
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Smart Actuation for End-Edge Industrial Control Systems
Ma, Yehan; Wang, Yebin; Di Cairano, Stefano; Koike-Akino, Toshiaki; Guo, Jianlin; Orlik, Philip

V.; Guan, Xinping ;Lu, Chenyang

TR2022-138 November 01, 2022

Abstract
Along with the fourth industrial revolution, industrial automation systems are evolving into
a multi-tier end-edge computing architecture. Edge controllers, which are equipped with a
larger computing capacity compared to local controllers, can communicate with local plants
over mainstream wireless networks such as WirelessHART, Wi-Fi, and cellular networks.
Well-known challenges induced by networks, such as uncertain time delays and packet drops,
have been intensively investigated from various perspectives: control synthesis, network de-
sign, or control and network co-design. The status quo is that the industry remains hesitant
to close the loop between the edge controller and the actuation side due to safety concerns.
This work offers an alternative perspective to address the safety concern, by exploiting the
design freedom of an end-edge computing architecture. Specifically, we present a smart ac-
tuation framework, which deploys (1) an edge controller, which communicates with physical
plant via wireless network, accounting for optimality, adaptation, and constraints by con-
ducting computationally expensive operations; (2) a smart actuator, which is co-located with
the physical plant on the end tier and executes a local control policy, accounting for system
safety in the view of network imperfections, (3) the end-edge control co-design strategies
and cooperation logic for both performance and stability. For certain classes of plants, semi-
globally asymptotic stability of the resulting end-edge control systems is established when
the edge controller is the model predictive control (MPC), or policy iteration-based learning
control. We also provide an adaptation strategy for the end-edge control systems facing model
parameter mismatches when the edge controller employs reinforcement learning. Extensive
simulations demonstrate the advantages of the proposed end-edge co-design and cooperation
procedures.

IEEE Transactions on Automation Science and Engineering 2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

1

Smart Actuation for End-Edge Industrial Control
Systems

Yehan Ma, Member, IEEE, Yebin Wang, Senior Member, IEEE, Stefano Di Cairano, Senior Member, IEEE,
Toshiaki Koike-Akino, Senior Member, IEEE, Jianlin Guo, Senior Member, IEEE, Philip Orlik, Senior

Member, IEEE, Xinping Guan, Fellow, IEEE, and Chenyang Lu, Fellow, IEEE

Abstract—Along with the fourth industrial revolution,
industrial automation systems are evolving into a multi-tier
end-edge computing architecture. Edge controllers, which
are equipped with a larger computing capacity compared
to local controllers, can communicate with local plants over
mainstream wireless networks such as WirelessHART, Wi-Fi,
and cellular networks. Well-known challenges induced by
networks, such as uncertain time delays and packet drops, have
been intensively investigated from various perspectives: control
synthesis, network design, or control and network co-design.
The status quo is that the industry remains hesitant to close the
loop between the edge controller and the actuation side due to
safety concerns. This work offers an alternative perspective to
address the safety concern, by exploiting the design freedom of
an end-edge computing architecture. Specifically, we present a
smart actuation framework, which deploys (1) an edge controller,
which communicates with physical plant via wireless network,
accounting for optimality, adaptation, and constraints by
conducting computationally expensive operations; (2) a smart
actuator, which is co-located with the physical plant on the
end tier and executes a local control policy, accounting for
system safety in the view of network imperfections, (3) the
end-edge control co-design strategies and cooperation logic for
both performance and stability. For certain classes of plants,
semi-globally asymptotic stability of the resulting end-edge
control systems is established when the edge controller is
the model predictive control (MPC), or policy iteration-based
learning control. We also provide an adaptation strategy
for the end-edge control systems facing model parameter
mismatches when the edge controller employs reinforcement
learning. Extensive simulations demonstrate the advantages
of the proposed end-edge co-design and cooperation procedures.

Notes to Practitioners— Edge computing is gaining momentum
in areas that require low latency and high efficiency, i.e., mobile
computing, video analytics, and autonomous driving. Industrial
automation systems are also evolving into a multi-tier end-edge
computing architecture. It pays obvious dividends to leverage
the cooperation between end and edge, benefiting from fast
and reliable communication on the end side, and powerful
computation capacity on the edge side. The current end-edge
cooperation focuses on how to partition tasks and offload
computation resources in order to minimize delay and energy
consumption, as well as how to balance the tradeoff between

Y. Ma is with John Hopcroft Center, Shanghai Jiao Tong University,
Shanghai, 200240 China. e-mail: yehanma@sjtu.edu.cn

Y. Wang, S. Di Cairano, T. Koike-Akino, J. Guo and
P. Orlik are with Mitsubishi Electric Research Laboratories,
201 Broadway, Cambridge, MA 02139, USA. email:
{yebinwang,dicairano,koike,guo,orlik}@merl.com

X. Guan is with the Department of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai 200240, China. email: xpguan@sjtu.edu.cn

C. Lu is with Department of Computer Science and Engineering, Wash-
ington University in St. Louis, St. Louis, MO 63130, USA. email:
lu@wustl.edu

them. However, the impacts of end-edge cooperation on the
safety, optimality, and cost of industrial automation have not
been systematically studied. This paper aims to tailor end-edge
cooperation in a smart actuation framework, for industrial
automation to reconcile the above aspects by leveraging co-
design of end and edge controllers and their switching logic.
Extensive pure and semi-physical simulations demonstrate the
advantages in performance and system stability of the proposed
end-edge co-design and cooperation procedures.

Index Terms—Edge computing, end-edge cooperation, indus-
trial automation, wireless networked control systems, model
predictive control, reinforcement learning, stability

I. INTRODUCTION

INDUSTRIAL automation is powered by the internet of
things (IoT) technologies, such as edge computing and

wireless networking. Traditionally, industrial automation re-
lies on local controllers running on microcontrollers or pro-
grammable logic controllers (PLC), co-located with the ac-
tuators of the plants in the end tier. Limited by their sizes
and costs, microcontrollers have limited computation capacity
and can accommodate only simple control algorithms. The
deployment of edge computing platforms in industrial control
systems opens the door for improving control performance
with advanced algorithms, as well as lowering installation and
maintenance costs. The integration of edge computing and
traditional end devices turns industrial control systems into
an end-edge computing architecture, as shown in Fig. 1. Edge
computing platforms comprise powerful edge servers, which
communicate with physical plants through networks. Edge
control over wireless networks results in wireless networked
control systems (WNCSs), which find applications over indus-
trial automation, unmanned aerial vehicles, and teleoperated
robots, autonomous warehouses, and smart factories [1]. It
pays obvious dividends to leverage the cooperation between
end and edge in industrial automation applications, benefiting
from fast and reliable communication on the end side, and
powerful computation capacity on the edge side.

Since the environment of the industrial field could be
harsh, and the wireless network may be exposed to metal
obstacles, high temperature, high pressure, and dusty envi-
ronment, WNCSs are prone to communication problems, such
as poor connections and devices damages. The operation of
fans, pumps, and other equipment may cause interference and
reduce the reliability of network transmissions as well [2].
Therefore, the networks may suffer significant packet loss
under rare but possible circumstances above or even jamming

2

Wireless

Network

Physical Plants

(Motors, Containers,

Robotics)

End Tier

Local Controller

(SCM, PLC)

Edge Tier

Edge Controller

(NVDIA EGX)

Computation

Capacity

Network

Reliability

Fig. 1. End-edge computing architecture for industrial automation

attacks, even though they are usually reliable. For the sake of
plant safety, it is important to ensure stability even under these
challenging conditions.

This pivotal demand has spawned a variety of works to
ensure system safety and performance. Most of works assume
that the WNCS admits a direct architecture, striving to obtain
guaranteed stability with conservative designs or stochastic
stability, which is usually unsatisfactory to industrial prac-
titioners. Alternatively, a hierarchical end-edge architecture
is widely adopted in industrial automation, where local con-
trollers fulfill stabilization under the supervision of an edge
controller. The stability of the entire closed-loop system leans
on the local controller, which is relatively straightforward to
establish, at the expense of extra cost and insufficient authority
to shape the closed-loop control system performance. This
paper offers an alternative perspective to address safety and
performance concerns, by exploiting the design freedom of a
smart actuation (end-edge cooperation) architecture.

Recently, end-edge cooperation technologies have attracted
pervasive attentions in areas that require low latency and
high efficiency, such as mobile computing and video analysis.
However, industrial control systems must meet the unique re-
quirements to improve control performance while guaranteeing
system stability, which has not been thoroughly studied yet.
This paper aims at tailoring end-edge cooperation strategies
for industrial control to reconcile the safety, optimality, and
cost, from the perspective of co-designing controllers and their
switching logic over end and edge computing tiers. As the
control systems are relatively resilient to the sensing packet
loss [3], we focus on the packet loss from the edge controller
to actuators. The main contributions of this paper are five-fold:

1) propose a smart actuation framework that combines
features of direct and hierarchical architectures, which is
enabled by the cooperation of local and edge controllers
and the switching logic between them;

2) present procedures of co-designing and coordinating edge
and local control policies facing information loss, for
the cases that the edge controller implements model
predictive control (MPC) and policy iteration (PI) based

reinforcement learning control, respectively;
3) provide an adaptation strategy facing model parameter

mismatches when the edge controller implements rein-
forcement learning, which further illustrates the advan-
tages and resiliency of the smart actuation framework;

4) establish semi-globally asymptotic stability (SGAS) of
the resultant end-edge control systems;

5) demonstrate the effectiveness of the smart actuation
framework in both reliable and unreliable networks
through extensive pure and semi-physical simulations.
The semi-physical simulation integrates real edge and lo-
cal controllers, cooperation logic, Wi-Fi communication,
and simulated physical plants.

