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Abstract
To apply scene-aware interaction technology to real-time dia-
log systems, we propose an online low-latency response gen-
eration framework for scene-aware interaction using a video
question answering setup. This paper extends our prior work
on low-latency video captioning to build a novel approach that
can optimize the timing to generate each answer under a trade-
off between latency of generation and quality of answer. For
video QA, the timing detector is now in charge of finding a tim-
ing for the question-relevant event, instead of determining when
the system has seen enough to generate a general caption as in
the video captioning case. Our audio visual scene-aware dialog
system built for the 10th Dialog System Technology Challenge
was extended to exploit a low-latency function. Experiments
with the MSRVTT-QA and AVSD datasets show that our ap-
proach achieves between 97% and 99% of the answer quality
of the upper bound given by a pre-trained Transformer using
the entire video clips, using less than 40% of frames from the
beginning.
Index Terms: online streaming video QA, AVSD, low-latency,
audio-visual, transformer

1. Introduction
We are pursuing scene-aware interaction technologies which al-
low machines to interact with humans based on shared knowl-
edge obtained through recognizing and understanding their sur-
roundings using various kinds of sensors as introduced in [1].
Towards this goal, we have investigated audio-visual scene-
aware dialog (AVSD) since 2018.

In the early stages of the research, end-to-end approaches
were shown to better handle flexible conversations between a
user and a system by training models on large conversational
data sets [2, 3]. Such approaches have been extended to carry
out conversations about objects and events taking place around
the machines or the users, based on understanding of the dy-
namic scenes captured by multimodal sensors such as a video
camera and a microphone. This extension allows users to ask
questions about what is happening in their surroundings. Using
this end-to-end framework, visual question answering (VQA)
for one-shot QA about a static image [4–7], and Visual dialog
in which an AI agent holds a meaningful dialog with humans
about a static image using natural, conversational language [8]
have been intensively researched. More recently, the framework
has been extended to address video clips, where systems need
to understand what, when, how, and by whom events took place
based on a time series of audio-visual features. New technolo-
gies have been actively investigated to tackle these scene-aware
interaction problems within the context of the Video QA and
AVSD tasks [9–11]. Video QA [12] is a QA task which consists
in answering a single question about video clips such as those
found on YouTube, and was formalized within the MSVD [13]

and MSRVTT [14] datasets. AVSD is a multi-turn dialog task
which consists in generating responses to a user’s questions
about daily-life video clips, and has been addressed in the Dia-
log Systems Technology Challenges (DSTC) [15, 16].

However, such scene-aware interaction tasks assume that
the system can access all frames of the video clip when predict-
ing an answer to a question. This assumption is not practical for
real-time dialog systems that are monitoring an ongoing audio-
visual scene, where it is essential not only to predict an answer
accurately but also to respond to the user as soon as possible by
finding the question-related events quickly in the online video
stream and generating an appropriate answer. Such functional-
ity requires the development of new low-latency QA techniques.

In previous work, we proposed a low-latency audio-visual
captioning method, which can describe events accurately and
quickly without waiting for the end of video clips, optimiz-
ing the timing for captioning [17]. In parallel, we recently
introduced a new AVSD task for the third AVSD challenge at
DSTC101, which notably asks systems to demonstrate tempo-
ral reasoning by finding evidence from the video to support
their answers. This was based on a new extension of the AVSD
dataset for DSTC10, for which we collected human-generated
temporal reasoning data [18]. This work proposes to extend our
low-latency captioning approach to the scene-aware interaction
task, combining it with our reasoning AVSD system to develop
a low-latency online scene-aware interaction system.

In the same spirit as our low-latency captioning approach,
the proposed system optimizes the output timing for each an-
swer based on a trade-off between latency and answer quality.
We train a low-latency audio-visual Transformer composed of
(1) a Transformer-based response generator which tries to gen-
erate the ground-truth answer after only seeing a small portion
of all video frames, and also to mimic the outputs of a simi-
lar pre-trained response generator that is allowed to see the en-
tire video, and (2) a CNN-based timing detector that can find
the best timing to output an answer for the input question, such
that the responses ultimately generated by the above two Trans-
formers become sufficiently close to each other. The proposed
jointly-trained response generator and timing detector can gen-
erate answer responses in an early stage of a video clip, as
soon as a relevant event happens, and may even forecast future
frames. Thanks to the combination of information from multi-
ple modalities, the system has more opportunities to recognize
an event at an earlier timing by relying on the earliest cue in one
of the modalities.

