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Abort-Safe Spacecraft Rendezvous
on Elliptic Orbits

Daniel Aguilar-Marsillach, Stefano Di Cairano, Avishai Weiss

Abstract—We develop a spacecraft rendezvous policy that
ensures safe, collision-free trajectories under various thrust
failure scenarios. We use backward reachable sets to characterize
the unsafe region where, if a failure occurs, a collision between
a chaser and a target spacecraft cannot be avoided with the
remaining available thrust. The chaser spacecraft is guided
towards the target via model predictive control that ensures
abort-safety by avoiding the unsafe region, which is locally
convexified with half-spaces. Simulations of the rendezvous policy
on various orbits demonstrate that the approach ensures safe
aborts in the event of multiple thruster failures, passive abort
safety under total thruster failure, and achieves some robustness
to unmodeled orbital perturbations.

Index Terms—Spacecraft rendezvous, model predictive control,
reachability, safety.

I. INTRODUCTION

PACECRAFT guidance, navigation, and control methods
S are amongst the highest-priority technologies for future
autonomous spacecraft missions [1], and have to meet strict
criteria prior to flight due to mission cost and lack of repair
opportunities [2]. Thus, they must demonstrate robust opera-
tion in various conditions, including propulsion failures [3],
[4]. Thruster failures are particularly perilous during space-
craft rendezvous, a key maneuver for almost all advanced
space operations [5]-[7], because they may lead to collisions.
Spacecraft collision avoidance using constrained trajectory op-
timization techniques, model predictive control (MPC), robotic
motion planning algorithms, and artificial potential functions
have been developed under nominal thrust conditions [8]-[14].
However, spacecraft collision avoidance must also be ensured
in the presence of propulsion failures, which has yet to be
studied extensively.

Spacecraft rendezvous approaches must guarantee several
layers of safety [3], [4], [15]. Initially, the approaching space-
craft, the chaser, must remain passively safe with respect
to the target body, the target, for a pre-specified amount of
time. That is, instantaneous free-drift trajectories emanating
from the trajectory must stay away from an exclusion region
around the target. Thus, following a passively safe approach
trajectory, in the event of a total loss of propulsion, the chaser
will naturally drift clear of the target. On closer proximity
to the target, active safety is required, where, in the event
of a partial loss of propulsion, the chaser must be able to
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perform a powered-abort maneuver with its remaining thrust
to avoid colliding with the target. Active abort relaxes the
safety requirements compared to the passive case, permitting
final approach rendezvous trajectories for which an entirely
passive approach may not be feasible.

Conventional rendezvous is guaranteed to be passively safe
by exploiting orbital mechanics and constraining the chaser’s
trajectory via ground-computed open-loop guidance. In recent
years, autonomous online-generated passive safety techniques
have been explored, e.g., by constraining the relative motion
using orbital elements [16], or by receding-horizon optimiza-
tion with collision avoidance constraints based on the free-
drift transition matrix [8], [17], [18]. The work in [8] also
proposed active safety via online trajectory generation, in
which the spacecraft could switch to a safe input sequence
to avoid collision in the event of partial thrust failure. The
trajectory is computed by solving a problem that includes
both nominal and abort sequences, simultaneously. Because
[8] does not characterize the region in which feasible abort
maneuvers exist, the feasibility of the initial condition at any
point of the trajectory is simply assumed.

In this paper, we construct active and passive abort-safe
regions of the state space using reachability methods, which
allows us to characterize safe initial conditions and compute
safe approach trajectories. Given a system, an initial state
region, a time-horizon, and admissible inputs, a (forward)
reachable set is the set of states that can be attained. Reachable
sets have previously been suggested for spacecraft proximity
operations. In [19], a benchmark for verification of pas-
sively safe rendezvous is proposed, where the rendezvous
trajectories are computed by a given continuous-time LQR.
The verification problem aims at checking whether the given
LQR leads to safe spacecraft operation for the entire set
of given initial conditions. While simplified with respect to
an actual rendezvous specification, the benchmark has been
relevant for validating linear and nonlinear reachability tools
[20], [21] and for proposing the use of reachability for
safe rendezvous, albeit for verification. Under nominal thrust
conditions, [22] determines successful initial conditions for
docking by computing backward reachable sets for the linear
time-invariant (LTT) Clohessey-Wiltshire (CW) relative motion
equations, and [23]-[25] compute sets of states that can be
reached while avoiding obstacle regions. While linear and
nonlinear techniques have been developed [26]-[28], because
proximity operations occur relatively close to the target, lin-
ear approaches are often sufficiently accurate. Additionally,
with an appropriate choice of sets, linear techniques offer
computational advantages in memory usage and algorithm



convergence. These advantages are due to these sets being
closed under linear transformations, each backwards iteration
only generates one new set, and the computations at most
involve convex optimization, often only requiring the solution
of linear or quadratic programs [29], [30]. Such computational
advantages are especially relevant when aiming for on-board
implementation, due to the limited memory and computational
capabilities of the on-board embedded platforms [31].

