ/i6FP5PWuWSXSk5106+XkzjyIIjcAyKwAZVUAeXoAGaAIM78ACewLNxbzwaL8brojRjpD2H4AeMt0+88Z0f</latexit>LF/B

<latexit sha1_base64="sJc2kmdxyhXwBxhb/9mq8DF3PYg=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6XQVU2kqMuiIC5cVLAPaEOYTCft0MkkzEyEEvIFbvwVNy4UcevanX/jpA1FWw8MnDnnXu69x4sYlcqyvo3Cyura+kZxs7S1vbO7Z+4ftGUYC0xaOGSh6HpIEkY5aSmqGOlGgqDAY6Tjja8yv/NAhKQhv1eTiDgBGnLqU4yUllyz0g+QGmHEktvUTeaf6/Rkzi/T1DXLVs2aAi4TOydlkKPpml/9QYjjgHCFGZKyZ1uRchIkFMWMpKV+LEmE8BgNSU9TjgIinWR6TgorWhlAPxT6cQWn6u+OBAVSTgJPV2Y7ykUvE//zerHyL5yE8ihWhOPZID9mUIUwywYOqCBYsYkmCAuqd4V4hATCSidY0iHYiycvk/ZpzT6r1e/q5UY1j6MIjsAxqAIbnIMGuAFN0AIYPIJn8ArejCfjxXg3PmalBSPvOQR/YHz+AHncnPA=</latexit>LF/B

(g) (h)

(i) (j)

<latexit sha1_base64="jfbjK3Wq92e2SrSwLloRjvQyeJU=">AAACDnicbVDLSsNAFJ3UV62vqEs3g7XgqiZS1GVREBcuKtgHtCFMppN26GQSZiZCCfkCN/6KGxeKuHXtzr9x0oairQcGzpxzL/fe40WMSmVZ30ZhaXllda24XtrY3NreMXf3WjKMBSZNHLJQdDwkCaOcNBVVjHQiQVDgMdL2RleZ334gQtKQ36txRJwADTj1KUZKS65Z6QVIDTFiyW3qJrPPdXoy45dp6pplq2pNABeJnZMyyNFwza9eP8RxQLjCDEnZta1IOQkSimJG0lIvliRCeIQGpKspRwGRTjI5J4UVrfShHwr9uIIT9XdHggIpx4GnK7Md5byXif953Vj5F05CeRQrwvF0kB8zqEKYZQP7VBCs2FgThAXVu0I8RAJhpRMs6RDs+ZMXSeu0ap9Va3e1cv0oj6MIDsAhOAY2OAd1cAMaoAkweATP4BW8GU/Gi/FufExLC0besw/+wPj8AXionOw=</latexit> L F
/
B

Figure 10 – Optimal solution of the Navier-Stokes control problem (39). (a) Components of the loss (20)
obtained at the end of training of the PINN optimal control solution versus weight wJ (step 1 of the line
search strategy). (b) Cost objective estimate obtained by a separate PINN solution of the forward problem
with fixed control from the PINN optimal solution versus wJ (step 2 of the line search strategy). The
best optimal control, obtained with wJ = 30, is shown by the red dot. (c) Convergence of the loss during
training of the PINN optimal control solution (for wJ = 30). (d) Convergence of the cost objective during
DAL iterations. (e) Optimal inlet velocity profiles u∗in obtained using the PINN (for wJ = 30) and DAL
frameworks. (f) Outlet velocity profiles of two forward OpenFOAM solutions calculated using the optimal
inlet profiles u∗in from the PINN (for wJ = 30) and DAL frameworks, compared with the target parabolic
profile. (f,g,h,i) Velocity magnitude, streamlines and pressure fields of the OpenFOAM solutions calculated
using the optimal inlet profiles u∗in from the PINN (for wJ = 30) and DAL frameworks.