The rest of the paper is organized as follows. We present
related work in Section II. Section III introduces existing archi-
tectures of networked control systems and proposes the smart
actuation architecture. Section IV presents a procedure to co-
design edge and local controllers and establishes closed-loop
stability when the edge controller is MPC. Section V describes
an end-edge cooperation strategy to address model parameter
mismatches and establishes SGAS when the edge controller
employs PI-based learning. Section VI provides evaluation
results of the proposed architecture and co-design procedure.
Conclusions and future work are stated in Section VII.

II. RELATED WORK

Edge control over wireless networks in the context of indus-
trial automation faces serious challenges due to the inherent
nondeterminism and limited throughput of wireless networks,
which have spawned a variety of research directions in both
network and control communities to ensure system safety and
performance.

On the network side, standard wireless networks have been
rapidly tailored for industrial automation, e.g., ISA100 [4]
and WirelessHART [5]. Other approaches to address nonde-
terminism include, among others, deployment [6], coding [7],
retransmissions and channel selection [8], and routing [9], etc.
Another important research direction to improve the systems’
resiliency to network imperfections is rooted in control theory.
A plethora of control designs have been developed based on
the plant models as well as on network parameters. To name a
few, Sinopoli et al. [10] discuss Kalman filtering with intermit-
tent measurement; Zhang et al. [11] investigate robust output
tracking control subject to time-varing sampling and time
delay; Truong et al. [12], [13] model packet loss as a Bernoulli
or Markov-type process and establish stochastic stability of
the resulting WNCS. More recently, network and control co-
design has been explored to jointly determine the control and
network policies to attenuate the effects of uncertainties and
limited throughput, for example, [14] on network QoS-aware
control, [15] on sampling periods and [16] on self-triggered
control for balancing network energy consumption and control
cost, [17] on control and network channel allocation, [18]
on control and network scheduling policy, and [19] on control
and network power policy, etc. Interested readers are referred
to [20], [21] and references therein for more details.

Most of the aforementioned works assume that the WNCS
admits a direct architecture [22]. With sensing and actuation

3

signals being transmitted over an unreliable network, most
existing works either strive to obtain guaranteed stability (al-
beit with conservative designs) or stochastic stability, which is
usually unsatisfactory to industrial practitioners. Alternatively,
a hierarchical end-edge architecture is widely adopted in in-
dustrial automation, where local controllers fulfill stabilization
and tracking of local control loops, and an edge controller
supervises local controllers over an unreliable network. It
is noteworthy that the edge controller typically runs much
slower than local control loops, and provides references to
local counterparts for optimal process operation [22], [23]. By
decoupling the unreliable network from local control loops,
the stability of the entire closed-loop system is relatively
straightforward to establish, at the expense of extra cost.
Another shortcoming of the hierarchical architecture is that
the edge controller has insufficient authority to shape the
transient of the closed-loop control system, and thus might
incur performance loss.

In recent years, end-edge cooperation technologies have
attracted pervasive studies in areas that require low latency
and high efficiency, i.e., mobile computing [24], video analyt-
ics [25], autonomous driving, and smart city [26]. The state-of-
the-art end-edge cooperation focuses on how to partition tasks
and offload computation resources in order to minimize delay
and energy consumption, as well as to balance the tradeoff
between them [27]. In contrast to those earlier applications
of edge computing, industrial control systems have unique
concerns [21] of overall closed-loop control performance, such
as mean absolute tracking error, and system stability with
complex dependencies on cyber and physical states. Edge
computing has been considered for control systems recently.
Vreman et al. [28] describe the challenges and their future
research in the field of computer security for multilayer
distributed control systems over 5G networks. Skarin et al.
design and implement an industrial control system on lo-
cal/edge/cloud platforms [29], and compare the impacts of the
different platforms on MPC [30]. Their work however does
not address coordination of computation tiers and adaptation
to varying cyber-physical conditions. Ma et al. propose a
switching multi-tier control (SMC) approach to exploit edge
computing in control systems [31], where edge and local
platforms take turns to select between the local and edge
according to varying cyber-physical states. In this work, we
design the stability switch between local and edge controllers
under data loss from another perspective, based on co-design
of edge and local control policies, which can be proved to
be resilient to arbitrary information loss. The smart actuator,
where the switch decision is neatly made, is the specialty of
smart actuation architecture.

III. SYSTEM ARCHITECTURES

This section briefly describes two prevailing architectures,
and proposes the smart actuation architecture. Interested read-
ers are referred to [22], [32] for a comprehensive discussion
of existing architectures.

A. Existing Architectures

Fig. 2 illustrates a typical schematic of direct architecture
comprising plants, sensors, network, edge controllers, and
actuators. The sensors transmit the measurements y(k) to
the edge controller, and the edge controller transmits control
inputs u(k) to the actuators, via wireless networks. Since there
is only one active controller over an unreliable network, this
architecture requires sophisticated control and network design
to ensure the closed-loop system stability.

Edge
Controller

Actuators

Sensors

Ref

()u k

()y kˆ()y k
Plant

ˆ()u k

Fig. 2. Direct architecture

Fig. 3 outlines a hierarchical architecture. The edge con-
troller supervises a local control loop by specifying its refer-
ences, denoted by y∗(k) for simplicity. The local controller
generates control inputs u(k′) to actuators. Here we use
k and k′ to suggest that edge and local controllers have
distinct sample rates. Since the edge controller typically runs
at a much slower pace than the local one, the time scale
separation principle can be applied. Thus the local controller
mostly provides the closed-loop system stability. Thanks to its
scalability and reliability [22], the hierarchical architecture has
been found in many industrial applications such as distributed
control systems for process automation, mobile robots control
systems [33], and smart power grids [34]. Compared with
the direct architecture, the hierarchical architecture enhances
reliability but increases the system cost, through extra installa-
tion, maintenance, and cabling. In addition, the edge controller
has insufficient authority to shape the transient of the closed-
loop system, which limits the capacity of the edge platform
to directly improve the control performance.

Edge
Controller with

Low Frequency

Actuators

Sensors

Ref

*()y k

()y kˆ()y k
Plant

(')u kLocal

Controller with

High Frequency

(')y k

ˆ *()y k

Fig. 3. Hierarchical architecture

B. Smart Actuation Architecture

The smart actuation architecture is shown in Fig. 4. At
time step k, the edge controller determines control input
ue(k) based on the estimated state xe(k) and references, and
sends these signals to the local controller; the local controller

4

Edge
Controller

State

Observer

Actuators

Sensors

Ref

(), (),r eu k x k Ref

()y kˆ()y k

()ex k

Local

Controller

Plant

()u k

Smart Actuator

()eu k

ˆ ˆ ˆ(), (),r eu k x k Refe e

Fig. 4. Smart actuation architecture

generates ul(k) by adopting a local control policy ul(k) =
hl(xl(k)). The local controller might pass on either ûe(k) or
ul(k) to actuators, depending on, for example, whether the
actuation packet is delivered:

u(k) =

{
ûe(k), packet delivered on time,
ul(k), otherwise,

(1)

where u(k) is the command to the actuators. The edge con-
troller adopts policies, e.g., MPC and reinforcement learning,
to tackle optimality, uncertainties, and constraints. The local
controller implements a computationally lightweight policy as
a backup in case of network performance degradation.

Consider the nonlinear discrete-time system,

x(k + 1) = f(x(k), u(k)),

where x ∈ Rn is the state and u ∈ Rm the control. The local
controller implements a control policy as follows:

xl(k + 1) =

{
f
(
x̂e(k), u(k)

)
, packet delivered,

f
(
xl(k), u(k)

)
, otherwise,

ul(k + 1) = hl
(
xl(k + 1)

)
.

(2)

As shown in the finite state machine (FSM) (Fig. 5), the smart
actuation based on the switching rule of Eq. (1) works as
follows. If the actuation packet from the edge, ûe(k), arrives
on time, u(k) = ûe(k) according to (1), and ûe(k) and x̂e(k)
are stored; otherwise, u(k) = ul(k) is calculated according
to (2), and xl(k) is the predicted state based on states and
actuation commands at time step k − 1.

𝑢! 𝑢""

𝑢" ! delivered on time
Feed 𝑢" ! to the actuator;
Store 𝑥"!	and 𝑢"!;

𝑢" ! is lost
𝑥"ßf(last 𝑥"!, last 𝑢"!);
𝑢" = ℎ" (𝑥");
Store 𝑥" and 𝑢" ;

𝑢" ! delivered on time
Feed 𝑢" ! to the actuator;
Store 𝑥"!	and 𝑢"!;

𝑢" ! is lost
𝑥"ßf(last 𝑥", last 𝑢");
𝑢" = ℎ" (𝑥");
Store 𝑥" and 𝑢" ;

Fig. 5. Finite state machine for the switching rule (1)

The switching rule (1), along with edge and local control
policies, should be carefully devised to secure system safety.
For instance, with MPC as the edge controller, a tailored
switching mechanism is described in detail in Sec. IV-B. As

another instance, with reinforcement learning as the edge con-
troller, a different switching mechanism designed for adapt-
ability is described in Sec. V-A.

By providing control input to actuators directly, the edge
controller has sufficient authority to shape the closed-loop
system performance. However, this treatment may lead to the
dilemma encountered in the direct architecture: unsatisfactory
stability and sophisticated control design. The local controller
is introduced to limit these concerns. This idea is consistent
with results in [35], where the optimal locations of controllers
are investigated, and which concludes that controllers should
be collocated with the actuator when the size of packets is
allowed to be infinitely long.