In this work we synthesize, as opposed to verify, con-
trol policies that guarantee existence of both free-drift and
powered-abort maneuvers and hence guarantee abort-safe ren-
dezvous by construction. We characterize the unsafe state
space in which passive or active aborts are infeasible by
constructing backward reachable sets (RSs) of the linear time-
varying (LTV) dynamics modeling the relative equations of
motion. Such RSs are the union of convex sets for different
initial and final times along the target’s periodic orbit, and
hence are usually non-convex [32]. As RS-avoidance is a non-
convex problem, to obtain a problem that can be solved in
real-time, and possibly on-board, we convexify the problem
by constructing linear constraints that locally separate the
RSs from the spacecraft. While MPC has been proposed for
spacecraft rendezvous under nominal propulsion conditions
(see, e.g., [9], [33]-[37] and references therein), here we use
MPC to enforce the constraints that separate the state from the
RSs, resulting in abort-safe rendezvous trajectories that evolve
in the region in which safe passive or active aborts exist.

Our earlier works [38], [39] outlined the ideas of using RSs
for abort-safe rendezvous in the passive and active cases. In
this work, we leverage our early results, suitably extended,
for the complete characterization of the method so that it
can execute realistic scenarios. The extensions include refined
algorithms, such as the construction of separating hyperplanes
for ellipsoidal sets, formal discussions of the properties and of
the impact of the failures on reachable sets, and on the com-
putational trade-offs between polytopic and ellipsoidal sets.
To demonstrate that the method can handle realistic scenarios,
we validate it in a rendezvous mission to the International
Space Station (ISS) where different safety approaches are used
for the different mission phases. In addition, we discuss the
robustness of the approach to unmodeled perturbations, and
show how different levels of robustness can be achieved by
inflating the unsafe sets by a factor determined via simulation.
Even if simulation-based, such an approach avoids computing
backward set iterations with both controls and disturbances,
which tends to be computationally intractable, given the safety
horizon and time-scale of rendezvous missions.

The rest of the paper is structured as follows. Section II de-
scribes the safe rendezvous problem, the spacecraft model, and
the admissible control sets. Section III introduces backward
reachability and its use for abort safety. Section IV discusses
the prediction model, cost function, and the convexification
of the safety constraints for designing a model predictive
control for safe rendezvous. Section V presents algorithmic
and computational details related to the offline and online
formulation of the problem. Section VI presents a variety
of simulations and results for both active and passive abort
safety. Discussion of benefits and limitations, future work, and

concluding remarks are provided in Section VIIL.

Notation: R, R", Z, and Zy4 are the sets of real num-
bers, the Euclidean space, integers, and non-negative inte-
gers, respectively. For intervals, we use notations such as
Ziapy = 1z € Z : a < z < b}. Given a matrix H, [H];
is the i row and for H symmetric positive semidefinite,
H? is a matrix such that H = H %TH 3 1,, denotes the n-
dimensional identity matrix. Vectors are shown in boldface. A
reference frame, Fy, is defined at an origin and consists of
three orthonormal dextral basis vectors {3z, J, IQ:} The angular
velocity vector of frame F, with respect to Fy is denoted by
wy/y- A derivative with respect to the inertial frame is denoted
by (-)" whereas a derivative with respect to another frame is
denoted by (-). A vector resolved in frame F is denoted *(-),
a unit vector by (-), and the Euclidean norm of a vector by
| -1|- Given a continuous time signal z(¢) sampled with period
AT, we denote the value at time instant kAT, k € Zy, by
xp = x(kAT), and x;|;, denotes the value of x predicted j
steps ahead from k. The notation uy(x) denotes the computed
input at k from the initial state x. Given the set X, the
complement is denoted by X°, the set of subsets by 2%, and
the cardinality by |X|. The image of C C R"™ through matrix
A e R™™ is AC = {Ax € R™ : x € C}. The hyperplane
representation (H-representation) of the polyhedron P C R"
is P(H,l) ={x € R": Hzx <1} with H € RP*", [ € RP.
An ellipsoid centered at d € R™ with shape matrix D is
£d,D) = {x € R (x —d)"D Yz —d) < 1} or
equivalently, {Dzv +d € R" : |vlly < 1}.

