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Abstract

A digital twin is a set of computer models that serve as a real-time digital counterpart of a
physical object or process. The term was coined in the early 2000s in the context of Product
Lifecycle Management (PLM)(1) to describe a set of computer representations of a product as
it evolves through its lifecycle, from design to manufacture, then to operation, and finally to
disposal. The digital twin was envisioned as an electronic repository of all aspects of design,
such as 3-D CAD drawings and engineering models, in addition to operational descriptions
such as bills of process. It is maintained throughout the product lifecycle via a real-time data
stream of measurements obtained from the physical object. It is used to monitor and predict
the behavior of the product in operation in its physical environment for diagnostic purposes,
or in interrogative use cases in which past or future scenarios are analyzed to improve product
design or operation.
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1. Introduction

A digital twin is a set of computer models
that serve as a real-time digital counterpart of
a physical object or process. The term was
coined in the early 2000s in the context of
Product Lifecycle Management (PLM)® to
describe a set of computer representations of a
product as it evolves through its lifecycle, from
design to manufacture, then to operation, and
finally to disposal. The digital twin was
envisioned as an electronic repository of all
aspects of design, such as 3-D CAD drawings
and engineering models, in addition to

operational descriptions such as bills of process.

It is maintained throughout the product
lifecycle via a real-time data stream of
measurements obtained from the physical
object. It is used to monitor and predict the
behavior of the product in operation in its
physical environment for diagnostic purposes,
or in interrogative use cases in which past or
future scenarios are analyzed to improve
product design or operation.

Here we consider digital twins of building
Heating, Ventilation, and Air Conditioning
(HVAC) systems, and define the digital twin
narrowly to be a physics-based simulation
model that is combined with measurements
and used in real-time operation. It may provide
a range of benefits, such as the following:

e Virtual Sensing: Heat flow through a heat
exchanger, which is expensive to measure
directly, may be estimated using a model
and a limited set of sensor measurements.
If sufficiently accurate, it may serve as a
utility-grade meter for billing purposes.

e Diagnostics: The amount and location of
the refrigerant charge inside HVAC
equipment, which is difficult to measure
directly, may be estimated and used to
identify costly refrigerant leaks.

e Model Predictive Control: The digital twin
model may be integrated into a product-
level or building-level model predictive
control (MPC), which can command
actuator values that optimize a cost
function, such as energy use.

For each of these use cases, a simulation model

of the HVAC equipment, and possibly the

building, is combined with real-time
measurements to estimate a quantity of
interest that is unavailable or difficult to
measure directly. Such simulation models are
used in product development, and may be
reused for this purpose. However, their use
during the equipment operation phase differs
from their use in product development, and the

simulation model must be modified accordingly.
The purpose of this article is to describe these
modifications and introduce next-generation
modeling and simulation technologies that
facilitate them.

2. HVAC Models in Product Development

HVAC equipment often uses vapor
compression cycles to move heat among a set of
heat exchangers located throughout a building
to provide thermal comfort and ventilation.
The relevant physical processes include heat
transfer, thermodynamics, and fluid mechanics.
Mathematically, these processes are modeled
with a set of differential and algebraic
equations (DAEs),

x(t) = f.(x(t),d(t),u(t),0) (1a)

y(t) = h(x(t)) (1b)
Here, x(t) is an n-dimensional vector of states,
x(t) denotes its time derivative, and y(t) is a
set of time-varying measurements. The states
include quantities such as refrigerant
pressures and heat exchanger (HEX) wall
metal temperatures at discrete spatial
locations, as well as building construction
temperatures, air temperatures, and
humidities. The term f, is a nonlinear
function of the states x(t), time-varying
boundary conditions or disturbances d(t) that
are typically not measured, control actuators
u(t) such as compressor speeds, and a vector
of parameters 6 that are typically calibrated
for the specific problem of interest. The term h
1s a nonlinear function that defines the
measurements y(t).