Remark 3.1: The signal flow directly connecting sensors
and the local controller, represented by the dashed line in
Fig. 4, is optional. With this signal flow, the smart actuation
architecture is similar to the hierarchical one, except that
the edge controllers in two architectures play different roles,
and its local and edge controllers adopt the same time scale.
Without directly connected sensors and the local controller, it
is similar to direct architecture, except that smart actuation
architecture has local controllers in place. �

Remark 3.2: Closing the real-time control loop over insecure
networks renders WNCS vulnerable to various cyber-attacks,
such as denial of service and jamming, eavesdropping, replay,
zero-dynamics attacks, etc. How to mitigate cyber-attacks
forms an important research thrust which has led to a fruitful
of contributions, e.g. [36]–[38] and references therein. While
not explicitly devoted to security aspect, this work positively
enhances the resilience to cyber-attacks in two ways. First,
it addresses the system stability against the loss of remote
control packets, or information loss [39], which characterizes
an important and common cyber-attack on quality of service
(QoS). Secondly, the smart actuator can act as a watch-dog to
detect cyber-attacks and respond accordingly. �

IV. SMART ACTUATION FOR CONSTRAINTS AND
PERFORMANCE

The closed-loop system corresponding to the smart ac-
tuation strategies over end-edge computing architecture is
hybrid. Specifically, it can be regarded as a switched system
arbitrarily triggered by the event designating edge-end network
(actuation) packet loss. Stability analysis tools for hybrid
systems can be found in [40] and references therein. This
section presents stability analysis and control design based
on a well-received result: if there exists a common Lyapunov
function for all subsystems, then the stability of the switched
system is guaranteed under arbitrary switching. Particularly
we show that the construction of such a common Lyapunov
function entails co-design of controllers on end and edge tiers.

A. Simplification and Assumptions

We tackle a specific problem by considering the edge con-
trol as MPC. Buffered actuation based on MPC is an efficient
way to mitigate the negative effects of packet dropouts [3],
[41]. Over edge, a sequence of control inputs over a finite
horizon is obtained according to MPC strategy and is sent

5

to the smart actuator. Depending on transmission outcomes
and via appropriate cooperation at the smart actuator, some
predicted control values can be applied to the plant. This
problem is restrictive but meaningful because MPC, by taking
constraints and optimality into account, provides the desired
features of the edge controller. This focus implies the follow-
ing assumptions.

Assumption 4.1: The closed-loop control system in the smart
actuation framework is such that:

(i) there is no packet loss from sensors to edge controller;
(ii) delays of computations and communications within a

single sampling period are ignored. Delays longer than
the sampling period are regarded as packet losses.

Regarding (i) in Assumption 4.1, existing state estima-
tion works provides robust and theoretically sound protec-
tion against loss of sensing information [10], [42], [43].
Besides, control system performance can be more sensitive
to downstream (controllers to actuators) packet loss in certain
WNCS [3]. Although edge has been readily utilized in sensing
and monitoring for smart manufacturing [44], its application in
actuation in order to close the control loop is still challenging.
Therefore, in this work, we focus on the smart actuation design
and stability analysis dealing with downstream while assuming
upstream communication occurs over an ideal channel, which
is seldomly studied and is important to close the loop over
wireless networks for control and actuation. This assumption is
lifted in Sec. VI. As we stated in the first paragraph of Sec. VI,
the evaluation is conducted where random packet drops of
both sensing and actuation sides are simulated. Regarding
(ii), stability analysis under network latency of below one
sampling period is well studied. We refer interested readers
to [45], [46]. Furthermore, the end-to-end delay bounds of
TDMA (time division multiple access) network protocol, such
as WirelessHART, ISA100, Detnet, are deterministic, which
can be scheduled to less than one sampling period [20].
In addition, the effects of real end-to-end communication
and computation latency are reflected in the semi-physical
simulation in Sec. VI-E.

Regarding the plant, we have the following assumptions to
facilitate stability analysis and control design.

Assumption 4.2: The open-loop plant model is exactly
known, and its states are measured. Furthermore, it is sta-
bilizable by either the MPC or a state feedback control policy
ul(k) = hl

(
x(k)

)
, when there is no packet loss.

B. Nonlinear Input-affine Sytems
Consider a nonlinear control-affine discrete-time system

x(k + 1) = f
(
x(k)

)
+ g
(
x(k)

)
u(k)

y(k) = x(k),
(3)

where x ∈ X ⊂ Rn is the state, f and g smooth vector fields,
u ∈ U ⊂ Rm the control input, and y the output. Both X
and U are convex and compact, with each set containing the
origin in its interior. The control objective is to steer states to
the origin while minimizing a certain cost function.

Next, we illustrate the co-design of the edge MPC and local
control policies for system (3) to ensure that the resulting
closed-loop system is SGAS.

1) Local Controller Design: Feedback stabilizing or track-
ing control design for a nonlinear system (3) is one of the
fundamental problems in control theory, which is however not
the focus of this work. As specified in Assumption 4.2, there
exists a smooth state feedback law ul(k) = hl

(
x(k)

)
such that

the resulting closed-loop system is SGAS, i.e., a continuously
differentiable function Vl : Rn → R satisfies [47, Thm 4.2].

Remark 4.3: Several control designs lead to ul(k) ∈
U,∀x ∈ X, which renders X, (more likely its subset repre-
sented as a level set of Vl), an invariant set of the closed-loop
system. This work assumes that ul(k) always lies in U for all
x ∈ X, and makes X an invariant set. �

2) Edge Controller Design: For a variable ρ, given i ≥ 0,
ρ(i|k) denotes the prediction of ρ(k+i), based on information
available at time k; and ρ(k) = ρ(0|k). For system (3) at time
k, MPC minimizes the cost function [48],

V
(
x(k),u(k)

)
= F

(
x(N |k)

)
+

N−1∑
i=0

l
(
x(i|k), u(i|k)

)
, (4)

where u(k) = ue(k) = {ue(k), ue(1|k), ..., ue(N − 1|k)},
x(i|k) for 1 ≤ i ≤ N − 1 are the predicted states cor-
responding to ue(k), and N is the prediction horizon. The
positive definite functions l(x, u) and F (x) represent the stage
cost and the terminal cost, respectively. At time k, the MPC
solves an optimization problem by minimizing (4), subject to
state/control constraints along the state trajectory and a ter-
minal constraint x(N |k) ∈ Xf ⊂ X. Assumption 4.2 implies
that the optimization problem has an optimal solution u∗e(k) =
{u∗e(k), u∗e(1|k), ..., u∗e(N−1|k)} at time k, and the associated
cost function is given by V ∗e

(
x(k)

)
= V

(
x(k),u∗e(k)

)
.

Assumption 4.2 indicates that there exist functions
F (·), l(·, ·),Kf (·) satisfying A1 to A4 [48, Sec. 3.3]:

A1: Xf ⊂ X, where Xf is closed and 0 ∈ Xf .
A2: There exists a local controller Kf (x) ∈ U, ∀x ∈ Xf .
A3:

(
f(x) + g(x)Kf (x)

)
∈ Xf , ∀x ∈ Xf .

A4: F
(
f(x)+g(x)Kf (x)

)
+l
(
x,Kf (x)

)
≤ F (x), ∀x ∈ Xf .

To establish the stability of the hybrid system resulting from
the edge MPC and local controller, it is sufficient to prove that
(4) is a common Lyapunov function for subsystems associated
with the local control policy and the MPC.

MPC

Ref

[*(), *(1|), , *(1|)]r r ru k u k u N k−
Buffer

()u k

MPC

()ru k(1|)ru k*(2|)ru N k−*(1|)ru N k−

(1|)ru k(1|)ru N k−
(1)u k +

*(2|)ru k(|)lu N k

MPC
(2)u k +

*(2 |)ru k(|)lu N k *(3|)ru k(1|)lu N k+

[*(1), *(1| 1), , *(1| 1)]r r ru k u k u N k+ + − +

[*(2), *(1| 2), , *(1| 2)]r r ru k u k u N k+ + − +

t k=

1t k= +

2t k= +

e e e

e e e

e e e

e e e e

e

e

ee

e

Fig. 6. End-edge switch mechanism when edge controller employs MPC

Remark 4.4: Motivated by [3], [41], where the actuation
buffer is used to address time delays and packet loss, the
end-edge switch mechanism illustrated by Fig. 6 is alterna-
tively executed by the smart actuation strategy in the stability
analysis below. Assume that the smart actuator on the end

6

side has a buffer of size L = N , and the buffer stores a
control sequence u(k) = {u∗e(k), u∗e(1|k), . . . , u∗e(N − 1|k)}.
If the actuation packet is delivered at time k + 1, the buffer
is refreshed by the MPC control sequence u∗e(k + 1); oth-
erwise, the local control policy ul(N |k) is pushed into the
buffer. Consequently, the control sequence in the buffer turns
into u(k) = {u∗e(1|k), . . . , u∗e(N − 1|k), ul(N |k)}. Previous
study [41] discussed whether the last input of buffer should
be set to 0 or the last value when packet drops. We have
developed a third option by setting it as local control input,
which is favorable to stability. �

Proposition 4.5: Assume that a local control policy ul(k) =
hl
(
x(k)

)
renders system (3) globally asymptotically stable,

and that for a certain positive definition function J(x) and
α ≥ 1, the following condition holds, for 0 ≤ k <∞,∀x ∈ X,

α · l
(
x(k), hl(x(k))

)
+ J

(
x(k + 1)

)
− J

(
x(k)

)
≤ 0. (5)

Then the cost function (4), with F (x) = J(x) and the stage
cost l(x, u), is a common Lyapunov function of the closed-
loop system, where control input switches between MPC and
local policy ul(k) = hl

(
x(k)

)
, according to Remark 4.4.

Proof: We need to show the following facts

(i) the subsystem resulting from the edge MPC policy has
a Lyapunov function given by V ∗e

(
x(k)

)
;

(ii) with F (x) = J(x), (4) is a Lyapunov function of the
subsystem resulting from local control policy ul(k);

(iii) in the case of switching from the edge MPC policy to
the local control policy ul(k), the Lyapunov function
decreases;

(iv) in the case of switching from the local control policy
ul(k) to the edge MPC policy ue(k), the Lyapunov
function deceases.

Proof of (i): With conditions A1–A4, the cost function (4)
is a Lyapunov function for the subsystem corresponding to the
edge MPC [48]. Proof is omitted.

