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Abstract

Eccentricity severity level estimation is of great importance in rotary machine fault detec-
tion. However, in practice machine operation conditions may influence the magnitude of fault
signatures, making eccentricity severity estimation a challenging problem. In this paper, we
develop a linear regression model incorporating multiple fault signature features to estimate
the eccentricity severity level of induction machines under different operating conditions. In
particular, the eccentricity severity level is modeled as a function of operating conditions
and fault signature features including rotating speed, load torque, vibration, as well as cur-
rent harmonics, etc, with corresponding weights to be determined. By imposing sparsity of
weights, we learn from training data which dominant features have relatively larger impacts
on the estimation. Experimental results show that our trained model exhibits satisfactory
accuracy in quantitatively estimating eccentricity under various operation conditions.
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Abstract—Eccentricity severity level estimation is of great
importance in rotary machine fault detection. However, in prac-
tice machine operation conditions may influence the magnitude
of fault signatures, making eccentricity severity estimation a
challenging problem. In this paper, we develop a linear regression
model incorporating multiple fault signature features to esti-
mate the eccentricity severity level of induction machines under
different operating conditions. In particular, the eccentricity
severity level is modeled as a function of operating conditions
and fault signature features including rotating speed, load torque,
vibration, as well as current harmonics, etc, with corresponding
weights to be determined. By imposing sparsity of weights, we
learn from training data which dominant features have relatively
larger impacts on the estimation. Experimental results show that
our trained model exhibits satisfactory accuracy in quantitatively
estimating eccentricity under various operation conditions.

Index Terms—Eccentricity, Fault detection, Induction machine,
Sparsity model

I. INTRODUCTION

Eccentricity is one of the most common faults in rotary
electric machines. For an eccentric machine, the axis of the
rotor is not aligned with the axis of the stator, causing
unbalanced air gap. In the case of the static eccentricity, the
position of the minimal radial air-gap length is fixed in space.
Study report shows that an inherent level of static eccentricity
exists even in newly manufactured machines due to limits of
manufacturing and assembly method [1]. If the rotor-shaft as-
sembly is sufficiently stiff, the level of static eccentricity does
not change. However, since static eccentricity causes a steady
unbalanced magnetic pull in one direction, it may lead to bent
rotor shaft and bearing wear and tear etc. Consequently, some
degree of dynamic eccentricity will develop after long-time
operation, where the position of minimum air gap rotates with
the rotor during operation. Therefore, in reality, both static
and dynamic eccentricities tend to co-exist in old induction
machines [1], [2].

When there exists an eccentricity fault, the unbalanced air gap
between the stator and the rotor causes degraded performance
such as fluctuated torque and undesired vibrations [3]. In
some situations, a serious eccentricity fault may lead to
insulation damage or even sudden breakdown of the motor
during operations [1]. Therefore, it is of great importance to
detect eccentricity and examine the eccentricity level during
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the manufacturing process for motor quality check and to
monitor eccentricity severity during operation for preventive
maintenance.

During past decades, motor eccentricity detection has at-
tracted great attentions in the motor fault detection community,
as summarized in [2], [4]. The most commonly used invasive
method for eccentricity diagnosis is motor current signature
analysis (MCSA) [1], [5]-[8], which aims to detect charac-
teristic frequency components with respective to a certain type
of eccentricity in the frequency spectrum.

For most induction machines with eccentricity fault, the
signature frequency in the current signal is [8]
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where f; is the fundamental supply frequency, R is the number
of rotor slots, s is the slip, p is number of pole pairs, k is
any positive integer, ny is the eccentricity order (ng = 0
in case of static eccentricity and ng = 1,2,3,..., in case
of dynamic eccentriciy), and v is the order of stator time
harmonics. Without the number of rotor slots, a simplified
version is given by
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where f. =
rotational speed.

Besides the conventional MCSA-based methods, researchers
also explored signatures including higher order current har-
monics [9], [10], vibrations [1], [11], stator voltage and current
Park’s vector [12], toque [13], etc. For example, For principal
slot harmonic (PSH) type induction machines, who have a
combination of pole pair number p and rotor slot number R
that satisfy R = 2p[3(m £ ¢) &+ r], where m £¢ =10,1,2, ...
and r = 0, 1, the conventional MCSA-based method does not
work well since there is no significant dependency between
current signals and eccentricity level. To deal with this issue,
[9] introduces a frequency component R(% +1)f for the
detection of static eccentricity level.

