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Abstract

In this paper, we develop topological data analysis (TDA) method for motor current signature
analysis (MCSA), and apply it to induction motor eccentricity fault detection. We introduce
TDA and present the procedure of extracting topological features from time-domain data that
will be represented using persistence diagrams and vectorized Betti sequences. The procedure
is applied to induction machine phase current signal analysis, and shown to be highly effective
in differentiating signals from different eccentricity levels. With TDA, we are able to use a
simple regression model that can predict the fault levels with reasonable accuracy, even for
the data of eccentricity levels that are not seen in the training data. The proposed method
is model-free, and only requires a small segment of time-domain data to make prediction.
These advantages make it attractive for a wide range of fault detection applications.
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Abstract—In this paper, we develop topological data analysis
(TDA) method for motor current signature analysis (MCSA),
and apply it to induction motor eccentricity fault detection. We
introduce TDA and present the procedure of extracting topo-
logical features from time-domain data that will be represented
using persistence diagrams and vectorized Betti sequences. The
procedure is applied to induction machine phase current signal
analysis, and shown to be highly effective in differentiating
signals from different eccentricity levels. With TDA, we are able
to use a simple regression model that can predict the fault levels
with reasonable accuracy, even for the data of eccentricity levels
that are not seen in the training data. The proposed method is
model-free, and only requires a small segment of time-domain
data to make prediction. These advantages make it attractive
for a wide range of fault detection applications.

Index Terms—Electric Machines; Fault Detection; Machine
Learning; Topological Data Analysis

I. INTRODUCTION

Electric motors are widely used in many aspects of
the modern society, such as factories, household appliances,
electric vehicles, etc. The condition monitoring and fault
detection of these machines are becoming more important
with the growth of internet of things. Among many differ-
ent faults that can happen in a motor, eccentricity is one
common type of fault that corresponds to the non-uniform
gap between the stator bore and the rotor. Eccentricity faults
can be categorized into three types: the static eccentricity,
the dynamic eccentricity, and the mixed eccentricity. Static
eccentricity occurs when the center of the rotor is deviated
from the central axis of the stator bore, while the rotation
center is still aligned with the center of the rotor. Dynamic
eccentricity occurs when the rotation center and the stator
bore central axis still align, but the rotor center is displaced.
Mixed eccentricity is a combination of both static eccentricity
and dynamic eccentricity [1].

There are many reasons that can cause motor eccentricity,
and the air gap eccentricity can in turn damage other parts
of the motor and cause breakdown of the machine if not
corrected in time. During the manufacturing stage, it is not
feasible to produce motors with zero air gap eccentricity.
Static eccentricity may exist due to the imperfect alignment
between stator core assembly and the rotation center, or the
deviation of the stator core from a perfect circle. Similarly, a
small dynamic eccentricity can also exist due to the imperfect
alignment between center of the rotor and the rotation axis, or
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imperfect shape of the rotor. Through the operating lifetime
of a motor, the eccentricity level can increase, for example,
due to bearing degradation, or the mechanical degradation
of the mount, causing physical shift of the stator assembly.
The air gap eccentricity induces unbalanced magnetic pull
(UMP), which works against rotor stiffness and may cause
stator winding faults and rubbing between rotor and stator
with increased eccentricity, eventually leads to machine fail-
ure. It is therefore important to check electric motors for
eccentricity both in the production stage for quality control,
and throughout operation for the safety and asset protection.

Extensive research efforts have been put into the detection
of eccentricity faults in the past decades [2]-[6], with vibra-
tion analysis and motor current signature analysis (MCSA)
being two leading methods. Recently, machine learning and
deep learning techniques have been applied to the fault
detection and classification of electric machines based on
measured vibration signals [7]. However, vibration signals
can often be influenced by noises from other sources, such
as the mechanical unbalance of the motor, the excitation from
external sources in complicated factory setting. In addition,
the sensitivity of vibration analysis also varies depending on
the specific sensor installation location on the motor casing.
It is therefore challenging to identify eccentricity faults based
solely on vibration signals.