21

PINN DAL

Laplace (Section 3.1) 9 min (Tesla V100) 25 min (Xeon E5-2683)

Burgers (Section 3.2) 19 min (Tesla V100) 1 min (Core i7-4980HQ)

Kuramoto-Sivashinsky (Section 3.3) 2 hours 4 min (Tesla V100) 2 hours 55 min (Core i7-4980HQ)

Navier-Stokes (Section 3.4) 8 hours 20 min (Tesla V100) 28 hours (Xeon E5-2683)

Table 1 – Computational time for obtaining the PINN and DAL optimal solutions. The PINN solutions are
trained on one GPU in TensorFlow. The DAL solutions are all computed using a single CPU core, using the
C++ finite-volume solver OpenFOAM for the Laplace and Navier-Stokes equations, and a spectral Python
code for the Burgers and Kuramoto-Sivashinsky equations. Note that this table is not meant as a rigorous
comparison of the computational efficiency of the two frameworks due to the number of differing factors
involved.

penalizing large control magnitude, the two frameworks found remarkably close optimal control solutions
yielding almost identical cost objective values. Such agreement is significant given the engineering relevance
of this control problem and the chaotic nature of the Kuramoto-Sivashinsky equation.

Thus, these four examples suggest that the PINN approach can be similarly effective as DAL in solving
optimal control problems. Clearly, an important advantage of the PINN framework is its ease of implemen-
tation, since it takes very little effort to adapt a PINN code for forward problems to the solution of optimal
control problems. Furthermore, the PINN framework is very flexible in terms of the type of governing equa-
tions, boundary conditions, geometries, and cost objective functions that it allows, which opens the door for
a very large class of problems to be solved with little human effort. By contrast, the DAL approach involves
the cumbersome manual derivation of the adjoint equation and cost objective gradient, which needs to be
repeated after any mere change of boundary conditions or cost objective function. The adjoint equation
and DAL iterative procedure then need to be implemented in a numerical solver, which is no small task
when complicated governing PDEs and/or complex geometries are involved. There exists a discrete adjoint
formulation that does not require deriving adjoint equations, as opposed to the continuous adjoint formu-
lation that we have employed in this paper. However, the discrete adjoint approach necessitates the use
of differentiable numerical solvers, which are not yet well established. Thus, the PINN framework brings
optimal control problems within reach of a much wider audience compared with adjoint-based approaches
such as DAL.

We close the discussion with a few remarks regarding the computational cost of the PINN and DAL
approaches for solving optimal control problems. The PINNs literature often alludes to the potentially
superior computational efficiency of PINNs for solving inverse problems compared to other approaches, but
actual numbers are rarely given. Indeed, it is very difficult to do an apples-to-apples comparison of the
two frameworks due to the very different nature of their hardware requirements: PINNs are trained much
faster on GPUs while the forward and adjoint equations in DAL are solved on CPUs. In addition, the
computational cost of PINNs depends on many factors such as the machine learning library that is used,
the optimization algorithm, and the neural network architecture. Likewise, the computational cost of DAL
depends on other factors such as the discretization method and programming language employed to solve the
forward and adjoint equations as well as the gradient descent algorithm. For instance, BFGS-type updates
can be used to speed up the convergence of DAL. With that in mind, our goal is not to do a rigorous
comparison of the PINN and DAL computational costs, but rather to provide the reader with an idea of
what to expect, which is still valuable given the lack of such data in the literature. To this effect, we report in
Table 1 the computational times required to obtain all the PINN and DAL optimal control solutions reported
in the previous section. For the simpler problems based on the Laplace and Burgers equations, the DAL
solution was obtained in much shorter time than the PINN solution1. For the more complex problems based
on the Kuramoto-Sivashinsky and Navier-Stokes equations, the situation reverses and the PINN solution
is obtained in shorter time. This suggests that the computational efficiency of the PINN framework might
close the gap with that of DAL as the problem complexity increases. There are, however, a few caveats to

1Note that the DAL iterations for the Laplace solution were pushed to an extremely low value of the cost objective; a quarter
of the iterations would have produced an optimal control of a similar quality to the PINN solution.