Other methods such as the magnetic field-based eccentricity
detection are also explored [14]-[16], which aim to examine
the magnitude of characteristic harmonics via analyzing the

fs is the rotor frequency related to the



spectrum of the stray flux. However, they are not widely
accepted due to the costly installation of sensors.

In contrast to the binary eccentricity detection problem,
eccentricity severity estimation is more challenging due to
its complexity and the influence of operating conditions.
Although a current spectrum-based indicator [17] is proposed
to qualitatively assess the eccentricity level, there is no clear
standardized criteria for quantitative estimation, especially
under varying operation conditions. Based on our experience,
the magnitude of fault signature frequency components may
vary non-linearly, or even inversely proportional to the severity
under certain load conditions. Therefore, it is desirable to pro-
pose a quantitative eccentricity estimation method for practical
operation situations.

To tackle this problem, we propose a learning-based method
that enables eccentricity estimation under different load con-
ditions. We follow the principles of physics-informed machine
learning [18] to steer the learning process towards identifying
physically consistent solutions [19]-[21]. Our contribution
in this paper lies in three aspects. First, we build a linear
regression model of eccentricity severity as a function of
multiple features of torque, vibration, and current harmonics,
etc., with weights to be learned with our training data. Second,
we explore the importance of different features by imposing a
sparsity constraint on weights of extracted features. Third, we
estimate the severity of eccentricity levels under various load
conditions with satisfactory results using our proposed method
and learned model parameters.

II. PROBLEM FORMULATION

Inspired by prior knowledge of the physical model of
induction machines and fault detection methods using dif-
ferent features, we aim to estimate eccentricity severity of
induction machines by a learning-based method incorporating
different eccentricity related features. Assume that we have NV
experiments conducted under different eccentricity levels and
various load conditions. For each experiment, we obtain the
eccentricity level, the load condition in torque, and multiple
measurement time series including rotating speed, vibration
acceleration, and three-phase current. By processing the mea-
sured data, we can obtain a feature matrix X & RN*M
and a corresponding vector y € R*! of eccentricity levels
represented by

X:[mh"'amM]a 3)
y:[yl7"'7yN]Ta (4)
where x; € RY*'(i = 1,..,M) corresponds to the i‘"
feature and y; > 0 (j = 1,...,N) is the eccentricity level
defined by
d.
y; = == x 100%, (5)
do

where d; is the distance between the actual rotor axis and
the stator axis, and &g is the average air gap length in
the corresponding healthy motor. For ideal healthy induction
machines, the rotor and the stator are coaxial, therefore d; = 0.

We model the eccentricity level as a function of operating
conditions such as load, rotating speed, and vibration, i.e., as
well as the current spectral feature

y=Xw+ u, (6)

where w = [wy, ..., wy]T € RM*! is a weight vector and u
represents error.

To determine the feature vector w, we have training data set
{yr, X 1}. Note that we only have limited data with a number
of discrete eccentricity levels in y. To avoid overfitting, we use
a regularizer term on w and formulate the regression problem
as an optimization problem

o1
wr = argmin,, 5 Jyr — Xrwl3+aljwll, @

where « is a pre-defined coefficient of the regularization term
and ||lwl||y = Zf\il w; represents the Iy norm of w. By
minimizing the /;-norm regularized objective function [22],
we achieve a sparse solution of w that fits the regression
model. Since w is sparse, meaning only a few non-zero
coefficients in w, the corresponding features play important
roles in determining the eccentricity level.

To solve (7), we consider the augmented-Lagrangian
scheme with penalty parameter p and variable p

1 p
L(w, z,p) = 5llyr — Xrwll + allzl[ + S|lw — 2 + pll3.
®)
We then iteratively update w, z, and p using the alternating

direction method of multipliers (ADMM) [23]. The detailed
updating process is summarized in Algorithm 1.

Algorithm 1: ADMM for regularized linear regression
model
Input: X1, yr, o, p, Niter;
Initialization: z < zg, 1 < pg;
for j =1,...,Njer do
wj  argming L(w, zj_1, ;1)
zj < argming L(wj, 2, 1;_q),
K Hjg T Wi — 2z,
end
Output: wr = wy,,.