II. ABORT-SAFE RENDEZVOUS

In abort safe rendezvous, or simply safe rendezvous, a
chaser spacecraft must approach a target in a manner such
that it can perform an active or passive abort maneuver that
avoids collision with the target in the event of partial or total
loss of propulsion.

Adopting NASA’s convention for safety regions around the
ISS [15], the chaser must first maintain passive abort-safety
with respect to two exclusion regions centered at the target,
referred to as the approach ellipsoid (AE) and the keep-
out-sphere (KOS), resulting in two phases of passive safety
requirements. Figure la shows the AE and KOS, noting that
the KOS is a subset of the AE. During a passive abort-safe
approach, if the chaser suffers a catastrophic loss of propulsion
or another anomaly that requires powering off all thrusters, the
chaser is guaranteed to not enter the exclusion region. During
rendezvous, passive safety is first maintained with respect to
the AE, and, as the chaser nears the AE, with respect to the
KOS. A passively unsafe state is one from which the natural
unforced dynamics enter the AE, or in the second phase the
KOS, while a passively safe state results in a natural trajectory
that does not enter the AE/KOS region.

If no failures or anomalies occur along the chaser’s passively
safe approach, the final approach phase of the mission is
initiated. For the chaser to operate in very close proximity
to the target for docking or berthing, passive aborts may not
be feasible, and active abort-safety with respect to a terminal
exclusion region approximating the target physical shape must



be maintained, as shown in Figure 1b. An active abort-unsafe
state is such that, after partial loss of thrust, all trajectories
enter the terminal region regardless of the control actions
applied with the remaining thrust. Conversely, from an active
abort-safe state there exists at least one control sequence that
avoids entering the terminal region, using the remaining thrust.
Thus, on an active abort-safe approach, if the chaser suffers a
partial thrust failure, it will be able to avoid collision with the
target using its remaining thrust.

Conventionally, passive abort-safety is guaranteed by de-
signing offline mission-specific passively safe trajectories and
then tracking them online. Often, in the event of thruster
anomalies in the proximity of the target, redundant thrusters
for active abort-safety are engaged in a predetermined active
collision avoidance maneuver (CAM) [15]. Here, we do not
exploit mission-specific passively safe trajectories or pre-
computed CAMs. Instead, we characterize offline the region
of the state space that is abort-unsafe, which enables online
planning of rendezvous trajectories that remain in the safe
region. Characterizing safe and unsafe regions is a necessary
step towards automating rendezvous, and enables the online
computation of fuel optimized, and often non-intuitive from
an orbital dynamics perspective, safe trajectories.
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Figure 1: Illustrations of passive and active abort-safety

A. Spacecraft Model

Consider a target and a chaser in orbit around a central
body such as Earth. The frame F. is the Earth-Centered
Inertial (ECI) frame. The chaser-fixed frame F. is centered

at the chaser center of mass c. The target-fixed frame F;
is centered at the target center of mass t. The target orbit
frame F, = {2,,%9, %5} is Hill’s frame [40] with radial, along-
track, and cross-track basis vectors. The vector 2, is parallel
to the target position vector, 2; points in the direction of
the orbit’s angular momentum, and %y completes the right-
hand rule. The chaser is assumed to be rigid and all external
forces acting on the target and chaser are modeled as acting on
their corresponding centers of mass. In active abort-safety, we
assume that the chaser frame F. is maintained to align with
the target’s orbital frame F, by the attitude control system,
We Jo = 0.

The translational equations of motion of the target and the
chaser relative to the inertial frame F, are

L T ﬁ, (1a)
’ [rell® s
T f

P = ey Je (1b)
© 7 HrelP T me

where 7y, r. are the position vectors of the target and chaser
center of mass relative to the center of the Earth, my, m.
are the target and chaser masses, pu is Earth’s gravitational
constant, and f;, f. are the external forces acting on the target
and chaser, respectively. The external forces include orbital
perturbations as well as control actions. For design purposes,
the target is assumed to follow periodic Keplerian motion,
ft = 0, and we neglect orbital perturbations on the chaser.

Given a target and chaser spacecraft, the position of the
chaser relative to the target is given by

p=T.—T¢. 2

Taking the derivative of the relative position (2) with respect
to the target’s orbital frame F, yields the relative velocity

p: ’I"é— ré_wo/expa €)]

and the derivative of (3) with respect to the target’s orbital
frame F,, yields [40]

Pp=rl—r —@o/e X P—wo/e X (Wo/e X P) —2Wo /6 X P. (4)
Substituting (1) into (4) yields the relative equations of motion,
which can be linearized about the target’s trajectory when
llell < ||r¢||, and resolved in the target’s orbital frame F,,
resulting in [41]

.. 2 h2 27T 2h C o Ug
0 — #+¥ 5I+< 7 h)(;y* ? 53‘!7’:;0’
e R arl: T
5 + 7%3_% 5y—(%h)5x+ %? ok = 7=, (5)
05+ (&) 02 = 2=,

T . . .
where °p = [6z 0y 6z] € R? is the relative position
resolved in Fo, 7y = ||[7¢]|, h = ||ry x ri|| is the (constant)
inertial specific angular momentum of the target’s orbit, and

o T 3 . . .
u="°f = [uz Uy uz] € R*° is the control input applied
to the chaser resolved in F,.