22

this picture to keep in mind. Importantly, all our DAL calculations are performed on a single CPU core, and
could therefore benefit from a substantial speedup if performed in a multi-threaded environment. Further,
although both frameworks necessitate some amount of parameter tuning, the process is more involved for
PINNs due to the number of parameters involved, even when following the guidelines presented in Section
2.4. Finally, algorithms other than DAL to solve the adjoint-based optimality equations exist, e.g. one-shot
methods, that may result in overall computational cost of optimization comparable to that of a single forward
simulation [34, 55].

5 Conclusions

In this paper, we have proposed a methodology and a set of guidelines for solving optimal control problems
with physics-informed neural networks (PINNs). We then compared rigorously optimal control solutions
obtained from PINNs with corresponding results calculated with direct-adjoint-looping (DAL), a particular
implementation of adjoint-based optimization which is the standard approach for solving PDE-constrained
optimal control problems. The comparison was carried out over four examples with increasing complexity
levels: the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations. In all cases, both tech-
niques found optimal control solutions that yielded comparable cost objective values once plugged back into
a high-fidelity numerical solver, demonstrating the capability of PINNs to solve optimal control problems.
Beyond the quality of the optimal control solutions, we also assessed the pros and cons of the two approaches.
A major strength of the PINNs framework is its flexibility and ease of implementation, which hold the poten-
tial to make optimal control problems more accessible to a much wider audience than adjoint-based methods.
On the other hand, DAL is very time-consuming to carry out but can potentially return the optimal control
solution at a smaller computational cost if the solver is parallelized. This being said, the performance of the
PINN framework may also be improved by using recent advances in the field such as adaptive weighting of
the various loss components [42, 44] or adaptive refinement of the residual points [14]. Finally, PINNs will
automatically benefit from the future advances of fast-evolving deep-learning tools, so their relevance for
optimal control problems will only increase from now on.

A Adjoint Burgers equation

Applying the methodology outlined in Section 2.3, one can derive the adjoint of the Burgers equation (28)
as well as the gradient of the cost objective (31) with respect to the control. The adjoint Burgers equation,
obtained from (16) using integration by part, is

− ∂λ

∂t
− u∂λ

∂x
= ν

∂2λ

∂x2
, (41)

where λ(x, t) is the adjoint field and u(x, t) is the forward field that solves the Burgers equation (28) given the
control (initial condition) u0(x). The adjoint equation is supplemented with periodic boundary conditions
and the terminal condition λ(x, T) = −u+ ud. Finally, the total gradient of the cost objective with respect
to the control u0(x), obtained from (18), is

dJ (u)

du0
= −λ(x, 0). (42)

B Adjoint Kuramoto-Sivashinsky equation

Applying the methodology outlined in Section 2.3, one can derive the adjoint of the KS equation (32) as well
as the gradient of the cost objective (35) with respect to the control. The adjoint KS equation, obtained
from (16) using integration by part, is

− ∂λ

∂t
− u∂λ

∂x
+
∂2λ

∂x2
+
∂4λ

∂x4
= −u(x, t), (43)

23

where λ(x, t) is the adjoint field and u(x, t) is the forward field that solves the KS equation (32) given the
control (forcing) f(x, t). The adjoint equation is supplemented with periodic boundary conditions and the
terminal condition λ(x, T) = 0. Finally, the total gradient of the cost objective with respect to the control
f(x, t), obtained from (18), is

dJ (u, f)

df
= 2σf(x, t)− λ(x, t). (44)

C Adjoint Navier-Stokes equations

In this appendix, we use Einstein notation so that the velocity field defined in Section 3.4 will be denoted
u(x) = (u1(x1, x2), u2(x1, x2)). The augmented objective functional, i.e. Lagrangian, corresponding to the
control problem (39) is