Note that in each iteration, w; has a closed-form solution
which can be computed efficiently as

w; = (X7X1+pE"E) " (XTyr + pE" (221 — 1y 1)),
9

where E € RV*Y is an identity matrix, and z; can be solved
by a soft-thresholding process as
Eiwj+p;i— 5 if Bawj + i > 5
zji =\ Bowj + pji + 5 if Biw; +pj < -5 (10)
0 otherwise,

where z;; and pu;; are the i element of z; and p;, respec-
tively, and E; is the i row vector of E. Once we have learned



weight vector wy, we can estimate eccentricity severity level
using

Y, = Xywr Y

with test data feature X.

III. EXPERIMENTS
A. Setup

We show in Fig. 1 (a) a picture of our experiment setup
and in Fig. 1 (b) an illustration diagram. To produce different
eccentricity levels, the two original bearings between the rotor
and the stator are taken out. Instead, two larger external bear-
ings are used to support the rotor such that the motor’s static
eccentricity level can be manually adjusted within a certain
range with high accuracy. A magnetic powder brake, whose
torque can be tuned by changing its input operating current,
is used as the load. The whole motor drive system is enclosed
in a clear cage for safety purpose. During operation, multiple
sensors are used to record synchronized time-sequence data: 1)
one tachometer measures the rotating speed, ii) two accelerom-
eters record the motor vibration along horizontal and vertical
directions respectively, and iii) three current probes records
the three-phase stator current accordingly.

Vibration
Sensor

Eccentric
motor

Powder

£

Three-phased sensors
Accelorometer

Powder brake
Motor

Fixed bearing

Fixed bearing
Tachometer

(b) Hlustration diagram

Fig. 1. Experiment setup and its illustration diagram

Experiments are conducted under various conditions of
eccentricity level and load by adjusting the external bearings
and the input operating current of the magnetic powder brake.
For each experiment, given a pair of eccentricity level and
load, we follow three steps: i) shift the bearings that support
the rotor to the eccentricity level under stationary state, ii)
set the input current of the magnetic powder brake to provide
desired load torque, and iii) start the motor and record data
when the motor is running in steady status.

Specifically, we examine 5 different eccentricity levels
in percentage as y; € Y = {0%, 11%, 25%, 43%, 56%}
and 8 different load conditions with torque 7; € T =
{0.0, 0.3, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5} in Nm. Therefore, a to-
tal of 40 experiments, each under a unique pair of eccentricity
level and load, are conducted with operating data collected for
further analysis.

B. Data processing

To explore the relationship between motor operation fea-
tures and eccentricity levels, we pre-process original measure-
ments to fit the input of our regression model. For each ex-
periment, we collect torque, time sequences of rotating speed,
horizontal acceleration, vertical acceleration, and three-phase
current, each of 60 seconds with a sampling rate of 10*Sa/s.
To enrich the training and testing dataset, we first segment
each time sequence of original 60-second measurements into
12 non-overlapped segments, each of 5 seconds, resulting
a total of N = 480 datasets for all 40 experiments. Each
dataset includes load torque, rotating speed, acceleration time
sequence, and three-phase stator current sequences, efc. We
then randomly pick half of the 480 datasets for training and
the remaining half for testing. Data features of each dataset
are extracted with details described as follows.

1) Average Vibration Velocity Calculation: We calculate the
average vibration velocity as one feature, following three steps
below.

« Integrate the vibration acceleration time series Ay and
Ay independently to get the raw vibration velocity time
series, using the function cumt rapz in MATLAB.

o Calculate the cumulative error-caused velocity trend by
the moving average method, where the window size is
set as 10 samples.

o Calculate the average absolute value of the net vibration
velocity based on the detrended vibration velocity on
horizontal and vertical directions.

Specifically, Fig. 2 plots an example of time series of
acceleration measurements and detrended vibration velocity.

2) Eccentricity-related Stator Current Components Extrac-
tion: As indicated in equation (2), eccentricity-related stator
current components involve the following characteristic har-
monics of current spectrum,

fo=fotkf, k=0, £1, £2,.... (12)

where f,. is the rotational frequency. Considering perturbations
in the actual rotating speed, we approximate the rotor rota-
tional frequency range [f7*", f™3%] using the average rotating
speed Q with some tolerance as

Fm = (@4 01)/Q0 x (fs/p),
ST = (4 b2) /D0 x (fs/p),
where (¢ is the nominal rotating speed, fs is the supply

frequency, p is the number of pole pairs, and b; and b, are
pre-defined bias terms to amend the overestimation of the

13)
(14)
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Fig. 2. Examples of (a) time series of acceleration and (b) vibration velocity.

tachometer. In our case, 29 = 1800rpm, f; = 60Hz, p = 2,
b1 = —19rpm, and by = —9rpm.