MCSA has been proposed to address these problems,
which has the additional advantages of simple implemen-
tation and cost saving, as no dedicated sensors are re-
quired. A lot of work has been dedicated to the detailed
modeling of fault signatures for each type of eccentricity
using MCSA [8]-[11]. One challenge for eccentricity fault
detection using MCSA is that, a lot of the spatial harmonics
caused by eccentricity can be reflected in vibration signals,
but do not appear in the time harmonics and are thus absent
in the stator current. In addition, certain stator current fault
signatures can depend on specific motor design parameters
and are not universal for all motors. For instance, it has been
shown that under certain combinations of stator slot and rotor
bar numbers, some fault signatures due to static eccentricity
are more difficult to detect [9], [11]. For experimental data
analysis, unlike vibration signals, the current components
due to eccentricity faults are typically a few orders smaller
than the dominating fundamental component at supply fre-
quency. Commonly used machine learning techniques on



time-domain signals that have been working well for vi-
bration signals cannot effectively distinguish stator current
signals of machines under healthy and faulty conditions.
Detailed spectrum analysis of measured stator current signals
are typically required to extract frequency components due
to eccentricity faults.

Topological data analysis (TDA) is an active research area
in computational topology; practically it offers a numerical
procedure to extract the shape information from a data space,
such as connected components and holes [12]. Generally
topological features are invariant under small and continu-
ous deformations, coordinate-free, and therefore more robust
against noises. These advantages make TDA attractive in
dealing with many challenging data analysis tasks. In recent
years, largely enabled by the development of persistent ho-
mology [12]-[14], TDA has been applied to a broad range of
scientific problems, including image analysis [15], time-series
data analysis [16], sensor networks [17], chemistry [18], and
material science [19], etc.

While mainstream applications of TDA utilize the persis-
tent homology method to reveal major shapes in data spaces,
and either ignore smaller features or consider them as noises,
we use it in an opposite way, by filtering out the main
shape and focusing on the small features of the time-series
stator current in the persistent homology. We show that the
extracted topological features do contain the fault signatures:
there are robust and quantitative differences between data
from the same motor with different static eccentricity levels;
the mapping between the topological features and the eccen-
tricity levels can thus be used to predict the eccentricity fault.

The rest of the paper is organized as follows. In Section II,
we introduce persistence homology, Betti sequence, and the
TDA calculation process; in Section III we describe the ex-
periment setup for motor eccentricity study and stator current
data acquisition; in Section IV, we apply the TDA process
to the measured data from different eccentricity levels; in
Section V, we present data-driven approach for eccentricity
level prediction using the proposed TDA method, with two
application scenarios: one for eccentricity level inspection
and quality control during manufacturing stage, one for the
eccentricity level prediction during the operating lifetime of
an electric motor; in Section VI we conclude the paper.

II. TOPOLOGICAL FEATURE EXTRACTION METHOD

In this section, we introduce the TDA method with
persistent homology and the process of generating persistence
diagram and Betti sequence from a data space.

The homology of a data space describes the topological
features, such as connected components and holes, and persis-
tent homology is a powerful tool to compute those topological
features that persist across different scales. Here we give a
high-level description of the procedure to obtain the persistent
homology of a data space. More rigorous definitions and
detailed descriptions on persistent homology can be found
in several references [12]-[14].

First we represent the data space with a point cloud, which
is formed by data points sampled from the data space.

Second, we identify the simplicial complex of the point
cloud, which is a collection of fundamental topological fea-
tures, or simplices, such as points, edges, triangles, etc. While
there are different algorithms of constructing a simplicial
complex, Rips complex is commonly used. It is defined with
a threshold value, or filtration radius 7, and includes only
complices with pair-wise Euclidean distance between points
no larger than 7.

Third, the homology is determined using linear algebra
from the constructed simplicial complex. For example, Hy
homology counts the number of connected components, and
H, homology counts the number of holes.

Lastly, persistent homology is obtained through a filtration
process, by computing the homology with different threshold
value 7, and tracking the birth and death of the topological
features at corresponding r.