Because for general orbits ry varies along the orbit, (5)
results in the LTV system

&(t) = A(t)z(t) + Bu(t), (6)



Figure 2: Chaser and thruster configuration schematics. The inertial,
target orbital (Hill), and chaser frames, Fe, Fo, F. are also shown.

where © = [(596 oy 0z o6t Iy 52]T € RS. For reach-
ability calculations and control design, we sample (6) with
period AT, assumed to be a divisor of the orbital period!
tp, = kpAT, kp € Z4, and small enough not to lose relevant
inter-sampling behavior, obtaining

i1 = F(k, zr, ur) = Az + Brug. 7

Because the target is in a periodic orbit, when AT is a fraction
of the orbital period, Ay = Agyx, and By = By,

Remark 1. While (7) is obtained by linearization, for prox-
imity operations where ||p|| < |||, the linearization errors
are sufficiently small for control design. For validation pur-
poses, the control design based on the simplified model (7)
is simulated in closed-loop with the nonlinear model of the
spacecraft orbital motion that includes orbital perturbations.

B. Thrusters and Failure Modes

As shown in Figure 2, the chaser spacecraft has eight
thrusters rigidly fixed with respect to F. and aligned with
the center of mass such that no torque is generated. The total
force applied to the chaser resolved in F,, is

8
u:()fc:zp)/j ofc,‘rj7 (3
j=1

where, for thruster j, v; € [0, um ;] is the thrust magnitude,
Um,; is the maximum thrust, and Ofc,Tj is the chaser-fixed
thrust direction resolved in F,,.

During the execution of a rendezvous maneuver, any number
of thrusters may fail. Given the set of thruster indices Z =
Z[Lg], the set of working thruster combinations is M = 2f,
and np = |M|. The set M; € M is a specific set of functional
thrusters, also called a thrust mode, where M; = 7 is the
nominal operation, i.e., all thrusters working, and M; =
is the total loss of propulsion. The set of all possible failure
modes is F = M \ Z. The admissible control set ¢/; C R3
associated with thrust mode M; € M is

U; = @ {’Yj OfC,T]’ 15 € [Ovum,j]}' )

JEM;

"In practice, if this assumption does not hold exactly, a simple re-
synchronization of the control cycle with the orbital period can be easily
achieved after every/every few orbits.

Based on the model considered here, the sets U4; are polytopes,

four examples of which are shown in Figure 3.
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Figure 3: Admissible control sets for different thrust modes. Top
left: M; = Z, all thrusters functional. Top right: M; = {1,2,3},
thrusters 1, 2, 3 working. Bottom left: M; = {7, 8}. Bottom right:
M, = {8}.

C. Problem Statement

The general objective of spacecraft rendezvous is for the
chaser to maneuver to the target in a propellant efficient
manner. In addition, given an exclusion region Sc R3, such
as the AE, KOS, or a terminal set over-approximating the
target’s physical geometry, safe rendezvous controls the chaser
to approach the target while being passively safe with respect
to the AE when far, with respect to the KOS when near, and
actively safe with respect to the target just before docking.
Thus, in the event of a total or partial thruster failure M; € F
at tea = kAT, there exists, respectively, an uncontrolled
(passive) or controlled (active) N-step abort sequence such
that the chaser trajectory does not enter S at least for N steps
in the future. Lifting S to S C R® with the admissible oper-
ational chaser velocities, there exists W, , .., Uk, +N—-1 €
U; such that xp ¢ S for k € Zpy,, kpn+n)- In realistic
specifications, N is significantly longer than the prediction
horizon in practical predictive control designs.

III. REACHABLE SETS AND ABORT SAFETY

Reachability methods for dynamical systems [29] are widely
used for analysis and synthesis. Forward reachability deter-
mines the set of states that can be attained from a given set of
initial conditions and is often used for safety verification [19],
e.g., determining whether for some initial states the trajectories
collide with an obstacle. Backward reachability determines the
set of initial states that achieve a certain objective set, e.g., a
goal set. When exogenous signals are considered, the robust
backward reachable set [29], [30], determines the set of initial
states that enter an objective set irrespective of the applied
exogenous signal. In this paper, for reachable sets of dynamical
systems with exogenous signals we always implicitly refer to
robust backward reachable sets.

