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Abstract

Optical coherence tomography (OCT) using Fourier domain pro- cessing can resolve micrometer-
scale depth information. However, the conventional volumetric reconstruction approach is
unnecessary for opaque samples with only one reflector per lateral position, and the required
sample interpolation degrades performance. In this pa- per, we show that surface depth pro-
filometery with a Fourier-domain OCT system simplifies to a sinusoidal parameter estimation
prob- lem. We derive approximate maximum likelihood estimators for the sample depth and
reflectivity, which can easily be computed by backprojecting the data without interpolat-
ing. Tterative refine- ment further improves results at high signal-to-noise ratio (SNR). We
demonstrate the performance of the technique compared to the conventional Fourier trans-
form approach on both simulated and ex- perimental data collected with a spectral-domain
OCT system. Our results show that maximum likelihood profilometry is fast and more robust
to noise than the Fourier approaches at moderate SNR.
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ABSTRACT

Optical coherence tomography (OCT) using Fourier domain pro-
cessing can resolve micrometer-scale depth information. However,
the conventional volumetric reconstruction approach is unnecessary
for opaque samples with only one reflector per lateral position, and
the required sample interpolation degrades performance. In this pa-
per, we show that surface depth profilometery with a Fourier-domain
OCT system simplifies to a sinusoidal parameter estimation prob-
lem. We derive approximate maximum likelihood estimators for
the sample depth and reflectivity, which can easily be computed
by backprojecting the data without interpolating. Iterative refine-
ment further improves results at high signal-to-noise ratio (SNR).
We demonstrate the performance of the technique compared to the
conventional Fourier transform approach on both simulated and ex-
perimental data collected with a spectral-domain OCT system. Our
results show that maximum likelihood profilometry is fast and more
robust to noise than the Fourier approaches at moderate SNR.

Index Terms— Optical coherence tomography, profilometry,
maximum likelihood estimation

1. INTRODUCTION

Optical coherence tomography (OCT) uses the interference of two
beams of light to measure differences in path length. The beat
frequency of the interfered light is much lower than the oscillation
frequency of light, allowing OCT to achieve fine depth resolution
without high-bandwidth electronics. The first demonstrations of
OCT were for ocular imaging [1, 2], and the technique has now
become standard for that application. Although initially conceived
as a method of imaging into an optically transparent volume, OCT
has also been used for non-contact profilometry, or measuring the
topography of an opaque surface, with applications including der-
matology [3], varnish monitoring [4], and component inspection in
industrial settings [5, 6, 7].

Existing Fourier-domain OCT profilometry approaches are lim-
ited in robustness due to the fast Fourier transform (FFT)-based pro-
cessing used for depth recovery [5, 6]. Because measurements are
made with samples uniformly spaced in wavelength, interpolation
is required to convert to samples uniformly spaced in wavenumber
before the Fourier transform can be applied, and the interpolation in-
troduces errors for high-frequency interference patterns in the pres-
ence of noise. Alternative approaches exist for volumetric OCT that
avoid interpolation and promote sparsity in the recovered depth [8],
but the iterative reconstruction techniques used are much slower than
the FFT and do not explicitly impose prior knowledge of the sparsity
level when only a single surface is to be recovered.

In this work, we establish a model for depth profile measure-
ments of a single opaque surface using OCT, which we show to
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Fig. 1: Diagram of an SD-OCT imaging system for profiling an
opaque surface. Light from the illumination source with power spec-
tral density S(X) reflects off the reference mirror and sample, and is
recombined by the beamsplitter. The resulting interference signal
In()) is spectrally resolved by the diffraction grating and sampled
by the detector array.

be a sinusoidal parameter estimation problem. Our main contribu-
tion is the derivation of the maximum likelihood estimator (MLE)
of the depth that does not require wavenumber interpolation, thus
improving robustness to noise over FFT-based inversion. A dis-
crete approximation to the MLE is found by backprojecting the mea-
surements, and iterative refinement yielding a continuous estimate
improves performance and achieves the Cramér—Rao lower bound
(CRLB) at high signal-to-noise ratio (SNR). The MLE implementa-
tions have runtimes on par with the FFT-based methods. We present
the method in the context of a spectral-domain (SD) OCT system,
but the same approach would likewise apply to swept-source OCT.