There are different ways of representing persistent ho-
mology, and persistence diagram is one of the most pop-
ular choices. A persistence diagram is a set of points
(b,d)|b,d € R? and d > b, where each point corresponds to
the birth and death of topological feature in a corresponding
family of simplicial complexes. In particular, each point
(b,d) denoted a topological features being “born” at radius
b and “dead” at radius d. There are different algorithms
for the filtration of Rips complexes and the computation
of persistence diagrams, with implementations available by
several software packages. In this work, we use python library
Ripser.py for the computation of persistence diagrams [20].

Since we would like to use the topological features as
inputs for regression or machine-learning algorithms, it is
more convenient to represent the features by vectors of same
length. Betti sequence, or Betti curve, which can be derived
from a persistence diagram, is an effective way to achieve
that [21], [22]. Assume D is a persistence diagram with a
finite number of off-diagonal points, with a = (b, d,) a
point in the diagram, and maximum filtration radius 7,4, >
0, let {r;}} be equally spaced points within [0,7,,,4.], the
Betti sequence of D is a vector of length M defined as 5 =
(B;)M, with the entries 3; count the number of points in the
persistence diagram at filtration radius r; around the point
clouds in the data space. If we define the function:

L, ba <71 <d,y
all’) = .
falr) {0, otherwise

Then the points on a Betti sequence is obtained from the
summation:

Bi=> falre).

a€eD
III. EXPERIMENT SETUP & DATA ACQUISITION

In this work, we use a 0.75 kW, three-phase, 2-pole-pair
squirrel-cage induction motor for experimental study. The
motor has 36 stator slots and 28 rotor bars, and a nominal air
gap size of 0.28 mm. The line-to-line voltage and frequency
are 200 V and 60 Hz, respectively. As shown in Fig. 1, a few
modifications are made to the motor to create different levels
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Figure 1. The experiment setup for the study of induction motor eccentricity.

of eccentricity fault. The original bearings of the motor are
removed, and the rotor is instead supported by two custom-
made mounting structures (only the mount on the load side
is visible in the photo) through the extended rotor shaft and
a pair of new bearings installed on the mounting structures.
The stator assembly of the motor is mounted on a linear stage
with its position adjustable in the horizontal direction by two
pairs of micrometers. Two pairs of displacement sensors are
also installed on the stator facing air gap at the load side
and opposite side respectively, to measure the actual air gap
size in horizontal and vertical directions when the motor is
operating. A power brake is connected to the test motor and
serves as load.

With the modified motor setup, different static eccentricity
levels in the horizontal direction can be created. In our
experiment, a total of 6 eccentricity levels were created when
the motor is stand still; data from three phase current sensors
and four air gap sensors were recorded for each eccentricity
level at 10 kHz sampling frequency under no-load condition.
The eccentricity levels were set at 1.5%, 17.2%, 24.1%,
40.5%, 47.1%, 64.6% respectively, with percentage defined
as the ratio of the maximum air gap deviation and the nominal
air gap size. From the air gap sensor readings, it was shown
that the actual static eccentricity of the air gap is very close
to the initial settings, with difference within 3% in all cases.
In additional, a small dynamic eccentricity level of around
6% exists for all cases according to air gap sensor readings.
This mixed eccentricity effect create a side band signal at
fe = fs £ fr, where fs is the supply frequency and f, is
the rotation frequency. From the time-domain current signals,
which are shown in Fig. 2, it is difficult to distinguish the
eccentricity levels directly as the fundamental component
dominates.

IV. TDA ON EXPERIMENT DATA

Now we apply the TDA process established in Section II
to the measured stator current signals. The point cloud of
the time-domain three-phase current data is naturally formed
by sampling the recorded data segment and placing them in
3D Euclidean space. The point clouds of three-phase current
data are shown in Fig. 3 for the six eccentricity levels cor-
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Figure 2. Three phase current signals from six different eccentricity levels.
All segments have the same length of 1024 data points.

responding the time-domain data segments shown in Fig. 2.
Since the dominating component of the signals is a periodic
wave of fundamental frequency, the most significant shape is
a large circle in 3D space. For ideal sinusoidal signals, the
formed point cloud shape would be a perfect circle; when
other components exist, the points would deviate from the
perfect circle. Since the fault components are much smaller
in amplitude, it is difficult to tell the different eccentricity
levels from the point cloud shapes alone.