In the rendezvous problem, we can use backward reacha-
bility to determine the conditions from which the spacecraft



necessarily reaches the exclusion region regardless of the
controls applied with the available thrust, and hence the initial
states in the unsafe region from which collision cannot be
avoided. By maintaining the chaser state outside of the unsafe
region, there is always a control sequence that avoids collision
in the presence of faults. Hence, we construct the abort-unsafe
region for rendezvous from the backward reachable set (RS,
for simplicity) of the exclusion region with respect to the after-
failure input set, that is, the set of states that will enter the
exclusion region regardless of the applied inputs available after
the failure.

Definition ITI.1 (Backwards Reachable Set). For Ty =
f(k, xp,u), where w € U, and U is the admissible input set,
given a set S C R™ and a time step ks, the N-step backward
reachable set from ki, Ry(N; S, U, ke), is the set of states
Ty, N for which zy, € S, for all input sequences Uy € UN.

The RS can be constructed iteratively as

Rb(j;87u7 kf) 287 j :07 (loa)

Ro(j; S, U ki) ={xz e R" :Yu e U (10b)
Flke —j,x,u) € Ro(j — 1,8, U, ki)Y, J € Zpy -

For rendezvous, the N-step RS describes the initial conditions

at kg = k¢ — N from which the chaser cannot avoid being in
S at time kg, for any admissible input sequence.

Definition II1.2 (RS over interval). Given an interval of time
steps, Lk, ke, Where ko = k¢ — N, the backward reachable
set over the interval L, i, (RSi) is

N
RN (S, U ke) = | Ro(5; .U k).

Jj=0

(1)

For rendezvous, the RSi describes the initial conditions such
that there exists a time step k € Z, 1, from which the chaser
cannot avoid being in S at time kg, for any admissible input
sequence?.

For a periodic orbit, the orbit RSi is the union of RSi over

Z[ko’kf], for k¢ that varies along the orbit,

(Mp+1)kp

U RN(S7Z/{1 kf)a
ke=Mpky+1

RN(S:U) = (12)

where M, is any integer such that Mpyk, +1 > N. For
rendezvous, (12) describes the states for which there exists
an instant in the orbit such that the chaser cannot avoid being
in S after at most NV steps, for any admissible input sequence.
In (12), the time steps k¢ can be associated to the orbit true
anomaly 6 € [0, 27|, since kAT o 6.

Remark 2. Typically, the robust backward reachable set, RS
in our notation, is the set of states that enter the objective set
for all disturbances. By De Morgan’s laws, we obtain the RS
as used here, that is, the set of states where an abort maneuver
that avoids the objective set does not exist. Thus, in the RS

The discrete time RS and RSi are approximations of their continuous-time
descriptions. However, these approximations can be made sufficiently accurate
by an appropriate choice of the sampling period AT

computation we use the control set U as the disturbance set
is used in other works.

A. Abort-Safe Sets

For a discrete-time interval Z, 1), given the state xo at
ko, the state at k > kg is

T = @(l@ko)ﬂ:o —‘rC(k,ko)fL, (13)

where C(k, kg) is the input sequence to state sequence matrix

f (7), akin to the controllability matrix of an LTI system,
a' = [ui_; ... wl], and ®(k,ko) = Ap_1--- Ay, is
the ko-to-k transition matrix. For the sake of notation let

Ty = d)(kv CB(),’[I,, k0)7

where @ € U", and, with a little abuse of notation, h > k—ko,
i.e., u may include u;, j > k — 1 that have no impact on xj.

Let S be the objective set that, for rendezvous, is the
avoidance set that the spacecraft must not enter, even after
a propulsion failure.

(14)

Definition IT1.3 (Safe Set). Given an avoidance set S, for any
interval Ziy, ., where N = kg — ko, a safe set for input set
Uis XS, U) = {x e R": Ja cUN, ¢(k;xzo,, ko) ¢
S, Vk € Z[ko,kf]}'

According to Definition 1113, X5#f¢(S, 1) is the set of initial
conditions from which & can be avoided during the entire
interval with the available control authority.

Proposition IIL.1. Let Ry (S,U) be constructed according
to (12). Then,

XS, U) = Ry (S,U)°, (15)

is a safe set according to Definition II1.3.