Experiments with the MSR-VTT QA and AVSD datasets
show that our approach achieves low-latency video QA with
competitive answer quality to an offline video QA baseline that
utilizes the entire video frames.

1https://dstc10.dstc.community/aaai-22-workshop



2. Related work
To realize real-time systems generating sentences such as closed
captioning and interpretation, some works have explored low-
latency end-to-end sentence generation for machine translation
(MT) and automatic speech recognition (ASR). In the field
of MT, simultaneous translation using greedy decoding was
investigated, as well as issues on streaming for Neural MT
(NMT) [19–23]; an output timing when a phrase is fully trans-
lated into a target language was incrementally determined. The
approaches proposed in [24, 25] iteratively retranslated by con-
catenating subsequent words and updating the output. This
framework allows to generate a partial translation in the mean-
time before a full source sentence is translated. In the field of
ASR, a real-time technology is also essential for applications
such as closed captions. In [26–29], end-to-end systems that
regularize or penalize the emission delay using endpoint de-
tection, and penalty terms that constrain alignments were pro-
posed. The target of these approaches is to output a complete
transcription as soon as or even slightly earlier than the end of
an utterance.

Online video captioning is also essential for scene-
understanding deployed in surveillance systems. For exam-
ple, [30] has attempted to anticipate caption generation for fu-
ture frames, exploiting the current event features as a contex-
tual feature and using them as input into a captioning module to
generate future captions. This technology relies on the temporal
dependency between events in a sequence. Our prior work [17]
addressed low-latency video captioning, where we designed a
model architecture with a caption generator and a timing detec-
tor to generate video captions as early as possible.

However, what we address in this paper is video QA, which
is different from video captioning. Our aim is here to gener-
ate appropriate answers for a user’s questions as soon as pos-
sible. To this end, we introduce a question encoder to provide
question embeddings to the timing detector, and extend the sen-
tence generator to accept a question as contextual information.
Thus, while the proposed method utilizes the same underlying
mechanism for low-latency processing, the model is extended
for video QA tasks.

3. Low-latency video QA model
3.1. Architecture

We build our proposed model for low-latency video QA upon
the DSTC10-AVSD system, which employs an AV-transformer
architecture [31, 32]. For the DSTC10-AVSD challenge, we
extended the AV-transformer with joint student-teacher learn-
ing and attentional multimodal fusion to achieve state-of-the-art
performance [33]. As in our low-latency video captioning sys-
tem [17], the low-latency QA model receives video and audio
features in a streaming manner, and a timing detector decides
when to generate an answer response for the feature sequence
the model has received until that moment. Figure 1 illustrates
the model architecture, which consists of a question encoder, an
AV encoder, a timing detector, and a response decoder, where
the AV encoder is shared by the timing detector and the response
decoder.

Given a video stream and a question text as inputs, the AV
encoder encodes VGGish and I3D features extracted from the
audio and video tracks, while a Transformer-based text encoder
encodes the question. The sequences of audio and visual fea-
tures from a starting point to the current time are fed to the en-
coder, and converted to hidden vector sequences through self-
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Figure 1: Online Audio-Visual Transformer for Online Stream-
ing Video QA.

attention, bi-modal attention, and feed-forward layers. This en-
coder block is repeated N times, and the final encoded repre-
sentation is obtained via the N -th encoder block. The question
word sequence is also encoded via a word embedding layer fol-
lowed by a Transformer with N ′ blocks.