Fig. 4 shows the computed H, and H; persistence
diagrams of the phase current data for the six different
eccentricity levels. The most noticeable differences between
these diagrams are the H; features, which correspond to
the small holes formed by neighboring points. For an ideal
sinusoidal wave, there is only one large hole can be formed
by its point cloud. When the eccentricity level is small, the
deviation from the ideal circle is small, and only a few small
features are formed in the H; diagram. When the eccentricity
level increases, the deviation of the points from the ideal
circle is larger, and these points are more likely to form
small circles during the filtration process of obtaining the
persistence diagram; therefore more and more features show
up in the H; diagrams with increasing eccentricity level.

While these diagrams are distinct from one another, the
number of points in a persistence diagram is not fixed for
different input data. So we convert them into Betti sequences
of the same lengths: for both Hy and H; sequences, the
length is fixed at 1024 whereas the filtration ranges are of [0,
0.07] and [0, 0.14] respectively. Fig. 5 show the computed
Betti sequences from the corresponding persistence diagrams.
From the H; Betti sequences, we can see that the number
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Figure 3. Point clouds of stator current data from six different eccentricity
levels corresponding to Fig. 2.

of features as a function of filtration distance changes with
eccentricity levels. In addition, while we cannot tell the
differences of H, features from the persistence diagrams,
we can see the trend in the H Betti curves. When the
filtration distance is 0, all 1024 data points are not connected,
therefore all the Betti curves start at 1024. Upon increasing
filtration distance, more and more neighboring points are
connected; therefore the number of H, features starts to
decrease, eventually all points are connected and there is only
one feature left. With higher eccentricity level, the amplitude
of fault components increases, and the data points are further
apart from one another due to their deviation from the large
circle (see Fig. 3); therefore the points are connected at a later
stage and these H features survive longer, and the area under
Hj Betti curve is monotonically increasing with eccentricity
level. We have applied the same analysis to the data generated
by circuit simulations and get similar Betti curves, based on
which we conclude that the changes in Betti curves are indeed
due to eccentricity.

Another important characteristic of persistent homology
is its robustness: similar data structure yield similar persistent
homology. In Fig. 6, we show that the Betti curves of five
different phase current data segments of the same eccentricity
level of 64.6%, and they are quite consistent. The similarity
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Figure 4. Computed persistence diagrams from phase current data corre-
sponding to the six eccentricity levels.
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Figure 5. Betti curves corresponding to the Hp (left) and H;p (right)
persistence diagrams for the six eccentricity levels.

of these Betti curves implies that the temporal fluctuations
between different samples of time-domain data are filtered
out by the proposed procedure, and one could stably extract
the fault signature with a relatively short segment of data.

V. TDA FOR ECCENTRICITY LEVEL PREDICTION

From above analysis, we can see that TDA is effective
in revealing small fault signatures embedded in a large
background signal, and separating signals from different fault
levels. In this section, we present the use of Betti curves
for the data-driven approach of eccentricity fault detection,
quantification, and prediction.
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Figure 6. Betti curves corresponding to the Hq (left) and H; (right) per-
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level.
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Figure 7. t-SNE plot in 2d for (a) time-domain phase current data, (b)
computed Betti sequences of different eccentricity levels.

The measured data of each eccentricity level is segmented
into a total of 1170 samples, each of length 1024 data points,
and we apply the established procedure to obtain Betti curves
for all these data samples. To visualize the differences of
the signals of different eccentricity levels, in Fig. 7 we show
the t-distributed stochastic neighbor embedding (t-SNE) plot,
which is a commonly used tool to represent the similarities
of high-dimensional data in low dimension, of both time-
domain phase current data and the computed Betti sequences.
With the raw time-domain inputs, data from all eccentricity
levels are mixed together, indicating these data segments are
similar: they are dominated by the large 60 Hz signal. For
both Hy and H; Betti sequences, however, the data samples
do cluster according to their respective eccentricity level. We
point out that the dominant 60 Hz signal only corresponds to
the feature value at very large filtration distance in H; Betti
sequences, due to the large hole in the point clouds shown
in Fig. 3, and has little impact on the profile of the Betti
curve. In this sense, the thresholded Betti curve serves as
a “nudge filter” that effectively removes the dominant time-
domain signal and by doing so it magnifies the behavior of
small signals where the fault signatures reside.