Proof of (ii): Given x(k), local policy ul(k) = hl
(
x(k)

)
,

and system (3), we have ul(n|k) = ul(k + n) and x(n +
1|k) = x(k + n+ 1), where 0 ≤ n ≤ N . Therefore, we have
{ul(k), ..., ul(k +N)}, {x(k + 1), . . . , x(k +N + 1)}, and

V
(
x(k + 1)

)
= J

(
x(k +N + 1)

)
+

N∑
i=1

l
(
x(k + i), ul(k + i)

)
V
(
x(k + 1)

)
− V

(
x(k)

)
= J

(
x(k +N + 1)

)
− J

(
x(k +N)

)
− l
(
x(k), ul(k)

)
+ l
(
x(k +N), ul(k +N)

)
.

Substituting (5) into the above equation gives

V
(
x(k + 1)

)
− V

(
x(k)

)
≤− (α− 1)l

(
x(k +N), ul(k +N)

)
− l
(
x(k), ul(k)

)
,

which is negative definite and implies (ii).
Proof of (iii): The induction principle is used here. As-

sume that the edge MPC policy u∗e(k) = {u∗e(k). . . . , u∗e(N −
1|k)} is applied at time k. Lyapunov function is V ∗e (k).
With the packet drop at time k + 1, the control sequence

is u(k + 1) = {u∗e(1|k). . . . , u∗e(N − 1|k), ul(N |k)}, where
ul(N |k) is the local control policy. We have

V (k + 1)− V ∗e (k) = J
(
x(N + 1|k)

)
+

N−1∑
i=1

l
(
x(i|k), u∗e(i|k)

)
+ l
(
x(N |k), ul(N |k)

)
− J

(
x(N |k)

)
−
N−1∑
i=0

l
(
x(i|k), u∗e(i|k)

)
,

(6)
where x(N + 1|k) is obtained from applying ul

(
x(N |k)

)
to

(3). Applying (5) to (6), one verifies V (k + 1) − V ∗e (k) <
−l
(
x(k), u∗e(k)

)
. By induction, one can repeat the aforemen-

tioned derivation to establish the decrease of the Lyapunov
function, if the packet loss continues beyond time k+ 1. This
completes the proof of (iii).

Proof of (iv): V ∗e (k+1) ≤ V ∗e (k) because of (i). At time
k, since the control sequence in the buffer is a feasible solution
with a cost V (k), the MPC policy u∗e(k), obtained by solving
the optimization problem, necessarily yields V ∗e (k) ≤ V (k).
Therefore V ∗e (k + 1)− V (k) ≤ 0.

Remark 4.6: Proposition 4.5 establishes that the resulting
closed-loop system is SGAS over X, by imposing a restrictive
condition (5) over X. This restriction can be lifted in many
cases by relaxing Assumption 4.2 to hold over Xf . The
relaxation, together with A3 for ul = hl(x) = Kf (x) and
assuming the successful delivery of the actuation packet at
k = 0, also ensures the SGAS over X. �

Remark 4.7: Condition (5) is sufficient but not necessary.
It is for verification but not for control synthesis. Given a
feedback control ul = hl(x) satisfying Theorem [47, Thm
4.2], the stage cost l(x, u), and J(x), it is straightforward to
verify whether condition (5) holds or not. However, it is not
trivial to construct the function J(x) and ul = hl(x) from
condition (5) for a given l(x, u). This is because ul = hl(x)
is associated with a Lyapunov function Vl, and leaves Vl decay
at a certain rate which is irrelevant to l(x, u). �

3) Policy Evaluation-based Co-Design Procedure: We em-
ploy the following policy evaluation-based procedure to bridge
the gap from ul = hl(x) to the construction of J(x).

1) Design a stabilizing local controller ul0 = h0(x).
2) Given ul0 = hl0(x), l(x, u), and γ = 1, perform one

step of the policy evaluation as in (21) to evaluate the
cost V1(x) corresponding to the control ul0 = hl0(x),
and set J(x) = V1(x).

3) Solve the MPC policy by minimizing the cost function (4)
with F (x) = J(x).

Given a local control law ul = ul0, the policy evaluation-
based co-design procedure eventually outputs a terminal
cost J(x) = V1(x). We have J

(
x(k + 1)

)
− J(x) =

−l
(
x(k), ul(k)

)
according to (21), which satisfies condition

(5). This implies the stability of the resulting closed-loop
system, according to Proposition 4.5.

Remark 4.8: As a system of first-order nonlinear difference
equations, the closed-form solution of (5) is difficult to obtain.
An approximate solution is usually of practical interest. Given
ul = hl(x) and parameterizations of J(x), (5) is reduced
to algebraic equations, and thus, the approximate solution of
J(x) can be computed. See Appendix A for details. �

7

The control policy ul = hl(x) is designed to make Vl decay
along the system trajectory. This implies that ul0 may be far
from optimal with respect to (4). The policy evaluation-based
procedure may give J(x), which is inconsistent with the stage
cost. A remedy to this issue is to introduce policy iteration-
based co-design procedure as follows:

1) Design a stabilizing controller ul0 = hl0(x) and let j = 0.
2) Given ulj = hlj(x) and l(x, u), perform policy evaluation

(see (21) in Appendix) to evaluate the cost Vj+1(x)
corresponding to the control ulj .

3) Given Vj+1(x), perform policy improvement (see (22) in
Appendix).

4) j = j + 1; repeat the policy evaluation and policy
improvement steps until j = M , and then let J(x) =
VM+1(x). M denotes the allowed number of iterations.

5) Solve the MPC policy by minimizing the cost function (4)
with F (x) = J(x).

Given the stabilizing control policy ul0, the control policy up-
dated in the policy improvement step also stabilizes the system
(3). Hence, the policy iteration-based co-design procedure will
eventually produce a local control policy ul = ulM = hlM (x)
and terminal cost J(x) = VM+1(x) in (4) of edge control,
which satisfy condition (5). This implies the stability of the
resulting closed-loop system.

Remark 4.9: Policy evaluation and iteration-based co-design
procedures can be extended to take control constraints into
account. See [49] for details. �

C. LTI System Case

Consider a linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), y(k) = x(k). (7)

1) Controller Design: We take l(x, u) = xTQx + uTRu,
and F (x) = xTSx in (4) of edge control, where Q,R, S are
positive definite. The cost function becomes

V
(
x(k)

)
=

k+N−1∑
i=k

(
xT (i)Qx(i) + uT (i)Ru(i)

)
+ xT (k +N)Sx(k +N).

(8)

One can validate that (8) is a common Lyapunov function of
the resulting hybrid system, and obtain the following result.

Proposition 4.10: Consider system (7), the cost function (8),
and the switching policy in Remark 4.4, let S be the solution
of the discrete-time algebraic Riccati equation (DARE)

ATSA− S +Q−ATSB(BTSB +R)−1BTSA = 0, (9)

and let the local control policy be given by u(k) =
−(BTSB + R)−1BTSAx(k). The resulting hybrid system
is asymptotically stable.

V. ADAPTATION TO PARAMETER MISMATCHES

Previously, both edge and local controllers assume exact
knowledge of the plant. This is not always the case in practice.
In order to maintain system stability and performance, either
local or edge controller shall incorporate adaptation mecha-
nisms to address parametric model uncertainties. In case that

both controllers have access to the same information, adap-
tation might reside in the local controller to avoid adversary
effects of network imperfection. However, for an automation
system comprising multiple coupled local machines, the edge
controller can access more information and computing power,
and thus conduct adaptation more effectively. Thus here we
implement adaptation on the edge, as an illustration.

A. Policy Iteration-based Adaptation

Let the plant model be given by

ẋ = f
(
x, θ
)

+ g
(
x
)
u, y = x, (10)

where f, g are smooth vector fields, and θ ∈ Ωθ ⊂ Rnθ is a
vector of unknown parameters with Ωθ being a compact set.
One way to enable adaptation is to replace the baseline MPC
with adaptive variants, e.g. [50]. Reinforcement learning-
based control bridges the gap between traditional optimal
control and adaptive control algorithm by enabling adaptive
control in an optimal manner. [51] Thus, this work adopts
the online reinforcement learning approach [52] in virtue of
its guaranteed convergence and performance improvement.
Particularly, the edge controller not only performs parameter
estimation, but also iteratively synthesizes control policies for
local controllers to implement in real-time. Fig. 7 illustrates
the architecture where the PI algorithm is implemented on
the edge to learn control policies, which are then pushed
towards local controllers. Here PI determines a control policy
based on parameter estimation, and usually has a much slower
time scale than the parameter estimator. Roughly speaking,
the edge controller samples a parameter estimate trajectory
θ̂(t) sparsely over time and obtains a sequence: {θ̂i}. Given
an estimate θ̂i, it performs PI to develop an optimal control
policy u∗i (x) and the corresponding value function V ∗i (x).

Fig. 7. Smart actuator diagram when edge controller employs policy iteration

In PI, the control policy and value function are approx-
imated as V ∗

(
x
)

= WTΦ
(
x
)
, and u∗

(
x
)

= ΓTΨ
(
x
)
,

respectively, where W and Γ are vectors of parameters to be
updated as described in Appendix A. Readers are referred to
[52] for more details. The implementation of smart actuator
depends on whether it receives updated control policy packet
from edge and receives y from sensors directly or not. It
updates control policy once the control policy packet carrying
Wi arrives. Let the smart actuator implement control policy
u∗i (x) = − 1

2R
−1gT (x)∂ΦT (x)

∂x Wi (according to (24)) with Wi

8

being synthesized from PI based on θ̂i. With y from sensors,
it computes u∗i (x̂e); otherwise, it calculates u∗i (xl). That is:

ul(k) =

{
u∗i (x̂e(k)), x̂e packet delivered
u∗i (xl(k)), otherwise.