Given the three-phase current, we first perform Fast Fourier
Transform (FFT) on the current time series of each phase
HY = FFT(IT), where P € {A, B, C} represents one of the
three phases. We then calculate the kth harmonic components
H lf of each phase in the following way, where we set the
maximum harmonic order ky = 98 and tolerance band A f as
1.5 Hz.

HE = max(HT (f)|fii < f < £, (15)

where

fl = fo+ kM — Af,
w = fs H R+ AL,
k=-1,0,1,..., k.

Finally, we calculate the magnitude of the eccentricity-related
current components Hj by calculating the mean of three
phases

H, = (H + HE + HS)/3. (16)

Fig. 3 plots examples of the collected time-domain stator
current data and its corresponding frequency spectrum. We

can observe a bunch of rotor frequency harmonics with various
magnitudes.
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Fig. 3. Examples of (a) Time series of stator current and (b) Frequency
spectrum of stator current.

To further explore the harmonic magnitude, we plot in Fig.
4 the magnitude of 30Hz and 90Hz in current spectrum relative
to the 60Hz operating frequency component with respect to
different load conditions. We can observe that the magnitude
may vary greatly with load, and not reliable for eccentricity
severity level estimation, especially when the eccentricity level
is relatively low. Therefore, it is not reliable to estimate the
eccentricity severity level according to solely the magnitude
of 30Hz or 90Hz.

Consequently, load torque, rotor speed, vibration accelera-
tion, vibration speed, and current spectral features are provided
for further model training and testing. In summary, data
processing provides load torque T = [T,...,Tj,...,Tn]T
with T; € 7T, rotating speed €2,, horizontal, vertical and

total vibration acceleration A,, A,, and A = 1/Ai + Az
respectively, horizontal, vertical and total vibration speed V ,,,
Vy,and V = Vi + ij , respectively, and current spectral
features { H,,}, formulated in feature matrix X as

X = [Ta Q’r‘aAZ7Ay7A7 va Vya V7H71aH17 "'7Hko]'
(17)
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Fig. 4. Frequency component magnitude of (a) 30Hz and (b) 90Hz w.r.t. load

All features are normalized to have a unit variance to ensure
all features are equally weighted without any prior knowledge.
The feature correlation matrix is shown in Fig. 5. It is clear
that acceleration related feature are related to each other and
high order harmonics are also closely related to each other.

C. Algorithm Implementation and results

We implement Algorithm 1 in Matlab, with the pre-defined
parameter o« = 10, p = 10, initial values gy = 0, 29 = 0,
and the number of training iterations nje, = 103.

A plot of the sparse weights learned from our training data
is shown in Fig. 6. We can see that 90Hz frequency com-
ponent plays a dominant role in the severity level estimation.
Besides the 90Hz frequency component, other features such
as vibration and some high order harmonics also contribute
to the final estimation. This agrees with literatures that use
vibration and high-order harmonics for eccentricity detection.

The estimation results using trained model as well as the
true eccentricity severity levels are shown in Fig. 7. We
observe that our estimates of eccentricity levels match the true
eccentricity setup well across all different load conditions.
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To quantify the model performance, we take the coefficient
of determination [24] as the accuracy metric, which can be

calculated as o
>i(yi — 9i)

>iyi—9)?’
where y; represents the real value of the ¢th sample, ¥,
represents the estimated value, and 4 represents the mean
of real values of all samples. We achieve the coefficient of
determination value R? = 0.981, which is very close to the
ideal value 1 when all estimates are exactly the same as the
corresponding true eccentricity levels.

R2:=1- (18)

IV. CONCLUSION

We proposed a sparsity-driven linear regression model for
induction machine eccentricity severity estimation under var-
ious operating conditions. By imposing sparsity, we explored
important signatures that play important roles in severity
estimation. Our experimental results validate the proposed
model in quantitatively estimating eccentricity under various
operation conditions with satisfactory accuracy.
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