With the AV encoder and the question encoder, we obtain
encoded representations A and V of the audio-visual features,
and Q of the question word sequence Q̄. The timing detector re-
ceives the encoded representations A and V available up to the
current time and the encoding Q of the input question. The role
of the timing detector is to decide whether the system should
generate an answer or not for the given encoded features and
the question. The detector first processes the encoded vector se-
quence from each modality with stacked 1D-convolution layers
(Conv1d) as

A′ = Conv1d(A), V ′ = Conv1d(V ). (1)

These time-convoluted sequences and the question encoding are
then summarized into a single vector through mean pooling and
concatenation operations:

H = Concat(Mean(A′),Mean(V ′),Mean(Q)) (2)

A feed-forward layer FFN and sigmoid function σ convert
the summary vector to the probability of d, where d indicates
whether a relevant answer can be generated or not:

P (d = 1|A, V,Q) = σ(FFN(H)). (3)

Once the timing detector outputs a probability higher than a
threshold, e.g., P (d = 1|A, V,Q) > 0.5, the decoder gener-
ates an answer based on the encoded representations.

The decoder iteratively predicts the next word, starting from
question word sequence Q̄ plus a starting token <sos>. At
each iteration step, it receives the partial answer sentence that
has already been generated, and predicts the next word by ap-
plying M decoder blocks and a prediction network. Let Yi be a
partial answer sentence <sos>, y1, . . . , yi after i iterations and
Y0

i be its question-conditioned sequence Q̄0Y 0
i , where each

word in the question and the partial answer sentence is con-
verted to a word embedding vector. Each decoder block has



Figure 2: Online and offline answer generation.

self-attention, bi-modal source attention, and feed-forward lay-
ers:

Ȳm
i = Ym−1

i +MHA(Ym−1
i ,Ym−1

i ,Ym−1
i ), (4)

ȲAm
i = Ȳm

i +MHA(Ȳm
i , A,A), (5)

ȲV m
i = Ȳm

i +MHA(Ȳm
i , V, V ), (6)

Ỹm
i = Concat(ȲAm

i , ȲV m
i ), (7)

Ym
i = Ỹm

i + FFN(Ỹm
i ), (8)

where MHA denotes a multi-head attention network. The self-
attention layer maps the word embedding vectors to high-level
representations that contain their temporal dependency in (4).
The bi-modal attention layers update the word representations
based on the relevance to the encoded bi-modal representations
in (5) and (6). The feed-forward layer converts the concatenated
outputs of the bi-modal attention layers in (7) and (8). These
operations are repeated to the M -th block. The linear transform
and the softmax operation are applied to the M -th output to
obtain the probability distribution of the next word as

P (yi+1|Q̄Yi, A, V ) = Softmax(Linear(yM
i )), (9)

ŷi+1 = argmax
y∈V

P (yi+1 = y|Q̄Yi, A, V ), (10)

where V denotes the vocabulary. The partial answer is extended
by appending the best word ŷi+1 to the previous partial sen-
tence as Yi+1 = Yi, ŷi+1. This is a greedy search process
repeated until it receives an end-of-sentence token <eos> as
ŷi+1. We can also use a beam search technique, which selects
top-K words with highest probabilities and keeps multiple word
sequences. Finally, the best word sequence is selected as the fi-
nal answer for the input question.

3.2. Training and inference

We jointly train the AV encoder, the question encoder, the re-
sponse decoder, and the timing detector, so that the system
achieves an answer quality comparable to that for a complete
video, even if the given video is shorter than the original one by
truncating the later part.

As we proposed in [17], we utilize two loss functions, a
response loss to improve the answer quality and a timing detec-
tion loss to detect a proper timing to emit an answer sentence.
Figure 2 illustrates a video stream, where the video has started
at time Ts and ends at Te, which are associated with ground-
truth answer Y ′

e . If time To is picked as the emission timing,
the response decoder generates an answer based on the audio-
visual signals XTs:To = (ATs:To , VTs:To) from time Ts to time
To, and the question Q̄.