(11)

B. Stability Analysis

Once the local controller deploying control policy u∗i , the
resultant closed-loop system is obtained as

ẋ = f(x, θ) + g(x)u∗i (x) ≡ fi(x, θ, θ̃i) (12)

where u∗i (x) implicitly depends on the parameter estimate θ̂i.
System (12) is perturbed by θ̃i = θ− θ̂i. The fact that the local
controller deploys control policies u∗i (x), 0 ≤ i < ∞, results
in a switched system. The analysis below casts insight on how
a new control policy should be deployed to ensure safety. The
following assumptions are made to facilitate the analysis.

Assumption 5.1: Consider the plant (10).
(i) The vector field f is Lipschitz in θ ∈ Ωθ, uniformly in

a compact set Ωx, i.e., there exists L > 0 such that∥∥∥f(x, θ)− f(x, θ̂)
∥∥∥ ≤ L∥∥∥θ̃∥∥∥ , ∀θ, θ̂ ∈ Ωθ,∀x ∈ Ωx.

(ii) There exists an initial control policy u0(x) such that the
closed-loop system state trajectory stays inside Ωx for
any x(0) ∈ Ωx. Particularly, the zero solution of (12) is
asymptotically stable with θ̃0 = 0.

(iii) There exists a parameter estimator achieving convergent
estimation of θ, i.e., limt→∞

∥∥∥θ̃(t)∥∥∥ = 0.
(iv) PI solves for a Lyapunov function satisfying

∂V

∂x

(
f(x, θ̂) + g(x)h(x, θ̂)

)
= −(x>Qx+ u>Ru)∥∥∥∥∂V∂x

∥∥∥∥ ≤ c3 ‖x‖ .
Remark 5.2: Conditions (i)-(ii), imposed on the plants,

hold for most of the engineering systems, e.g. servomotors
[53], Lithium-ion batteries [54], etc. Given the continuity of
f and the boundedness of Ωx, (i) always holds; and (ii)
implies that the plant can be stabilized by static state feedback
control. Conditions (iii)-(iv) are related to tools employed
for control design and stability analysis. Particularly, (iii)
facilitates indirect adaptive control design and input-to-state
stability (ISS) analysis [55], whereas (iv) always holds as long
as (ii) is true and x ∈ Ωx. Condition (iii) can be removed or
relaxed, for example, when the PI algorithm synthesizes the
control policy without using the knowledge of f, θ̂i [52]. �

From (i)-(iii) in Assumption 5.1, Lemma 4.7 in [47] can
be applied to show that the closed-loop system, with θ̃ being
a decaying unknown disturbance, is asymptotically stable for
any x0 ∈ Ωx. The stability holds for control policy u(x, θ̂)
if θ̂ is updated continuously. Given a particular policy u∗i (x),
its deployment to local controller will not warrant asymptotic
stability, owing to its implicit dependence on θ̂i and the non-
zero error θ̃i. Instead, we have the following result.

Proposition 5.3: With Assumption 5.1, the resulting closed-
loop system (12) is uniformly ultimately bounded over Ωx.

Proof: Given a parameter estimate θ̂i, the PI procedure
yields a control policy u∗i (x) and the value function V ∗i (x),
based on the nominal plant dynamics

ẋ = f(x, θ̂i) + g(x)u. (13)

From (ii) of Assumption 5.1 and the property of PI, we
know u∗i (x) asymptotically stabilizes (13). When u∗i is applied
to (10), the time derivative of V ∗i along the state trajectory is

V̇ ∗i =
∂V ∗i
∂x

(f(x, θ) + g(x)u∗i (x) + f(x, θ̂i)− f(x, θ̂i))

≤ −(c4 − c3Lγ2) ‖x‖2 +
c3L

4γ2

∥∥∥θ̃i∥∥∥2

,

where both θ̃i and γ > 0 are constant. One can see that V̇ ∗i ≤
−c5 ‖x‖2 ,∀ ‖x‖ ≥

√
c3L

4γ2(c4−c3Lγ2−c5)

∥∥∥θ̃i∥∥∥. From [47, Lem.
4.6], we conclude that the closed-loop system with u∗i is ISS,
i.e., there exists a class KL function β and a class K function Γ

‖x(t)‖ ≤ β(‖x(0)‖ , t) + Γ(sup
0≤τ≤t

∥∥∥θ̃0

∥∥∥).

With Γ(θ̃0) being constant, we show x(t) is bounded.
Having received a sequence of control policies u∗i (x), local

controller needs mechanisms to ensure that the switch from
u∗i (x) to u∗i+1(x) is safe. We have the following result.

Proposition 5.4: Consider plant (10) where Assumption
5.1 holds. Denote {θ̂0, . . . , θ̂i, . . . } the sequence of parameter
estimates that the edge controller samples at intermittent time
instants. The edge controller performs PI for each θ̂i and
obtains control policy u∗i (x) and value function V ∗i (x), which
are delivered successfully to the local controller. There exists
a sub-sequence of control policies to be deployed such that
the induced closed-loop system is SGAS over Ωx.

Proof: For the closed-loop system resulting from u∗i ,
we choose Lyapunov function candidate Vi(x, θ̃) = V ∗i . Its

time derivative is V̇i ≤ −ci,1 ‖x‖2 + ci,2

∥∥∥θ̃i∥∥∥2

,∀x ∈ Ωx,
where ci,1, ci,2 are positive constant. This means the state
x(t) will eventually be confined in the ball Bi , {x| ‖x‖ ≤√

2ci,2
ci,1

∥∥∥θ̃i∥∥∥} as long as the policy ui holds long enough.

For the policy u∗i+1 we have V̇i+1 ≤ −ci+1,1 ‖x‖2 +

ci+1,2

∥∥∥θ̃i+1

∥∥∥2

. If u∗i+1 is applied in [ti+1, ti+2], as long as the
duration ti+2− ti+1 is long enough, the state trajectory of the
resulting closed-loop system will enter and could not escape
from the ball Bi+1 , {x| ‖x‖ ≤

√
2ci+1,2

ci+1,1

∥∥∥θ̃i+1

∥∥∥}. Since θ̃
is convergent, we can always pick ti+2 such that Bi+1 ⊂ Bi.
Given the contractive property of Bi, 0 ≤ i < ∞, one can
verify that the closed-loop system satisfies the definition of
SGAS over Ωx.

VI. EVALUATION

This section presents three examples to illustrate and verify
the co-design procedure of local and edge controllers as
described in Sec. IV, and a case study of adopting edge
adaptive controllers as discussed in Sec. V. Performances
of control systems with different architectures are compared
to corroborate the effectiveness of the smart actuation archi-
tecture. Simulations are conducted in MATLAB/Simulink®,

9

where random packet drops of both sensing and actuation sides
are simulated. Sensing packet losses are handled by the EKF
with intermittent observations [10]. Actuation packet losses are
compensated according to the different architectures, e.g. edge
controller only (buffered MPC actuation and reinforcement
learning), local controller only, and smart actuation (adopting
the switch policy (1)) architectures.

Detailed simulation results are given in Figs. 9 - 19. Each
boxplot figure shows the results of five different cases by
taking edge MPC controller as an example:

1) MPC I: edge MPC controller and smart actuation strat-
egy in an ideal network. Since there is no packet loss,
the edge controller is always active.

2) Local I: local controller in an ideal network.
3) Smart: smart actuation strategy with both local and edge

controllers, but an unreliable network. The hybrid system
adopts the switching policy given by (1).

4) Local: local controller and a lossy network. In this case,
the EKF transmits estimated states xe(k) to the local
controller via an unreliable network. If the packet arrives,
the local controller generates control inputs based on
xe(k); otherwise, it generates control inputs based on
xl(k).

5) Edge: direct architecture with the buffered MPC scheme
[41] over an unreliable network, with buffer size 5.

Each boxplot is generated from 50 rounds of simulations.

A. Example 1: Linear System

Consider the load-positioning system in [56], [57], which
positions the load (L) using a motor. The motor is attached
rigidly to a movable base platform (B). The load positioning is
a 4-state nonlinear system [57]. When the system is operated at
the low frequencies common in industrial settings, the system
can be simplified to a 4-state linear system [56]. The state
vector is defined as x = [xL ẋL xB ẋB], where xL is the
displacement of the load relative to the base platform, xB is
the absolute displacement of the base platform, and ẋL and
ẋB are the speeds of the relative and absolute movements
accordingly. Thus the load positioning system model is

ẋ = Acx+Bcu, y = x,

where system parameters are given in Table I and

Ac =

0 1 0 0

0 −dL(1
mL

+ 1
mB

) kB
mB

dB
mB

0 0 0 1

0 dL
mB

− kB
mB

− dB
mB

 ,

Bc =

0

1
mL

+ 1
mB

0
− 1
mB

 .
For simplicity, we discretize the continuous-time model

using Eluer method, and have the discrete-time model denoted
by x(k + 1) = Adx(k) +Bd(k).

TABLE I
SYSTEM PARAMETERS

variable value variable value variable value
mL 10 mB 20 dL 15
dB 0.5 a1 0.03 b1 0.7
b 2 c 1.6 d 1.6
B 0.05 C 10−3 D 164.99
α 10 Kl 1 kB 0.1
a 0.7 A 0.0333 E 123.74

Fig. 8. Diagram of load-positioning system [56]

1) Controller Design: We would like to stabilize the load
positioning system to the origin while minimizing the cost
function (8) with Q = I4 and R = 1. For simplicity, we
consider the unconstrained control case. The controller design
is to determine the local control policy and the matrix S.
Solving the DARE (9), we have

S =

102.52 189.35 33.07 447.29
189.35 5611.85 277.79 16591.79
33.07 277.79 172.05 859.10
447.29 16591.79 859.10 49233.75

 .
According to Proposition 4.10, we have the local control
policy ul(k) = −(BTd SBd +R)−1BTd SAdx(k).