In practice, models are constructed using
CAE tools such as the computer language
Modelica. This tool automates model assembly
using compiler technology to produce
numerically efficient simulation code. During
product development, such models are used to
validate design decisions and in methods of
model-based design of the control system.

In these use cases, values for x(t;), 8, and
d(t) are given. For example, the weather acts
as a disturbance on a building HVAC
simulation. It can be provided in the form of
typical meteorological year data, which 1is
available open-source for many worldwide
locations. Similarly, the initial condition 1is
assumed, values of 0 are obtained from
laboratory or catalog data, and values of u(t)
are computed by the controller.

3. HVAC Models in Real-Time Operation

The following issues must be addressed to
reuse a simulation model in a digital twin that
was intended for product development:
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e The state x(t) and the disturbance d(t)
must be estimated.

e Values for elements of the parameter vector
6 must be calibrated.

e Constraints associated with the model (1)
must be enforced.

¢ Real-time measurements y(t) and system
inputs u(t) need to be incorporated.

Furthermore, the tools used to represent and

simulate the model must support these needs.

3.1 Conventional State Estimation

Disturbances or boundary conditions are
conventionally estimated by modeling them as
a Laplace-transformable signal, augmenting
the physics-based model with the signal model,
and estimating the full state. Because d(t)
typically varies slowly, it may be represented

as an unknown constant d=x, and
augmented to (1) as
%, =0 (2a)
Xy = fo(x,%2,u,0) (2b)
y = h(xz) (2¢)

where x(t) = [x,(t) x,(t)]" is redefined.

The extended Kalman filter (EKF) is the
most conventional method for estimation of
x(t). All variations of the EKF share the same
general structure. Numerically integrating (2)
gives the discrete-time augmented model

X+1 = [ (X1pe Xop Upe, 0) (3a)

Vi = h(xyp), (3b)

from which the EKF is realized as the set of
prediction equations

Ripi—1 = f Rik—1jk-1 Wi Bop—1=1,0)  (4a)

Pijie—1 = FiePr—1jk-1Fi + Qrr (4b)

together with the set of correction or update

equations,

Ve =Yk — h(£k|k—1) (5a)

Sk = HyPrx—1HE + Ry (5b)

Ki = P Hi St (5¢)

Rijke = Xpejk—1 + Kic Ve (5d)

Py = (I — KicHy) Pyjje—s (5e)
which are solved iteratively, where
af an

Fie= ox fk—1|k—1,ukand Hie = ox fk|k—1. ©)

The EKF is the heart of the digital twin, as

it  combines model predictions  with

measurement feedback to estimate

unmeasured states and boundary conditions,
and predicts future behavior. However, it can
perform poorly for two reasons. First, the state
update (5d) can produce non-physical values
for states, such as relative humidity values
above 100%. When these are substituted into
the prediction model (4a), the model may fail
because f was not defined for these non-
physical conditions. Second, the Jacobians (6)
need to be evaluated accurately. An inaccurate

numerical approximation may cause the EKF
to diverge. This occurs because (1) is
numerically stiff, and the Jacobian can be ill
conditioned. Therefore, constraints on the
states must be explicitly enforced when the
state is updated, and symbolic expressions for
the Jacobians are needed. Even then, the EKF
may diverge and alternative algorithms such
as the constrained ensemble Kalman filter
(EnKF)® and optimization-based constrained
estimators® should be considered.

3.2 Constrained EKF

The standard EKF state update (5d) is the
solution to
Ry = argmin J (2), (7
where
Ji(x) = ||x - J?k|k—1|| -1 T lyx — Hkx”R,;l (8)
klk—1

If the constraints on the state can be
represented as Ax € A for some matrix A and
convex set A, then (5d) may be computed
instead by numerically solving

Ry = arg mxin]k(x) subject to Ax € A. (9)

This enforces the constraint on the mean
X, and ensures that the forward simulation
model will compute Xy in (4). As this
method does not enforce a constraint on Pyy_1,
probability density function (PDF) truncation
methods may be used for this purpose. These
methods first compute the standard state
update (5d), and if Ry €A , then PDF
truncation is performed, and %y and Py are
corrected to satisfy the constraints. For
systems with hundreds of states, this is an
effective way to realize a building HVAC
digital twin®.