2. SINGLE-SURFACE OCT MEASUREMENT MODEL

We first establish the measurement model according to [9] for a sin-
gle reflector in the sample arm. A sketch of the SD-OCT system
is shown in Fig. 1. The light source emits a polychromatic plane
wave whose electric field is given as F1 = s(k,w) exp[i(kz — wt)],
with wavenumber &k = 2w /), wavelength ), temporal frequency
w, and amplitude spectrum s(k,w). The 50/50 beamsplitter splits
the incident light into the two arms of the interferometer. After re-
flecting from the reference mirror, the field entering the beamsplit-
ter from the reference arm is Er = &%) rg expli(2kzr — wt)],

V2
which accounts for the 2zr roundtrip path length in the reference




arm, the reference reflectivity rr, and the beamsplitter decreasing
the intensity by half. In the sample arm, the electric field is a con-
volution of the incident light with the depth-dependent sample re-
flectivity profile. Although in OCT the reflectivity profile is gener-
ally continuous or described as a series of discrete reflectors, for a
single reflector at depth zg with reflectivity rs, the electric field is
Es = S(L\/’;)rs expli(2kzs — wt + ¢)], where ¢ accounts for any
phase shift incurred by reflection from the sample. The sample and
reference fields are recombined by the beamsplitter, and the total in-
tensity at the detector is

where S(k) = (|s(k,w)|?) is the illumination source power spec-
tral density (PSD) and the angle brackets (-) denote temporal av-
eraging. Note that (1) has only constant amplitude offset and in-
terference terms—there is no “auto-correlation” term as typically
found when multiple surfaces mutually interfere in OCT. In an SD-
OCT system, a diffraction grating separates the interference inten-
sity by wavelength. The detector measurement is then the intensity
scaled by the detector responsivity p, sampled at wavenumbers &y,
forn =0,..., N — 1, and corrupted by noise v[n] that is assumed
to be independent and identically distributed (i.i.d.) as a zero-mean
Gaussian:

+ v[n]. (2)
With a few manipulations, the measurement model appears
greatly simplified. First, let a = rg/rr be the relative reflectivity

and d = 2(zs — zr) be twice the depth of the sample relative to the
reference. Then we can rewrite (2) as

In[n] = gsucn)rﬁ {(1+a®) + 2acos(knd + ¢)} +v[n]. (3)

Inspired by Seck et al. [8], we rearrange to define the data as

vl & 5 {Ioln] = §SrR( +a)} )
= S(kn)acos(knd + ¢) + wn], (4b)

where w[n] = 2v[n]/prg is i.i.d. Gaussian noise with mean 0 and
variance o,. The main challenge is estimating the parameter d, and
optionally a and ¢ from (4b). A second important task is ensuring

that the known quantities in (4a) can be calibrated accurately.

3. CONVENTIONAL FOURIER APPROACH

Ignoring the PSD factor, we see that (4b) is a pure sinusoid, so ap-
plying the Fourier transform should yield a sharp peak in the depth
domain. Indeed, finding the position of the peak of the Fourier trans-
form magnitude is effectively the approach taken by other methods
using OCT for profilometry. However, OCT systems typically sam-
ple the interfered light with uniform wavelength A, which means the
samples are non-uniformly spaced in wavenumber k. The conven-
tional approach is to interpolate the data and resample uniformly in
k, so that the inverse fast Fourier transform (IFFT) can be used to
process the measurements [10, 11].

There are a number of problems with the conventional IFFT ap-
proach. First, the interpolation process also propagates the noise to
the unsampled wavenumbers, which reduces the robustness to noise,
especially for higher frequency interference patterns that correspond
to the deepest features of the sample. Second, the IFFT performs un-
necessary computation, at the expense of longer computation time,
by covering a wider depth range than the limited range that the OCT
system can measure, and information for only the positive (or neg-
ative frequencies) needs to be recovered. Despite the implication
of speed in the FFT, the computation can often be performed more
quickly for the limited depth range by explicitly forming the inverse
Discrete Fourier Transform (IDFT) matrix.

4. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Numerous approaches have been established for estimating the pa-
rameters of a sinusoid. Here, we modify the procedure for deriving
the maximum likelihood estimator (MLE) outlined in [12, Ch. 7.10]
to include the PSD S(ky,) and non-uniform wavenumber sampling,
which are ignored in related work [13, 14].