2) Simulation Results: Simulation results are given in
Fig. 9, where the simulation time of each round is 600s, and
the sampling frequency is 6Hz. Fig. 9 (a) shows the costs when
the unreliable network is subject to 80% random packet loss.
The Local case gives the lowest cost in both ideal and lossy
networks. The cost of the Smart case is a little higher than the
Local I case, but lower than the Edge case. This is because the
local control ul(k) is the optimal solution of the LQR problem,
while the edge MPC, although yielding the exact LQR solution
in a receding horizon manner, is compromised by network.
Fig. 9 (b) indicates that, when the edge-end network loses
connection from 25 s to 125 s, both the Smart and Local
cases still work properly. However, the performance of the
Edge case deteriorates drastically because the limited buffer
size fails to mitigate network failure lasting for 100s.

B. Example 2: First Order Nonlinear System

Consider a general first order nonlinear plant case.

ẋ = a1x
2 + b1u,

where model parameters are provided in Table I.
1) Controller Design: We would like to regulate the state

to the origin while minimizing the cost (4), where l(x, u) =
xTQx+uTRu, the terminal cost F (x) = S(x). The local con-
trol law is ul = 1

b1
(−x−a1x

2). To design terminal cost S(x)

10

MPC_ILocal_I Smart Local Edge
15

16

17

18

19

20

C
os
t

(a) 80% packet loss

MPC_ILocal_I Smart Local Edge

50

100

150

200

C
os
t

(b) 80% packet loss, and the edge-
end network loses connection from
25s to 125s

Fig. 9. Costs of the linear system case

for the edge MPC policy, we take Q = 1, R = 1, α = 1.2, and
choose S(x) = xTWx, with W being a positive definite ma-
trix. Based on the policy evaluation-based co-design method
given in Sec. IV-B3, we obtain S(x) = 10.16x2. As long as
S
(
x(k+ 1)

)
−S

(
x(k)

)
≤ xT (k)Qx(k) +uTl (k)Rul(k) holds

for the entire feasible sets of state and control inputs, (5) is
satisfied. The results of policy evaluation are given by Fig. 10,
where the curve of S

(
x(k + 1)

)
− S

(
x(k)

)
is always below

that of xT (k)Qx(k) + uTl (k)Rul(k) in the feasible set of x.

-2 0 2 4 6 8

x

-300

-200

-100

0

V
a
lu

e

Fig. 10. Policy evaluation results for the first order nonlinear system

2) Simulation Results: Fig. 11 presents the costs of five dif-
ferent cases for the first order nonlinear system. The simulation
time of each round is 60 s, and the sampling frequency is 3Hz.
MPC I outperforms Local I since the former takes optimality
into account by solving a finite-time optimal control problem
versus the latter merely solves the stabilizing problem. When
there is 20% packet loss, the Smart case outperforms the Local
and Edge cases in the sense that the cost distribution of the
Smart has a lower mean value than the Local case, and has a

MPC_I Local_I Smart Local Edge
0

50

100

150

200

C
o

s
t

(a) Costs when 20% packet loss

MPC_I Local_I Smart Local Edge0

10

20

30

40

C
o

s
t

(b) Costs when 20% packet loss
(zoom in)

Fig. 11. Costs of the first order nonlinear system under 20% of packet loss

smaller variance than the Edge case.

C. Example 3: Second Order Nonlinear System

Consider the following second order nonlinear plant

ẋ1 = ax2
1 − bx3

1 + cx2

ẋ2 = u,

where system parameters are provided in Table I.
1) Controllers Design: Again, we would like to regulate

the state to the origin while minimizing the cost, which has
same format with the cost function in Sec. VI-B and Q =
3I2, R = 1. The local control law is given by:

z = x2 +
a

c
x2

1 +
d

c
x1

ul = −z − x1 − (
2a

c
x1 +

d

c
)(−bx3

1 − dx1 + z).

Following the policy evaluation-based design method in
Sec. IV-B3, we choose α = 3, and get S(x) = 17.39x2

1 +
23.16x2

2. Fig. 12 presents the results of policy evaluation.
One can verify that in the feasible set of x, S

(
x(k + 1)

)
−

S
(
x(k)

)
≤ xT (k)Qx(k)+uTl (k)Rul(k). Then (5) is satisfied.

10.3

x2

0 -10

x1

-0.3

V
a
lu

e
0

-100

-200

-300

-400

-500

Fig. 12. Policy evaluation for the second order nonlinear system

2) Simulation Results: Fig. 13 (a) and (b) show the costs
of five different cases, under 0%, 30%, and 70% of packet
loss. Simulation time of each round is 100s, and the sam-
pling frequency is 10Hz. Again, with the ideal network (0%
scenario), the cost of MPC I is smaller than that of Local I.
With 30% packet loss (Fig. 13 (a)), the Local case has a higher
cost than both the Smart and the Edge cases. Particularly,
the Smart case outperforms the Edge case in the sense that
both the mean value and variance of the cost distribution for
the former are smaller. When the network suffers from more

MPC_I Local_I Smart Local Edge

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
o

s
t

(a) 30% packet loss

MPC_I Local_I Smart Local Edge
0

0.5

1

1.5

2

2.5

C
o

s
t

(b) 70% packet loss

Fig. 13. Costs of 2-state nonlinear system

11

severe packet loss (Fig. 13 (b)), both the Smart and Local
cases yield lower costs than the Edge case because (1) the
linearized MPC prediction is not accurate away from k; (2)
the buffer size is not enough under severe packet loss.

Fig. 14 presents the costs of five cases under catastrophic
wireless interferences (the edge-end network connection is
disrupted from 5s to 50s). Similar to Fig. 9 (b) and Fig. 13
(b), the Edge case cannot handle a long period of packet drops
since the buffer size is not large enough, while the Smart case
mainly relies on the local controller.

MPC_I Local_I Smart Local Edge
0

5

10

15

20

25

C
o

s
t

Fig. 14. 30% packet loss, and network connection is lost from 5s to 50s

D. Case Study of Reinforcement Learning as Edge Controller

We present a case study of Sec. V-A. Consider a double
water-tank system, as shown in Fig. 15, containing one pump,
two water tanks, and one basin. The system dynamics are

L̇1 = A(αu−D
√
L1)

L̇2 = B(D
√
L1 − θE

√
L2)

L̇R = C(θE
√
L2 − αu)

(14)

where control variable u represents the flow through the pump,
and system parameters are given in Table I. The parameter of
water tank may change over time, and specifically: θ = 0.95
from 60 s to 180 s, and θ = 1.05 from 180 s to 300 s. The
control goal is to regulate L2 at L2ref = 15 m.

Tank 1

Tank 2

Basin

Pump

L1

L2

LR

u

Fig. 15. Diagram of double water-tank system

1) Backstepping Parameter (θ) Estimator Design: Let x =
L2 − L2ref , ũ = BD

√
L1, φ(x) = −BE

√
x+ L2ref .

Therefore, we have:

ẋ = θφ(x) + ũ. (15)

To achieve regulation of x(t), we employ adaptation. If θ was
known, the control ũ = −θφ(x) − c1x, c1 > 0 would render
the derivative of V0(x) = 1

2x
2 negative definite: V̇0 = −c1x2.

However, the control law ũ cannot be applied since θ is
unknown. Instead, θ can be replaced by its estimate θe,

ũ = −θeφ(x)− c1x. (16)

Substituting (16) into (15), we obtain

ẋ = −c1x+ θ̃φ(x). (17)

where θ̃ is the parameter estimation error: θ̃ = θ − θe. The
derivative of V0(x) = 1

2x
2 becomes

V̇0 = −c1x2 + θ̃xφ(x).

Since the second term is indefinite and contains the unknown
parameter error θ̃, we cannot prove the stability. We make the
controller dynamic with an update law for θe, by augmenting
V0 with a quadratic term in the parameter error θ̃, i.e.,

V1(x, θ̃) =
1

2
x2 +

1

2γ
θ̃2,

where γ > 0 is the adaptation gain. The time derivative is

V̇1 = xẋ+
1

γ
θ̃

˙̃
θ = −c1x2 + θ̃

(
xφ(x) +

1

γ
˙̃
θ
)
.

The second term is still indefinite but can be canceled by an
appropriate choice of θ̇e, specifically,

θ̇e =− ˙̃
θ = γxφ(x) (18)

=− γBE
√
L2(L2 − L2ref). (19)

which yields V̇1 = −c1x2 ≤ 0.
As shown in Fig. 16, in an ideal network, the parameter

estimation law (19) (γ = 0.0004) performs well in estimating
the unknown variable θ in (14).

0 50 100 150 200 250 300
t/s

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 E
st

im
at

io
n

Fig. 16. Backstepping parameter (θ) estimation under ideal network

2) Reinforcement Learning Control Design: The stage cost
is l

(
x, u

)
= xTQx + uTRu, where Q = 0.5I3 and

R = 1. PI is done every 10 s online with 10 iterations.
The basis vector stored in both local and edge controllers
is Φ(x) = [x2

1 x2
2 x1x2 x4

1 x4
2 x2

1x
2
2]. The control cost

V =
∫∞

0
{xT (t)Qx(t) + uT (t)Ru(t)}dt decreases as the

number of iterations increases and converges at around the
sixth iteration, as shown in Fig. 17. Accordingly, W converges
at [11.02 48.85 12.72 0.01 − 0.01 0]T from 0 s to 60 s,
[10.90 47.95 13.50 0.01 − 0.01 0]T from 60 s to 180 s,
[11.08 49.27 11.98 0.01 − 0.01 0]T from 180 s to 300 s.

12

3) Simulation Results: As shown in Fig. 18 (b), in an ideal
network, with edge controller performing online adaptation via
PI, L2 could remain at 15 m most of the time. However, if
there is only a local controller that does not support adaptation,
L2 cannot remain at the set point, as shown in Fig. 18 (a).