Proof. By construction of (11) and (12), R (S,U) contains
all the initial conditions x such that for all @ € UV there
exists k € Zi, k] such that ¢(k;xo, @, ko) € S. Thus, the
complement R (S,U)¢ contains the initial conditions @ for
which there exists @ € U” such that for all k& € Zp, k.
&(k; o, w, ko) ¢ S, which is the safety condition of Defini-
tion III.3. The validity for any ko € Zo is due to including
in (12) the RSi for all k¢ € Zjas ke, +1,(M,+1)k,]» Which covers
all the time instants by considering that the LTV system is
periodic with period k. O

Due to the definition of X5#¢(S,U), if the state is kept
inside it, the existence of a control sequence that avoids
S in any interval Z, i, is guaranteed. Given a safe set
X5fe(S,U), any subset X' C X58(S,U) is also a safe set.

Since (12) is constructed from a discrete-time model,
X3fe(S,U) ensures safety pointwise in time, at the discrete
time samples. Thus, AT must be chosen small enough, or
the set to be avoided must be enlarged, to avoid significant
constraint violations in intersampling, as is commonly done
for discrete-time constrained control methods.

Leveraging the reachable sets, we determine the abort safe
sets for rendezvous in which safety is ensured in the pres-



ence of propulsion failures as follows. First, we consider the
admissible control sets (9) for the failure modes of interests,

q
u=\Ju;,
i=1

where ¢ < ng is the number of the failure modes of interest,
which will, in general, be smaller than the total number of
failure modes since, for instance, the spacecraft may be re-
oriented to change the configuration of the faulty thrusters. To
ensure safety across all the failure modes of interest,

xyesate(s,u) = ) Ru(S,Uy),
Uu; EZ/?

(16)

a7

which is the set of unsafe states from which S cannot be
avoided for at least one fault. Once again, the safe set with
respect to ¢ failure modes of interest is

R (S,U) = ARre(s,uU)”. (18)

Remark 3. The sets in U are constructed under the as-
sumption that ¥. is aligned with F,. If this were not the
case, the chaser may be reoriented by the attitude control
system to align itself with the orientation used to compute
X]‘\l,?;afe(S ,U) by maneuvers that are, in general, much faster
than orbital maneuvers. For passive abort-safety, reorientation
is not necessary since U = 0.

The unsafe set depends explicitly on the admissible control
sets U. The more U grows, i.e., the more abort maneuvers can
be executed, the fewer states are unsafe, as formalized next.

Proposition IIL.2. Given a time step ki and two control sets
Uy, Uy, such that Uy, C U, for all j € Zoy,

R (j; Pes Uy, ke) € Ri(5; Pe, Uy, k). (19)

Proof. We prove the statement by induction, assuming R (j —
1,8, Uy, ke) CRy(j — 1;S,Uy,l€f). Let T € Ry(5;S, Uy, k),
then f(kr — j,Z,u) € Rp(j — 1;S, Uy, ks), for all u €
Uy. Then, f(ke — j,Z,u) € Ry(j — 1;5,Uy, ke) for all
u € U, since U, C U, and Ry(j — 1;S,Uy, k) 2D
Ro(j — 1;8,Uy, k), by the inductive assumption. Thus,
Ro(5; S, Uy, ki) C Ry(j; S,Uy, k). The initial step for the
inductive assumption is provided by Ry (0;P¢,Us,, ks) =
Rb(O;Pf,Z/[y, kf) = S O

Aligned with Proposition III.2, passive safety is the most
stringent requirement. Because of this, spacecraft rendezvous
missions are often staged to maintain passive safety first, as
a chaser approaches but is still far from the target, and active
safety later, as the chaser comes into close proximity to the
target where passive safety is impossible to achieve.

While (17) provides a general expression for the unsafe set,
the actual computations depend on the system dynamics and
avoidance sets. Next, we consider the LTV spacecraft relative
motion (7) in the cases where the avoidance sets are polytopes
or ellipsoids. For LTV dynamics (7), such sets are closed
under reachability operations, which also means that only one
new set is constructed at every iteration, thus limiting the
memory requirements. Furthermore, as it will be clear later, the
offline and online computations require at most solving convex

problems, for which convergence is guaranteed. These features
are advantageous when seeking to implement the approach
in on-board embedded platforms, which have memory and
computing power limitations [31].

B. Safety based on Polytopes

For linear dynamics (7), when the avoidance set S is a
polytope, the RS is also a polytope constructed by solving
linear programs (LPs) [29]. Let S = Py = P(Hy, l¢), and the
j-step RS Ry (j; P, U, ke) = P(H;,1;), the j + 1-step RS is
Rb(] + ].; Pf7u, kf) = ’P(Hj+1, lj+1) = {(L’ : Akf_(j+1)ilf +
B —j+1u € P(Hj, 1), Yu € U}, where

(20a)
(20b)

Hjpr = HjA—(j11);
el = min - {l]i = [Hjli Bre— 1w
The minimal representation of P(H;,l;) is obtained by re-
moving redundant constraints with LPs. The RSi (12) and
the unsafe set (17) are, in general, non-convex because they
are the union of polytopes that account for avoidance in a
time interval, different target orbital positions, and different
failures. For illustration, Figure 4 shows the projections of the
active abort-unsafe sets onto the dx — dy plane for a simplified
spacecraft that can thrust independently in the radial (§z) and
along-track (dy) directions, when the example spacecraft loses
propulsion capabilities on the along-track and radial directions.