The response loss is based on a standard cross-entropy loss
for the ground-truth answer Y ′

e ,

LCE = − logP (Y ′
e |XTs:To , Q̄; θR), (11)

and a Kullback–Leibler (KL) divergence loss between predic-
tions from a pre-trained model allowed to process the complete

video and the target model that can only process incomplete
videos, i.e.,

LKL = −
|Y ′

e |∑
i=1

∑
y∈V

P (y|Y ′
e,i, XTs:Te , Q̄; θ̄R)

logP (y|Y ′
e,i, XTs:To , Q̄; θR). (12)

This student-teacher learning approach [34] can exploit the su-
perior description power of the teacher model θ̄R, which pre-
dicts an answer using entire video clip XTs:Te , by pushing the
student model θR to mimic the teacher’s predictions using only
the truncated video clip XTs:To . This improves the training sta-
bility and leads to better performance.

The timing detection loss is based on a binary cross-entropy
for appropriate timings. In general, however, such timing infor-
mation does not exist in the training data set. As in [17], we
decide the right timing based on whether or not the response
decoder can generate an appropriate answer, that is, an answer
sufficiently close to the ground-truth Y ′

e or the answer Ŷe gener-
ated for the entire video clip XTs:Te using the pre-trained model
θ̄R. The detection loss is computed as

LD = − logP (d|XTs:To , Q̄; θD), (13)

where d is determined based on

d =

{
1 if max(Sim(Y ′

e , Ŷo), Sim(Ŷe, Ŷo)) ≥ S,

0 otherwise,
(14)

where Sim(·, ·) denotes a similarity measure between two word
sequences. In this work, we use the matched word percentage
computed in a teacher-forcing manner, where we obtain Ŷe and
Ŷo as sequences of highest-probability words given the ground-
truth word sequence as the left context, and count the matched
words between them. S ∈ (0, 1] is a pre-determined threshold
which judges whether or not the online answer Ŷo is sufficiently
close to the references Y ′

e and Ŷe.
The model θ = (θR, θD) is trained by repeating the steps

of sampling the emission timing To ∼ Uniform(Ts, Te), com-
puting the loss L = αLCE + βLKL + γLD , and updating the
parameters θ using ∇θL.

At inference time, the emission time T̂o is determined as the
first time that meets P (d = 1|XTs:T̂o

, Q̄; θD) > F , where F is
a pre-determined threshold controlling the sensitivity of timing
detection. An answer is then generated based on

Ŷo = argmax
Y ∈V∗

P (Y |XTs:T̂o
, Q̄; θR). (15)

Note that we assume that Ts is already determined.

4. Experiments
We evaluate our low-latency video QA method using the
MSRVTT-QA [12] and AVSD [9–11] datasets.
MSRVTT-QA is based on the MSR-VTT dataset [14], which
contains 10k video clips and 243k question-answer (QA) pairs.
The QA pairs are generated automatically from the manually-
annotated captions for each video clip, where the question is a
sentence and the answer is a single word. We follow the data
split in the MSR-VTT dataset which is 65% for training, 5% for
validation, and 30% for test.
AVSD is a set of text-based dialogs on short videos from the
Charades dataset [35], which consists of untrimmed multi-
action videos, which each include an audio track. In AVSD, two
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Figure 3: Latency ratio vs. Accuracy [%] on MSRVTT-QA.

parties, dubbed questioner and answerer, have a dialog about
events in the provided video. The job of the answerer, who
has already watched the video, is to answer questions asked by
the questioner [36]. We follow the AVSD challenge setting,
where the train, validation, and test sets consist of 7.7k, 1.8k,
and 1.8k dialogs, respectively, and each dialog includes 10-turn
QA pairs, where both questions and answers are sentences. The
duration of video clips ranges from 10 to 40 seconds.

The VGGish features were configured to form a 128-
dimensional vector sequence for the audio track of each video,
where each audio frame corresponds to a 0.96 s segment with-
out overlap. The I3D features were configured to form a 2048-
dimensional vector sequence for the video track, where each
visual frame corresponds to a 2.56 s segment without overlap.

We first trained a multi-modal Transformer with entire
video clips and QA pairs. This model was used as a baseline and
teacher model. We used N = 2 audio-visual encoder blocks,
N ′ = 4 question encoder blocks, M = 4 decoder blocks, and
set the number of attention heads to 4. The vocabulary size was
7,599 for MSRVTT-QA and 3,669 for AVSD. The dimension of
the word embedding vectors was 300.