2 4 6 8 10
3.5

3.6

3.7

3.8

3.9

Number of iterations

L
o
g

1
0
(V

)

Fig. 17. Convergence of control cost as policy iteration increases

Boxplots are used to present the statistical results of control
costs using different control strategies under an ideal network
and lossy network. The simulation time of each round is 300
s, frequency is 4 Hz. Five groups of experiments are included
in each boxplot figure, in the order from left to right:

1) PI I is the control cost of hybrid system with edge
controller and local controller in ideal network. Since
there is no packet loss, only PI is active.

2) Local I concludes system with local controller only in
ideal network.

3) Smart concludes our smart actuation framework (hybrid
system) in an unreliable network. The hybrid system
adopts the switching policy given by (1).

4) Local is the control cost of the system with only local
controller over an unreliable network. We assume that

0 50 100 150 200 250 300
t/s

6

8

10

12

14

16

18

L/
m

L1
L2
LR
L2*

(a) Local controller only

0 50 100 150 200 250 300
t/s

6

8

10

12

14

16

18

L/
m

L1
L2
LR
L2*

(b) Smart actuation

Fig. 18. Separate local and edge controllers under ideal network

PI_I Local_I Smart Local Edge

5

10

15

20

C
os

t

Fig. 19. Costs of double-tank system when there is 80% packet loss,E =
0.95 ∗ E0 from 60 s to 180 s, E = 1.05 ∗ E0 from 180 s to 300 s

there is a signal flow from sensors to the local controller,
represented by the dashed line in Fig. 7.

5) Edge is the control cost of the system with only edge
PI controller over an unreliable network. Therefore, the
last control input is adopted by the actuator when the
actuation packet is lost.

Fig. 19 shows the statistical results with model parameter
changes, where on-line PI as edge controller is essential. Smart
actuation works better than edge controller when there is
packet loss since the last control input is adopted by the actu-
ator when the actuation packet is lost in edge controller only
system. Local controller has the worst control performance
since it does not have enough computational resources to do
online policy iteration by itself.

E. Semi-physical Simulation

It is extremely challenging to conduct real experiments
in the industrial field, especially under cyber and physical
disturbances. We built a semi-physical simulation platform,
which integrates (1) real edge/local controllers running on
various computation platforms; (2) real Wi-Fi network and
Ethernet cable; and (3) MATLAB/Simulink Desktop Real-time
(SLDRT), which simulates physical plants.

1) System Design and Implementation: The architecture of
the semi-physical simulator is illustrated in Fig. 20. The sys-
tem comprises three computers and two local area networks,
Wi-Fi and Ethernet cable. The physical plants, sensors, and
actuators are simulated in MATLAB/Simulink Desktop Real-
time (SLDRT) running on a computer called the Simulink
Server. The edge and local controller/smart actuator are imple-
mented in Python on a MacBook and a Raspberry Pi, respec-
tively. Socket interfaces are utilized to coordinate the wired
and wireless communication among machines. The settings of
the computation platforms and communication approaches that
we use are described in Fig. 20.

The Simulink server operates the second-order nonlinear
plant model described Sec. VI-C in SLDRT, which generates
full state measurements x and then forwards them to the
edge controller over real Wi-Fi network via Socket. The edge
controller receives x and operates EKF and MPC, which
generate state estimation x̂ and control command ue and then
forwards them to Local controller over real Wi-Fi network via
Socket. The local controller receives x̂ and ue and operates
one of the three local control policies. We have implemented
three local control policies for comparison: (1) smart actuation,
which generates u; (2) local control only, which operates the
control law in Sec. VI-C1, and generates ul based on x̂ without
considering ue; (3) pass control command from edge ue
directly. Then, the local control commands are transferred to
Simulink server over back-to-back Ethernet cable via Socket.
We implement the estimation and control policies in Python
such that the policies can run on any platforms that support
Python.

2) Experimental Results: For the rest of the experiments,
the sampling rates are 5 Hz, 8 Hz, and 10 Hz, in order to
explore the effects of sampling rates on smart actuation frame-
work. The duration of each round of semi-physical simulation

13

Simulink Server
6 Intel Core i7@2.5Ghz, RAM 16GB
Windows 10 OS
IP: 172.20.10.4, 169.254.77.28

MATLAB/Simulink Desktop Real-Time

Local Controller (Raspberry Pi)
4 ARM Core v7@1.8Ghz, RAM 8GB
Raspbian GNU/Linux 11 OS
IP: 172.20.10.9, 169.254.198.97

Edge Controller (MacBook-Air)
8 Apple M1 Core @3.2Ghz, RAM 16GB
Mac OS Version 11.5.2
IP: 172.20.10.5

170.20.10.4 Wi-Fi
Port:8000

170.20.10.5 Wi-Fi
Port:8000

Socket
Sensing Data: x

170.20.10.5 Wi-Fi
Port:10000

170.20.10.9 Wi-Fi
Port:10000

Filtered Sensing Data: 𝒙"
MPC Control Command: ue

169.254.198.97 Cable
Port:12000

SocketSocket

169.254.77.28 Cable
Port:12000

①Smart Command u
②Local Command ul
③Edge Command ue

Python
3.9.2

Python
2.7.16

Fig. 20. Architecture for semi-physical simulations

Smart Local Edge
0

0.5

1

1.5

C
os

t

(a) 5 Hz

Smart Local Edge
0

0.5

1

1.5

C
os

t

(b) 8 Hz

Smart Local Edge
0

0.5

1

1.5

C
os

t

(c) 10 Hz

Fig. 21. Costs of 2-state nonlinear system in semi-physical simulation under
different sampling rates when there is 40% packet loss

is 30 s. In order to emulate packet losses in a controlled
fashion, we intentionally drop packets on the receiver side
following similar approaches employed in previous wireless
control experiments [45], [58]. In Fig. 21, each sub-figure
presents the costs of 3 different cases, Smart, Local, and Edge,
for the second order nonlinear system. The simulation of each
case is 20 rounds. When there is 40% packet loss, the Smart
case outperforms the Local and Edge cases in the sense that
the cost distribution of the Smart has a lower mean value and
smaller variance than the Local and Edge cases. Comparing the
performance of various sampling rates, at all three sampling
rates, the control costs are decreased as the sampling rates
increases at the costs of communication and computation.
Smart performs well even at 5 Hz, at which Local and Edge
cannot provide operable control performance.

VII. CONCLUSIONS AND FUTURE WORK

We proposed smart actuation strategies for end-edge indus-
trial automation. The smart actuation architecture combines
features of direct and hierarchical architectures: an edge con-
troller accounts for optimality, uncertainties, and constraints
by executing computationally expensive operations; a smart
actuator executes a local control policy and accounts for
system safety in view of network imperfections. It can benefit
from fast and reliable communication on the end side, and
powerful computation capacity on the edge side. We have
proposed the end-edge co-design strategies and cooperation
logic for both performance and stability. Stability for linear
and nonlinear plant cases can be guaranteed by co-design
procedures when the edge controller employs MPC and PI-
based learning. Adaptability to parameter mismatches can be
provided when the edge controller employs reinforcement
learning. Simulation results show that the smart actuation
strategies work well in both reliable and unreliable networks.
Many interesting issues remain open, for instance, if the smart
actuation can outperform other architectures when communi-
cation and computation latencies are considered, what if the
plant models are partially known, and how to extend these
results to large-scale end-edge industrial automation systems
including multiple control loops with various sampling rates.

APPENDIX

Model-based Policy Iteration for systems in discrete-time
is included below for completeness. Interested readers are
referred to [52] for more details. The notion of goal-directed
optimal behavior is captured by defining the cost function

V
(
x(k)

)
=

∞∑
i=k

γi−kl
(
x(i), h

(
x(i)

))
, (20)

with 0 < γ ≤ 1 a discount factor, and l
(
x(i), h

(
x(i)

))
the stage cost, which measures the one-step cost of control.
PI for system (3) begins with an initialization step, where a
stabilizing control policy h0

(
x(k)

)
is designed; then repeats

the following two steps until convergence, for 0 ≤ j <∞,

14

1) Policy evaluation: solving for Vj+1(x) satisfying

Vj+1

(
x(k)

)
= l
(
x(k), hj

(
x(k)

))
+ γVj+1

(
x(k + 1)

)
;

(21)
2) Policy improvement: updating control policy as follows

hj+1

(
x(k)

)
= arg min

h(.)

(
l
(
x(k), hj(x(k))

)
+γVj+1

(
x(k + 1)

))
.

(22)

Policy evaluation (21) involves solving an infinite dimen-
sion problem. A common treatment resorts to approximating
the value function and control policy [57], i.e., V (x) =
WTΦ(x), u(x) = ΓTΨ(x), where W and Γ are the coefficient
vectors, and Φ(x) = [φ1(x) φ2(x) ...φN (x)]T ,Ψ(x) =
[ψ1(x) ψ2(x) ...ψq(x)]T are the basis vectors. The policy
evaluation formula is given by

WT
(

Φ
(
x(k)

)
− Φ

(
x(k + 1)

))
= l
(
x(k), h

(
x(k)

))
. (23)

If l(x, u) = xTQx + uTRu with Q and R being positive
definite, the policy improvement has a closed-form solution:

h
(
x(k)

)
= −1

2
R−1gT

(
x(k)

)∂ΦT
(
x(k + 1)

)
∂x

W. (24)

REFERENCES

[1] X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A review
of industrial wireless networks in the context of industry 4.0,” Wireless
Networks, vol. 23, no. 1, pp. 23–41, 2017.

[2] A. Ahlén, J. Akerberg, M. Eriksson, A. J. Isaksson, T. Iwaki, K. H.
Johansson, S. Knorn, T. Lindh, and H. Sandberg, “Toward wireless
control in industrial process automation: A case study at a paper mill,”
IEEE Control Systems Magazine, vol. 39, no. 5, pp. 36–57, 2019.