4.1. Exact MLE

Given the data vector y = [y[0],...,y[N —1]]" and assuming
white Gaussian noise, the probability density function (PDF) is

1 1
p(y;a,d,¢) = (@ro2 )N/ eXP(‘ﬁJy(a’dv (/5)) , )

where

N—-1

Jy(a,d,¢) = > {yln] — S(kn)acos(knd + ¢)}*,  (6)

n=0

and the MLE of a, d, ¢ requires minimizing Jy (a, d, ¢). Expanding
the cosine in (6) and defining oy = a cos(¢) and ae = —asin(¢)
yields the quadratic equation

Ty (o, az,d) =

Z_: {y[n] — a1 S(kn) cos(knd) — 2S(ky) sin(knd)}>. (7)

Defining the column vectors ¢ € RY, ¢, = S(k») cos(knd), s €
RY, s, = S(kn) sin(knd), o = [, ag}T, and matrix H = [c, s],
we rewrite (7) as

J;’ (ah a2, d) = (y - Ha)T(y - Ha)7 (8)

which is well-known to be minimized by & = (H"H) 'H'y. Re-
placing o with its estimate, we can expand

Jy(én,62,d) =y ' (I-HHH) "H)y. ©)
To find d, we have to maximize y 'H(H ' H) 'Hy.

4.2. Approximate MLE

To diagonalize H"H and simplify inversion, the derivation in [12,
Ch. 7.10] relies on a corollary in [15, Appendix A] stating that for
.f 0 € (Ov 1)’

2

-1
cos(2m fon) = 0. (10)
0
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For estimating frequency fo € (0, 1), the result approximately holds
for large N so long as fy is not too close to 0 or 1. In the OCT
parameter estimation problem, we have

N NZSQ
N252
Te ~

We claim without proof that the approximation %c s ~ 0 also
holds for large enough N under certain conditions:

) cos(knd) sin(knd)

) sin(2knd). 11

1. The k,, need not be uniformly spaced but should yield values
of sin(2kyd) uniformly distributed over [—1, 1] so that their
mean is near zero.

2. The frequency content of S?(k,) should not overlap with
sin(2k,d). This is achieved practically with a slowly-varying
PSD and a high-frequency interference signal.

If these conditions are satisfied, we can similarly Igprommate ccr

Q/2 and s's ~ Q/2, where we define @ = Y7 k»). Thus
H"H is approximately diagonal, and
- 2
y HHH) 'H'y ~ 5((c'y)" + ('y)") (12)
g V=2 2
=3 > " y[n]S(kn) exp(—iknd)| £ f(d). (13)
n=0

The approximate MLE for d is thus the value that maximizes (13) as
d= argmax, f(d). Using the same approximations and d, we can

then solve & =~ é[c 8]"y, from which we get & =~ /42 + 42 and

¢ ~ arctan(—da/dn ).

4.3. Proposed Solutions: Discrete and Continuous MLEs

The function f(d) in (13) is multi-modal, so a grid search is
needed to find the maximum. We notice that the search can be
efficiently performed by matrix-vector multiplication. We define
the discrete measurement matrix M € CN*  where [M],,m =
%S(kn)exp(ikndm) at depths d,, form = 0,...,M — 1. To
avoid missing the true maximum, the depth discretization step size
§- should be smaller than the coherence length, defined in [9] as
Le = (21In(2)/7)(A3/A) for center wavelength Ao and full-width
at half-maximum (FWHM) wavelength spectral bandwidth Ay. A
discrete approximation to the MLE is found by backprojecting the
data and choosing the largest element. Specifically, we compute

f=|M"y|, (14)

so that the value of the maximum & = max,, f,, is the approx-
imate reflectivity MLE, and the position of the maximum m =
arg max,, f,, yields the approximate depth MLE d#id = 4. We
note the key difference between applying the Hermitian adjoint of M
instead of the IDFT is that M is explicitly defined for the measured
wavenumbers k,, avoiding the need for interpolating the measure-
ments that inherently interpolates the noise as well as the signal.
Since the backprojection result d®? is confined to a dis-
crete grid, the root mean squared error (RMSE) will be limited
0 1/02/12, assuming uniformly distributed depths [16]. We ob-
serve that f(d) is unimodal near dgid 5o similarly to [17], we
iteratively maximize (13) to find a refined continuous estimate diter,

We implement diter using Brent’s minimization method via Mat-
lab’s fminbnd function, which combines golden section search
with parabolic integration [18, Ch. 5]. For the bounding interval, we
use d®' + ¢, /10.

5. POWER SPECTRAL DENSITY CALIBRATION

As described in Section 2, although the measurements made by the
detector are given as Ip[n], the data required for estimation requires
the transformation to (4a). Although we have no knowledge of the
true values for rgr or p, we can approximate the data without these
scaling factors, which yields relative reflectivity estimates rather
than absolute quantities. In a separate calibration measurement, we
block the sample arm so the only light reaching the detector is due
to the reference arm. Then the intensity at the detector is

Ioln] = 5 (| Bnl*) = §S(ka)rk. (15)

l\.')\»i

If rs < rg then a? is negligible, so this calibration mea-

surement would be sufficient. However, to compensate for the
possibility of samples with higher reflectivity, we normalize the
calibration such that y[n] o Ip[n] — Blc[n], where f =
(XNt Ip[n]) /(SN2 Ic[n]), which sets the zero-frequency
components of the measurement and calibration to be equal.