Since for total thruster failure &/ = {0}, the computation
of the RS for passive safety is simplified, as (20b) no longer
involve optimization, and

Rb(j;va(ka) = {ZE € Rn: qu)(kfa kf - j)w S lf} (21)

C. Fassive Safety based on Ellipsoids

For passive safety, an alternative is to consider an ellipsoidal
avoidance set S = & = £(0, P;) centered at the origin with
shape matrix P. The set & can characterize both AE and
KOS, and hence, & = Eag during the initial approach and
& = Ekos when in closer proximity to the target. For & and
dynamics (7) with u = 0, i.e., passive abort, the j-step RS is

Rb(j;gﬁO?kf) = {X e R":
X' ®(ke, ke — j) P~ ®(ke, ke —§) x <1} (22)

The N-step RSi Ry (&, 0, ks) and orbit RSi Ry (&, 0) are
unions of finite sets of ellipsoids.

IV. ABORT-SAFE RENDEZVOUS CONTROL DESIGN

To obtain an abort-safe rendezvous we use the safe set (18)
in the design of the rendezvous policy. Specifically, we develop
a model predictive control [42] that minimizes a cost function
that encodes the performance metrics for rendezvous, while
enforcing that the trajectory remains within the safe region.
Thus, if a failure occurs, there exists a maneuver that main-
tains the spacecraft outside the avoidance set, hence avoiding
collisions for at least the given time interval.
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(a) Projections of the unsafe sets X’ }\‘;flfafc C RS onto the §z-6y plane
for u, = 0, i.e., the failure mode results in loss of along-track control.
Because u, = 0 more states along Jy are unsafe.
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(b) Projections of the unsafe sets X’ ]‘\‘{‘fafe C R onto the §z-8y plane
for u, = 0, i.e., the failure mode results in loss of radial control.

Because u, = 0 more states along dz are unsafe.

Figure 4: Illustration of the unsafe sets for sample failure modes.

At every time step k, the MPC policy solves the finite
horizon optimal control problem

Np—1
Hélkn a:-]rvp‘kaNﬂk + Z mLkLwﬂk—i—uLkRuﬂk (23a)
§=0
St @i = Aj+ka:j|k + Bj+kuj|k (23b)
gnik(Tjk) <0,k € ZpN,-1) (23¢)
ujip € U(k) (23d)

where L=L" >0, R=R" >0, M = M" > 0 are weight
matrices defining the desired performance, N, < N is the
prediction horizon length, (23b) is the prediction model based
on (7), and (23d) is the input constraint, where U (k) € U; is
the admissible input set at step k based on the propulsion
system condition (9). The safety constraint (23c) enforces
that ;) € X]S\}ff;(S ,U) so that abort maneuvers exist in the
presence of propulsion system failures. In (23a), L affects

the primary objective, reaching the target, and R affects the
secondary objective, minimizing the propellant use. The termi-
nal weight M is usually chosen to obtain stability properties,
although here these are not a major focus. The resulting MPC
control law is

Ul = Kmpe(Tk) = gk, 24)
where U} = (“3|k ... u}‘\,p_l‘k) is the optimizer of (23).
Implementing (23c) directly as
i, € ARt = xgnsate(py 1), (25)

renders (23) non-convex and hence hard to solve in real-
time. Next we propose methods for convexifying (23c) in the
polytopic and ellipsoidal cases.

A. Convexification of Polytopic Safe Set

When the avoidance set is a polytope, we convexify (25)
by implementing (23c) as convex constraints that exclude (17)
from the feasible set of (23) based on the following result.

Result 1. (/29, Prop.3.31]) Given polytopes Pi1(Hi,l1),
Pa(Ha, o), Po(Ha,ly) D Pi(Hy,ly) if and only if there exists
a non-negative matrix A such that

AH, = Hy
Al < 1s.

(26)

Y 5 5

Figure 5: Example of Result 1 in R3. The blue polytopes represent
sets to be avoided, while the red hyperplane separates the state marked
by the black cross from the polytopes.