The proposed model for low-latency video QA was trained
with incomplete video clips according to the steps in Sec-
tion 3.2. The architecture was the same as the baseline/teacher
model except for the addition of the timing detector. In the train-
ing process, we consistently used α=β= γ=1/3 for the loss
function and threshold S = 0.9 in Eq. (14). We set the dimen-
sions of the hidden activations in the audio and visual attention
layers to 256 and 1024, respectively, the dropout rate to 0.1,
and we applied a label smoothing technique. The timing detec-
tor consisted of 2 stacked 1D-convolution layers with a ReLU
non-linearity in between. The performance was measured by
answer accuracy for MSRVTT-QA, and BLEU4 and METEOR
scores for AVSD.

Figure 3 shows the relationship between latency ratio and
answer accuracy on MSRVTT-QA. The latency ratio denotes
the ratio of actually used frames (from the beginning) to the en-
tire video frames. The baseline results were obtained with the
baseline (teacher) model by simply omitting the future frames
at various ratios. Results for the proposed models were ob-
tained by changing the detection threshold F . The accuracy for
MSRVTT-QA shows a percentage of one-word answers match-
ing with the ground-truths. The result demonstrates that our
proposed method achieves low-latency video QA with much
smaller accuracy degradation compared to the baseline. Our ap-
proach achieves 97% of the answer quality of the upper bound
given by the pre-trained Transformer using the entire video
clips, using only 40% of frames from the beginning.

Table 1 compares the quality of answer sentences on the

Table 1: Answer quality of baseline and proposed systems on
AVSD task.

AVSD-DSTC7 AVSD-DSTC8

Latency Method BLEU4 METEOR BLEU4 METEOR

1.0 Baseline 0.394 0.252 0.372 0.237
Proposed 0.396 0.253 0.381 0.243

0.5 Baseline 0.387 0.238 0.362 0.226
Proposed 0.396 0.254 0.379 0.243

0.2 Baseline 0.362 0.221 0.345 0.212
Proposed 0.390 0.250 0.374 0.239
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Figure 4: Histogram of detected timings for detection thresholds
F = 0.3 (left) and F = 0.4 (right) in DSTC7.

AVSD task. We controlled the latency ratio by setting the de-
tection threshold F to obtain average ratios of 1.0, 0.5, and 0.2
for the proposed method. We omitted the future frames with the
above fixed ratios for the baseline system. As shown in the ta-
ble, our proposed method slightly outperforms the baseline even
with 1.0 latency. This could be due to the increased robustness
of the model by training with randomly truncated video. More-
over, the proposed method keeps the same level of BLEU4 and
METEOR scores at the 0.5 latency and achieves competitive
scores even at the 0.2 latency with little degradation, reaching
98% to 99% of the scores at the 1.0 latency condition.

Figure 4 shows the distribution of the QAs over the latency
with detection thresholds F = 0.3 and F = 0.4 on the AVSD-
DSTC7 task, which correspond to the results for latency 0.2
(left) and 0.5 (right) in Table 1. These results illustrate that
most of the QAs of AVSD require either only the early frames
or all frames to generate accurate answers. We investigated the
reason for the polarized distribution. The most frequent pat-
tern for questions leading to an early decision is “How does
the video starts?”. Furthermore, there are some consistent an-
swers such as “one person” in response to “How many people
are in the videos?” in the training data. Such frequent linguistic
patterns could also be a cause for the early decision. The late
decision case contains such patterns as “How does the video
ends?”. Such a question is natural for questioners who need to
generate video captions through 10 QAs without watching the
full videos.

5. Conclusion
We proposed a low-latency video QA method, which can an-
swer a user’s questions accurately and quickly without waiting
for the end of video clips. The proposed method optimizes each
answer’s output timing based on a trade-off between latency and
answer quality. We have demonstrated that the proposed sys-
tem can generate answers in early stages of video clips using
the MSRVTT-QA and AVSD datasets, achieving between 97%
and 99% of the answer quality of the upper bound given by a
pre-trained Transformer using the entire video clips, using less
than 40% of frames from the beginning.
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