L = J +

〈
λi,

∂uiuj
∂xj

+
∂pi
∂xi
− 1

Re

∂2ui
∂x2

j

〉
+

〈
Π,−∂uj

∂xj

〉
, (45)

where λ = (λ1(x1, x2), λ2(x1, x2)) and Π are adjoint velocity and pressure fields, respectively, and the inner
product 〈·, ·〉 is defined as

〈a, b〉 =

∫
Ω

a(x)b(x)dV. (46)

The variation of the Lagrangian is

δL = δJ +

〈
λi, δuj

∂ui
∂xj

+ uj
∂δui
∂xj

+
∂δpi
∂xi

− 1

Re

∂2δuj
∂x2

j

〉
+

〈
Π,−∂δuj

∂xj

〉
. (47)

For optimality δL = 0 should be satisfied. Using vector calculus and integration by parts for each term,
appropriate Euler-Lagrange equations can be derived. For instance,〈

λi, δuj
∂ui
∂xj

〉
=

〈
δui, λj

∂uj
∂xi

〉
, (48a)〈

λi, uj
∂δui
∂xj

〉
= −

〈
δui, uj

∂λi
∂xj

〉
+

∫
∂Ω

λiδuiujnjdS, (48b)〈
λi,

1

Re

∂2δui
∂x2

j

〉
=

〈
δui,

1

Re

∂2λi
∂x2

j

〉
+

∫
∂Ω

1

Re

(
nj
∂λi
∂xj

δui − nj
∂δui
∂xj

λi

)
dS, (48c)

and so on for the other terms. Here, n = (n1, n2) is the normal unit vector of the surface. From the
volumetric integrals, the adjoint equations are recovered as

λj
∂uj
∂xi
− uj

∂λi
∂xj
− 1

Re

∂2λi
∂x2

j

+
∂Π

∂xi
= 0, (49a)

∂λj
∂xj

= 0. (49b)

Setting surface integrals to zero and decomposing these integrals into normal and tangential components,
we obtain the corresponding boundary conditions for the adjoint velocity and pressure as

λ1 = λ2 = 0, (n · ∇)Π = 0 on Γi ∪ Γb ∪ Γs ∪ Γw, (50a)

u1λ2 +
1

Re

∂λ2

∂x1
= −u2 on Γo, (50b)

u1λ1 +
1

Re

∂λ1

∂x1
= u1 − uparab + Π on Γo. (50c)

Finally, the total gradient of the cost objective with respect to the control, or design equation, is given by

dJ (u)

duin
= Π(0, x2)− 1

Re

∂λ1

∂x1
(0, x2), (51)

where all values are evaluated at the inlet. For more details, the reader is invited to refer to nabi2019nonlinear.

24

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015) 436–444.

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural net-
works, Advances in neural information processing systems 25 (2012) 1097–1105.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath, et al., Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups, IEEE Signal processing magazine 29 (6) (2012) 82–97.

[4] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural networks, in: Advances
in neural information processing systems, 2014, pp. 3104–3112.

[5] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah,
M. Spitzer, et al., Applications of machine learning in drug discovery and development, Nature Reviews
Drug Discovery 18 (6) (2019) 463–477.

[6] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine
learning, Nature Reviews Physics 3 (6) (2021) 422–440.

[7] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations, Journal
of Computational Physics 378 (2019) 686–707.

[8] M. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential
equations, communications in Numerical Methods in Engineering 10 (3) (1994) 195–201.

[9] B. P. van Milligen, V. Tribaldos, J. Jiménez, Neural network differential equation and plasma equilibrium
solver, Physical review letters 75 (20) (1995) 3594.

[10] I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differ-
ential equations, IEEE transactions on neural networks 9 (5) (1998) 987–1000.

[11] M. Hayati, B. Karami, Feedforward neural network for solving partial differential equations, Journal of
Applied Sciences 7 (19) (2007) 2812–2817.