For larger systems, the constrained EKF is
numerically expensive. The constrained
ensemble Kalman filter is an alternative for
such cases. A conventional ensemble Kalman
filter simulates an ensemble of initial
conditions and computes the covariance
numerically. State constraints can be enforced
by solving a numerical optimization similar to
(9). This does not require any dJacobian
calculation, and the covariance propagation
does not require a matrix inversion, making it
suitable to large scale digital twin applications.

4. Tools for HVAC Digital Twins

Modelica' is a computer language for
modeling multiphysical, heterogeneous
systems such as HVAC systems in buildings. It
1s equation-based so that mathematical

1 https://modelica.org
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equations may be transcribed naturally into
the language. It is also object-oriented for
organization, so that large models of complex,
hierarchical systems may be composed from
libraries of components. This composability
allows the structure of the model to mimic the
structure of the physical system. Together,
these characteristics enable reuse of the
Modelica model in its operational phase as a
digital twin.

A key technology is the Functional Mockup
Interface (FMI)2, which is a standard for
sharing and simulating Modelica models. A
Modelica model is compiled into a Functional
Mockup Unit (FMU), which is a software
package that allows the simulation to be
executed on a variety of platforms, such as in
Python3 or MATLAB4. An FMU allows for two
operations that enable realization of
constrained estimators. First, the state may be
reset, enabling the state update (4a) and (5d)
or (9). Second, Jacobians (6) may be computed,
although the standard allows for these to be
computed numerically. This means a
constrained estimator can be realized in
Python or MATLAB in a few lines of code.

However, Modelica and FMI do have
limitations. There is no gradient operator in
the Modelica specification, so it is not possible
to compute a symbolic Jacobian. Moreover, as
an FMU is an executable, the symbolic aspects
of the original model are compiled away.

The more recently developed project
ModelingToolkit.jl, written in the Julia
language, is a modeling package built on a
symbolic computational algebra framework. It
has a number of features that make it
particularly appropriate for implementing
HVAC digital twins. Like Modelica, it is
equation-based and object-oriented, allowing
users to construct large, acausal system
models from component models. Julia and
ModelingToolkit also allow for more symbolic
analyses, such as automatic differentiation.
This means that a Jacobian may be computed

symbolically, ensuring that it is highly
accurate when it is evaluated.
We  recently developed constrained

estimators using ModelingToolkit.jl for a small
model of an R32-based vapor-compression cycle
with 278 equations. Measurements included
the compressor suction and discharge

2 https://fmi-standard.org.

3 Python is a registered trademark of the Python
Software Foundation.

4 MATLAB is a registered trademarks of The
MathWorks, Inc.
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Figure 1° Unobserved and estimated condenser outlet
pressure and LEV inlet specific enthalpy for prototype
vapor-compression cycle written in ModelingToolkit.jl.

pressures and wall temperatures at the inlet
and outlet of each HEX. Smoothing versions of
the constrained EKF and EnKF operated on
these measurements to generate estimates of
two unobserved variables: the pressure at the
condenser outlet and the specific enthalpy at
the LEV inlet, as shown in Figure 1. The
estimates track the wunobserved variables
closely, with a mean percentage error of less
than 1%(4).

5. Conclusion

Simulation models used for product
development can be reused as a ““digital twin"
in product operation, but often require
modification for this purpose. For an HVAC
digital twin, an estimator must be designed
and realized in real-time software to combine
model predictions and measurements. Some
estimators require analytic representations of
modeling artifacts, such as Jacobians.
Advanced CAE modeling tools, such as
Modelica and Julia, support these operations,
and should be adopted broadly since their use
not only supports model-based design in
product development, but also can be extended
to development of digital twins.
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