6. NOISE PERFORMANCE

We conducted a simulation of OCT-based profilometry to quantita-
tively compare the Fourier and MLE approaches. The illumination
source was set to have a Gaussian spectrum with center wavelength
Ao = 550 nm and bandwidth A, = 100 nm, as depicted in Fig. 1.
The sample shown in Fig. 2 is a 1-dimensional linear ramp span-
ning a wide range of depths. The reflectivity at each pixel was set
to a constant rs = 0.05, and a phase shift was added uniformly at
random over [0, 27). Measurements were made at 500 wavelengths,
and reconstructions were computed for a 25-nm depth resolution and
25-pm maximum depth. We compared the following algorithms:

e IFFT: the conventional approach, using linear interpolation
of the measurements and inversion via the FFT algorithm;

* IDFT: the conventional approach, explicitly specifying the
partial inverse DFT matrix for a smaller range of positive
depth values;

¢ ML-grid: the depth MLE on a discrete grid;
¢ ML-iter: the depth MLE with iterative refinement.

Table 1 shows the average runtimes of the methods with a multi-
core CPU. ML-grid is slightly faster than the IDFT because it avoids
the interpolation step, and both methods with explicitly defined ma-
trices are faster than the IFFT. The ML-iter method requires just
twice the runtime of the conventional FFT-based approach. In Fig. 3
the depth estimation RMSE is plotted against the SNR averaged over
10 trials. We also plot the square root of the CRLB for z = d/2,

Table 1: Algorithm runtime comparison (seconds)

IFFT
0.0426

IDFT
0.0173

ML-grid ML-iter
0.0166 0.0843
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Fig. 2: Example depth estimation for (a) a simple linear ramp sample. The measured data (b) is captured at —10 dB SNR. The top row (c)
shows the magnitude of the backprojection or inversion for each method. The bottom row (d) shows the estimation error for each method.
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Fig. 3: Performance of OCT profilometry algorithms vs SNR. The
ML methods outperform Fourier-based methods at all noise levels.

which gives a lower bound on the range accuracy for unbiased esti-
mators. Details of the derivation of the CRLB, which modifies [12,
Ch. 3.11] to include &, and S(k»), are beyond the scope of this
work. Overall, the figures show that the MLE yields better results
than the Fourier methods. In fact, the ML methods achieve roughly
the same RMSE at 10-dB lower SNR than the Fourier methods. The
grid-based and iterative ML methods are essentially the same for
0 dB SNR or lower, whereas the iterative refinement improves es-
timation performance as the SNR increases and achieves the CRLB
above —10 dB SNR. Both the ML-grid and Fourier methods are lim-
ited by the discretization of the depth grid size at high SNRs. Based
on the noise performance and runtime, ML-grid is the best choice
for OCT profilometry for SNR less than 10 dB, while the small run-
time penalty for iterative refinement may be a worthwhile tradeoff in
high-SNR conditions requiring high precision.

7. EXPERIMENTAL VALIDATION

We validate our profilometry approach with the prototype line-field
SD-OCT system described in [19]. The illumination source is a
green light-emitting diode (Thorlabs M530L4) with 530-nm center
wavelength and 35-nm FWHM bandwidth, which yields a theoret-
ical axial resolution of approximately 3.5 pm [10]. The sample is

IDFT

y [mm]
y [mm]

Fig. 4: Experimental results for OCT profilometry of a US dime.

a US dime (ten-cent coin). Based on the results of the simulation,
we present only reconstructions using the ML-iter and IDFT meth-
ods in Fig. 4. It is difficult to visually distinguish the performance,
with both the ML and Fourier methods producing good estimates
across most of the sample. Errors are clustered around regions of
low local SNRs, such as the sides, where the illumination intensity
falls off, and at object edges, from which the specular surface reflects
little light toward the sensor. In future work, advanced image pro-
cessing algorithms or experimental modifications will improve the
surface profile estimate, and OCT-based estimates can be compared
to contact-based ground-truth measurements.

8. CONCLUSION

Non-contact profilometry using an OCT system does not require full
volume reconstruction. In this paper, we demonstrated that max-
imum likelihood reconstruction of a single surface could be com-
puted efficiently and was more robust to noise than FFT-based pro-
cessing of interpolated measurements. The speed and robustness of
the MLE are promising for a wide variety of industrial applications.
Future work will improve experimental data collection and address
MLE approaches for samples with more than one reflecting surface.
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