[12] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators,
Neural networks 2 (5) (1989) 359–366.

[13] M. Leshno, V. Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function, Neural networks 6 (6) (1993) 861–867.

[14] L. Lu, X. Meng, Z. Mao, G. E. Karniadakis, Deepxde: A deep learning library for solving differential
equations, SIAM Review 63 (1) (2021) 208–228.

[15] S. Cai, Z. Wang, S. Wang, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks for heat
transfer problems, Journal of Heat Transfer 143 (6) (2021) 060801.

[16] M. Raissi, Z. Wang, M. S. Triantafyllou, G. E. Karniadakis, Deep learning of vortex-induced vibrations,
Journal of Fluid Mechanics 861 (2019) 119–137.

[17] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields
from flow visualizations, Science 367 (6481) (2020) 1026–1030.

[18] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained
deep learning without simulation data, Computer Methods in Applied Mechanics and Engineering 361
(2020) 112732.

[19] C. Rao, H. Sun, Y. Liu, Physics-informed deep learning for computational elastodynamics without
labeled data, Journal of Engineering Mechanics 147 (8) (2021) 04021043.

25

[20] E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework
for inversion and surrogate modeling in solid mechanics, Computer Methods in Applied Mechanics and
Engineering 379 (2021) 113741.

[21] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural networks
for cardiac activation mapping, Frontiers in Physics 8 (2020) 42.

[22] R. L. van Herten, A. Chiribiri, M. Breeuwer, M. Veta, C. M. Scannell, Physics-informed neural networks
for myocardial perfusion mri quantification, arXiv preprint arXiv:2011.12844 (2020).

[23] W. Ji, W. Qiu, Z. Shi, S. Pan, S. Deng, Stiff-pinn: Physics-informed neural network for stiff chemical
kinetics, The Journal of Physical Chemistry A 125 (36) (2021) 8098–8106.

[24] L. Yang, X. Meng, G. E. Karniadakis, B-pinns: Bayesian physics-informed neural networks for forward
and inverse pde problems with noisy data, Journal of Computational Physics 425 (2021) 109913.

[25] D. Zhang, L. Guo, G. E. Karniadakis, Learning in modal space: Solving time-dependent stochastic
pdes using physics-informed neural networks, SIAM Journal on Scientific Computing 42 (2) (2020)
A639–A665.

[26] G. Pang, L. Lu, G. E. Karniadakis, fpinns: Fractional physics-informed neural networks, SIAM Journal
on Scientific Computing 41 (4) (2019) A2603–A2626.

[27] D. P. Foures, C. P. Caulfield, P. J. Schmid, Optimal mixing in two-dimensional plane poiseuille flow at
finite péclet number, Journal of Fluid Mechanics 748 (2014) 241–277.

[28] R. Kerswell, Nonlinear nonmodal stability theory, Annual Review of Fluid Mechanics 50 (2018) 319–345.

[29] S. Nabi, P. Grover, C. Caulfield, Nonlinear optimal control strategies for buoyancy-driven flows in the
built environment, Computers & Fluids 194 (2019) 104313.

[30] Y. Deng, J. G. Korvink, Self-consistent adjoint analysis for topology optimization of electromagnetic
waves, Journal of Computational Physics 361 (2018) 353–376.

[31] E. Oktay, H. Akay, O. Merttopcuoglu, Parallelized structural topology optimization and cfd coupling
for design of aircraft wing structures, Computers & Fluids 49 (1) (2011) 141–145.

[32] S. Li, L. Petzold, Adjoint sensitivity analysis for time-dependent partial differential equations with
adaptive mesh refinement, Journal of Computational Physics 198 (1) (2004) 310–325.

[33] F. Tröltzsch, Optimal control of partial differential equations: theory, methods, and applications, Vol.
112, American Mathematical Soc., 2010.