[3] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu, “Wireless
routing and control: a cyber-physical case study,” in Proceedings of the
7th International Conference on Cyber-Physical Systems. IEEE Press,
2016, p. 32.

[4] ISA100-WIRELESS, “ISA100: Wireless Systems for Automation,” http:
//www.isa100wci.org, 2022.

[5] HART Communication Foundation, “WirelessHART Specification,”
https://www.fieldcommgroup.org/technologies/wirelesshart, 2022.

[6] H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, “Rwin: New methodology
for the development of reconfigurable wsn,” IEEE Transactions on
Automation Science and Engineering, vol. 14, no. 1, pp. 109–125, 2016.

[7] F. Zhu, C. Zhang, Z. Zheng, and A. Farouk, “Practical network coding
technologies and softwarization in wireless networks,” IEEE Internet of
Things Journal, vol. 8, no. 7, pp. 5211–5218, 2021.

[8] D. Gunatilaka and C. Lu, “React: an agile control plane for industrial
wireless sensor-actuator networks,” in 2020 IEEE/ACM Fifth Interna-
tional Conference on Internet-of-Things Design and Implementation
(IoTDI). IEEE, 2020, pp. 53–65.

[9] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Empirical study and
enhancements of industrial wireless sensor-actuator network protocols,”
IEEE Internet of Things Journal, vol. 4, no. 3, pp. 696–704, June, 2017.

[10] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[11] D. Zhang, Z. Zhou, and X. Jia, “Network-based pi control for output
tracking of continuous-time systems with time-varying sampling and
network-induced delays,” Journal of the Franklin Institute, vol. 355,
no. 12, pp. 4794–4808, 2018.

[12] T. H. Truong, P. Seiler, and L. E. Linderman, “Analysis of networked
structural control with packet loss,” IEEE Transactions on Control
Systems Technology, vol. 30, no. 1, pp. 344–351, 2021.

[13] Y. Yuan, H. Yuan, D. W. Ho, and L. Guo, “Resilient control of wireless
networked control system under denial-of-service attacks: A cross-layer
design approach,” IEEE Transactions on Cybernetics, vol. 50, no. 1, pp.
48–60, 2018.

[14] K. Halder, S. Das, D. K. Panda, S. Das, and A. Gupta, “QoS aware
joint observer and networked PI/PID controller design using LMIs
under specified rate of packet dropouts,” Applied Mathematics and
Computation, vol. 401, p. 126125, 2021.

[15] D. Kim, Y. Won, S. Kim, Y. Eun, K.-J. Park, and K. H. Johansson,
“Sampling rate optimization for ieee 802.11 wireless control systems,” in
Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems, 2019, pp. 87–96.

[16] L. Zhou and P. Tokekar, “Active target tracking with self-triggered com-
munications in multi-robot teams,” IEEE Transactions on Automation
Science and Engineering, vol. 16, no. 3, pp. 1085–1096, 2018.

[17] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Random access design for
wireless control systems,” Automatica, vol. 91, pp. 1–9, 2018.

[18] Y. Ma, J. Guo, Y. Wang, A. Chakrabarty, H. Ahn, P. Orlik, X. Guan,
and C. Lu, “Optimal dynamic transmission scheduling for wireless
networked control systems,” IEEE Transactions on Control Systems
Technology, 2022.

[19] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power management
in wireless control systems,” IEEE Transactions on Automatic Control,
vol. 59, no. 6, pp. 1495–1510, 2014.

[20] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013–1024, 2016.

[21] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless
network design for control systems: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 978–1013, 2017.

[22] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Engineering Practice, vol. 11, no. 10, pp.
1099–1111, 2003.

[23] S. Di Cairano, U. V. Kalabić, and I. V. Kolmanovsky, “Reference
governor for network control systems subject to variable time-delay,”
Automatica, vol. 62, pp. 77–86, 2015.

[24] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[25] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl,
and M. Philipose, “Videoedge: Processing camera streams using hier-
archical clusters,” in 2018 IEEE/ACM Symposium on Edge Computing
(SEC), 2018, pp. 115–131.

[26] M. Cui, S. Zhong, B. Li, X. Chen, and K. Huang, “Offloading au-
tonomous driving services via edge computing,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 10 535–10 547, 2020.

[27] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey
on computation offloading modeling for edge computing,” Journal of
Network and Computer Applications, vol. 169, p. 102781, 2020.

[28] N. Vreman and M. Maggio, “Multilayer distributed control over 5g net-
works: Challenges and security threats,” in Proceedings of the Workshop
on Fog Computing and the IoT, 2019, pp. 31–35.

[29] P. Skarin, W. Tärneberg, K.-E. Årzen, and M. Kihl, “Towards mission-
critical control at the edge and over 5g,” in EDGE. IEEE, 2018, pp.
50–57.

[30] P. Skarin, J. Eker, M. Kihl, and K.-E. Årzén, “Cloud-assisted model
predictive control,” in EDGE. IEEE, 2019, pp. 110–112.

[31] Y. Ma, C. Lu, B. Sinopoli, and S. Zeng, “Exploring edge computing
for multitier industrial control,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3506–
3518, 2020.

[32] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[33] C. Ju and H. I. Son, “A hybrid systems-based hierarchical control
architecture for heterogeneous field robot teams,” IEEE Transactions
on Cybernetics, 2021.

[34] B. Fateh, M. Govindarasu, and V. Ajjarapu, “Wireless network design
for transmission line monitoring in smart grid,” IEEE Transactions on
Smart Grid, vol. 4, no. 2, pp. 1076–1086, 2013.

[35] C. L. Robinson and P. Kumar, “Optimizing controller location in
networked control systems with packet drops,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 4, 2008.

[36] M. A. Saez, F. P. Maturana, K. Barton, and D. M. Tilbury, “Context-
sensitive modeling and analysis of cyber-physical manufacturing systems
for anomaly detection and diagnosis,” IEEE Transactions on Automation
Science and Engineering, vol. 17, no. 1, pp. 29–40, 2019.

[37] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan, and N. Meskin,
“Cybersecurity for industrial control systems: A survey,” Computers &
Security, vol. 89, p. 101677, 2020.

15

[38] L. Hu, Z. Wang, Q.-L. Han, and X. Liu, “State estimation under
false data injection attacks: Security analysis and system protection,”
Automatica, vol. 87, pp. 176–183, 2018.

[39] R. Candell, T. Zimmerman, K. Stouffer et al., “An industrial control sys-
tem cybersecurity performance testbed,” National Institute of Standards
and Technology. NISTIR, vol. 8089, 2015.

[40] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
systems: a survey of recent results,” IEEE Transactions on Automatic
Control, vol. 54, no. 2, pp. 308–322, 2009.

[41] M. Lješnjanin, D. E. Quevedo, and D. Nešić, “Packetized MPC with
dynamic scheduling constraints and bounded packet dropouts,” Auto-
matica, vol. 50, no. 3, pp. 784–797, 2014.

[42] X. Liu and A. Goldsmith, “Kalman filtering with partial observation
losses,” in 2004 43rd IEEE Conference on Decision and Control (CDC),
vol. 4. IEEE, 2004, pp. 4180–4186.

[43] Y. Shi and H. Fang, “Kalman filter-based identification for systems with
randomly missing measurements in a network environment,” Interna-
tional Journal of Control, vol. 83, no. 3, pp. 538–551, 2010.

[44] V. Stehel, C. Bradley, P. Suler, and S. Bilan, “Cyber-physical system-
based real-time monitoring, industrial big data analytics, and smart
factory performance in sustainable manufacturing internet of things,”
Economics, Management, and Financial Markets, vol. 16, no. 1, pp.
42–51, 2021.

[45] F. Mager, D. Baumann, R. Jacob, L. Thiele, S. Trimpe, and M. Zim-
merling, “Feedback control goes wireless: Guaranteed stability over
low-power multi-hop networks,” in Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, 2019, pp. 97–108.

[46] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems, vol. 21, no. 1, pp. 84–99, 2001.

[47] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ:
Prentice-Hall, 2002.

[48] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[49] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005.

[50] H. Fukushima, T.-H. Kim, and T. Sugie, “Adaptive model predictive
control for a class of constrained linear systems based on the comparison
model,” Automatica, vol. 43, no. 2, pp. 301–308, 2007.

[51] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal
and autonomous control using reinforcement learning: A survey,” IEEE
Transactions on Neural Networks and Learning systems, vol. 29, no. 6,
pp. 2042–2062, 2017.

[52] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems
Magazine, vol. 9, no. 3, pp. 40–58, 2009.

[53] Y. Wang, Y. Zhao, S. A. Bortoff, and K. Ueda, “A real-time energy-
optimal trajectory generation method for a servomotor system,” vol. 62,
no. 2, pp. 1175–1188, Feb. 2015.

[54] Y. Wang, H. Fang, L. Zhou, and T. Wada, “Revisiting the state-of-
charge estimation for lithium-ion batteries: A methodical investigation of
the extended kalman filter approach,” IEEE Control Systems Magazine,
vol. 37, no. 4, pp. 73–96, 2017.

[55] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adaptive
Control Design. New York, NY: John Wiley and Sons, 1995.

[56] V. Shilpiekandula, S. A. Bortoff, J. C. Barnwell, and K. El Rifai, “Load
positioning in the presence of base vibrations,” in American Control
Conference, 2012, pp. 6282–6287.

[57] Y. Jiang, Y. Wang, S. A. Bortoff, and Z.-P. Jiang, “Optimal codesign of
nonlinear control systems based on a modified policy iteration method,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 2, pp. 409–414, 2015.

[58] D. Baumann, F. Mager, R. Jacob, L. Thiele, M. Zimmerling, and
S. Trimpe, “Fast feedback control over multi-hop wireless networks with
mode changes and stability guarantees,” ACM Transactions on Cyber-
Physical Systems, vol. 4, no. 2, pp. 1–32, 2019.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-138.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