We discuss two application scenarios for motor eccentric-
ity fault detection: one in the manufacturing stage, the other
through the operation of the motor. In the manufacturing
stage, the goal is to inspect the manufactured motors and
identify the eccentricity level for quality control purpose.
Since many motors of the same model will be mass produced,
it makes sense to collect data covering a wide range of

eccentricity levels with a test motor, and develop a model
to make predictions for new data measured on other motors
of the same type. To mimic this scenario, we shuffle the data
for all eccentricity levels and split them into training and test
sets with a split ratio of 0.8/0.2. Machine learning models
are trained on the training dataset, and then applied to the
test dataset. While many different models can be developed,
we show the results from simple k-nearest neighbor (k-NN)
regression model to demonstrate the capability of TDA. For a
given new data, k-NN simply search for the nearest neighbors
from the training set, and predict the eccentricity level as the
average level of these neighbors. As shown in Fig. 8(a), with
time-domain phase current data, the model perform poorly
on new data, with root-mean-squared-error (RMSE) around
10% and mean-absolute-error (MAE) around 9.4%. On the
other hand, as shown in Fig. 8(b), with H, Betti sequence, the
RMSE is reduced to 1.6% and MAE is reduced to 0.7%. This
result shows that the effectiveness of using Betti sequences
for interpolation purpose.
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Figure 8. Prediction of eccentricity level on new data using k-NN model
with training data from all six eccentricity levels for (a) phase A current
data, and (b) Hp Betti sequences.
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Figure 9. Prediction of eccentricity level on new data with higher eccen-
tricity levels using regression model with training data from four smaller
eccentricity levels for (a) phase A current data, and (b) Ho Betti sequences.

During the operating lifetime of a motor, we would not
have the data for all possible eccentricity levels. Instead, we
expect to have measurement data collected during inspec-
tions, when eccentricity level is still low. A model can be built
based on these earlier measurements, and used to predict the
eccentricity level according to later measurements where the
fault is expected to become more severe over time. For this



task, we assign the experiment data from the four smaller
eccentricity levels as training set, and the last two levels
as test dataset to check the prediction capability of trained
models. Fig. 9(a) and 9(b) show the best prediction result
using regression model trained on time-domain current data
and Betti sequences respectively. For time-domain data, we
extract the RMS value of the phase current and fit a quadratic
regression model on training data, and then use it for predic-
tion on new data. The high RMSE and MAE (both close to
30%) indicates the failure of effective prediction. For Betti
sequences, we extract the mean values for both Hy and Hy
sequences, and use them to fit a quadratic regression model,
which shows a much improved prediction accuracy, with
RMSE and MAE reduced to 8.6% and 7.1% respectively.
We have also tested other machine learning models such as
supporting vector regression (SVR) models, Gaussian process
regression (GPR) models, artificial neural networks (ANNs),
and convolutional neural networks (CNNS). However these
more involved models tend to overfit on training data and
perform worse for extrapolation on new data.

Compared with MCSA, which requires involved domain
knowledge and physical model to identify fault signatures,
no physical model for the fault is required in the proposed
process. We do need labeled data. However, with TDA-
processed inputs, data cluster properly according to the fault
level, suggesting the possibility of unsupervised learning for
fault classification. In addition, the good prediction results
can be achieved with only a short segment of time-domain
data. In all the tests, the length of time-domain data is 1024
points, or about 0.1s. In comparison, traditional spectrum
analysis methods with MCSA often require several seconds
or longer data in order to stably identify the fault components,
on top of the domain knowledge required to identify the
fault signatures. These advantages make the proposed TDA
method promising to be applied to a broad range of fault
detection tasks.

VI. CONCLUSIONS

In this paper, we apply the topological data analysis
to the motor eccentricity fault. The procedure of extracting
topological features of time-domain phase current data and
converting them into vectorized Betti sequence is introduced
and is applied to the analysis of data from different ec-
centricity levels. We show that this model-free method is
very effective in differentiating data that look similar in
the time domain, and is applicable to the data-driven motor
fault detection and quantification with both interpolation and
extrapolation capabilities.
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