[34] A. Borz̀ı, V. Schulz, Computational optimization of systems governed by partial differential equations,
SIAM, 2011.

[35] J.-L. Lions, Optimal control of systems governed by partial differential equations, Vol. 170, Springer
Verlag, 1971.

[36] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S. G. Johnson, Physics-informed neural networks
with hard constraints for inverse design, arXiv preprint arXiv:2102.04626 (2021).

[37] N. Demo, M. Strazzullo, G. Rozza, An extended physics informed neural network for preliminary analysis
of parametric optimal control problems, arXiv preprint arXiv:2110.13530 (2021).

[38] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in:
Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980
(2014).

26

[40] S. Nabi, P. Grover, C.-c. P. Caulfield, Adjoint-based optimization of displacement ventilation flow,
Building and Environment 124 (2017) 342–356.

[41] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.

[42] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient pathologies in physics-informed
neural networks, arXiv preprint arXiv:2001.04536 (2020).

[43] R. van der Meer, C. Oosterlee, A. Borovykh, Optimally weighted loss functions for solving pdes with
neural networks, arXiv preprint arXiv:2002.06269 (2020).

[44] S. Maddu, D. Sturm, C. L. Müller, I. F. Sbalzarini, Inverse dirichlet weighting enables reliable training
of physics informed neural networks, Machine Learning: Science and Technology 3 (1) (2022) 015026.

[45] R. Bischof, M. Kraus, Multi-objective loss balancing for physics-informed deep learning, arXiv preprint
arXiv:2110.09813 (2021).

[46] S. Basir, I. Senocak, Physics and equality constrained artificial neural networks: Application to partial
differential equations, arXiv preprint arXiv:2109.14860 (2021).

[47] S. Wang, M. A. Bhouri, P. Perdikaris, Fast pde-constrained optimization via self-supervised operator
learning, arXiv preprint arXiv:2110.13297 (2021).

[48] Z. Hao, C. Ying, H. Su, J. Zhu, J. Song, Z. Cheng, Bi-level physics-informed neural networks for pde
constrained optimization using broyden’s hypergradients, arXiv preprint arXiv:2209.07075 (2022).

[49] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine
learning through physics-informed neural networks: Where we are and what’s next, arXiv preprint
arXiv:2201.05624 (2022).

[50] S. B. Hazra, V. Schulz, Simultaneous pseudo-timestepping for pde-model based optimization problems,
Bit Numerical Mathematics 44 (3) (2004) 457–472.

[51] P. Cvitanović, R. L. Davidchack, E. Siminos, On the state space geometry of the kuramoto–sivashinsky
flow in a periodic domain, SIAM Journal on Applied Dynamical Systems 9 (1) (2010) 1–33.

[52] OpenFOAM - the open source computational fluid dynamics (cfd) toolbox, http://openfoam.com.

[53] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in
three-dimensional parabolic flows, International journal of heat and mass transfer 15 (10) (1972) 1787–
1806.

[54] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM journal
on numerical analysis 21 (5) (1984) 995–1011.

[55] T. Bosse, N. R. Gauger, A. Griewank, S. Günther, V. Schulz, One-shot approaches to design optimiza-
tion, in: Trends in PDE Constrained Optimization, Springer, 2014, pp. 43–66.

27

http://openfoam.com

	Title Page
	page 2

	
	Introduction
	Methodology
	Optimal control problem statement
	Physics-informed neural networks for optimal control
	Adjoint-based optimal control
	Guidelines for training and evaluating the PINN optimal solution

	Results
	Laplace equation
	Forward problem
	Optimal control problem

	Burgers equation
	Forward problem
	Optimal control problem

	Kuromoto-Sivashinsky equation
	Forward problem
	Optimal control problem

	Navier-Stokes equations
	Forward problem
	Optimal control problem

	Discussion
	Conclusions
	Adjoint Burgers equation
	Adjoint Kuramoto-Sivashinsky equation
	Adjoint Navier-Stokes equations