At time k, we construct (23c) from Result 1 and the optimal
trajectory at time k—1, (933|k—.1 STy ‘k_l). Givenz}, 144,
J € Z1,N,,, we compute the distance from the polytopes P €
Rt (P,

d(m;+1|k_1,73) = myin ||33;+1|k—1 —yl2

27

st. yeP

and select the ¢ closest ones, {P(H;Wl;\k)}f:v where
H;Ik € R™:*" and where ¢ is a design choice, possibly

including all polytopes in X J‘\‘,‘};afe(Pf,Z;{ ). Then, we construct



a halfspace P(h;,1) = {x € R" : hjjx < 1} such that
P(hj‘k, 1) > P(H;Ik’ l;lk), for all ¢ € Z[Lg], as

(h’j\k’ S*’ {}‘: f:l) =

arg max s (28a)
h,S,{)\i}le

st. s>0 (28b)

hol ) =21+s (28¢)

Ail; 20, j€Zpn, (28d)

Nl = h (28¢)

)‘ll§|k <1, i€ Z[LZ] (28f)

where \; € R1X"i, for all 5 = Z1,¢)- For an arbitrary small
p > 0, we implement (23c) as

—hjxjr < —1—p. (29

Any feasible solution of the LP (28) is such that
P(hjje,1) D P(Hj ), L), for all i € Zpy g, and ;) ¢
P(hjjk,1). Hence (29) does not intersect any P(Hj ;17 ;)
i € Z1,g- Cost function (28a) selects a halfspace that leaves
the spacecraft more clearance to maneuver and possibly to
optimize the rendezvous trajectory.

Remark 4. If ¢ is chosen to include all polytopes
of X]‘\‘,?;’afe(Pf,Z;{), the feasible set of (29) is contained in
X ]Svafe(Pf,Z/_{ ). Including only the closest polytopes reduces the
computational burden of (23), (28), and avoids being exces-
sively conservative, leveraging the receding horizon nature
of (24), since X }\‘,f‘qsafe (P¢,U) considers all the orbit, while the
phases of the rendezvous maneuver considered here terminate

in a small fraction of the orbital period.

B. Convexification of Ellipsoidal Safe Set

For the case where (17) contains ellipsoids, we convex-
ify (23c) using the following result.

Result 2. ([43, Section 2.5]) Given j + e ellipsoids

1
& ={Qfv+q eR" :vflz <1}, (30)
where Q; = Q] = 0, a hyperplane a™x = b such that
—lQfal:+a"q;—b>0, icZyy (31a)
IQ/all+a"qi—b<0, i€Zjiirq  (3b)

strictly separates ngl E; from Uf:je 11 &

When (17) consists of ellipsoids, for an arbitrary small
p > 0, constraint (23¢) is implemented by (29), where h;);, is
now given from the solution of the second-order cone program
(SOCP)

(hj|k75*) =

argreax. s (32a)
sit. s>0 (32b)
aT$;+1\k—1 >1+s (32¢)

Qi hall +a gl <1, i€Zy,y (32d)

where {E(q} ., Q%) iy © AR"¥°(£r,0) are the ¢ closest
ellipsoids to $;+1|k71' Solving (32) results in P(hj;, 1) D
£ (qj‘ k,Qé‘ .)}i— and hence the complement (29) does not
intersect 5(q§‘k, Qé‘k)}le.

X 5

Figure 6: Example of Result 2 in R®. The blue ellipsoids represent
sets to be avoided, while the red hyperplane separates the state marked
by the black cross from the ellipsoids.

Remark 5. If ¢ = 1, only the closest, i.e., more restrictive,
ellipsoid is used. The hyperplane may be selected as its
tangent hj, = 2Q; Ly at the state radial projection, § =

* * —1,_.% . . .
wj+1\k71/(wj:rr1|k71Qi acjﬂlkfl)l/z, which avoids solving
the SOCP [38].

While our problem convexifies constraint boundaries in R,
Figures 5-6 show illustrative examples of this convexification
in R3. These sample hyperplanes represent the convex (local)
safety constraint at a specific instant in time.

V. IMPLEMENTATION AND PRACTICAL ASPECTS

Next we provide additional information on the implemen-
tation of the approach, discuss the computational burden of
the different safety constraints, and discuss how to increase
robustness to unmodeled perturbations.

A. Implementation

As introduced in Section II, rendezvous missions have three
phases where abort safety is required. In the first two phases,
passive safety is maintained with respect to the AE, and the
KOS, respectively. For these two phases, it is typical to use
ellipsoidal sets (22) as the NASA specifications are ellipsoidal.
If the AE and KOS are over-approximated as polytopes, (21)
may also be used. In the third phase, active abort safety is
maintained with respect to terminal region, based on (20).
When the chaser engages the final approach to the target,
the safety constraints are removed to allow for berthing or
docking. For all mission phases, the unsafe set computations
can be performed offline as th