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Abstract Safety and robustness are two desired properties for any reinforcement
learning algorithm. Constrained Markov Decision Processes (CMDPs) can handle
additional safety constraints and Robust Markov Decision Processes (RMDPs) can
perform well under model uncertainties. In this chapter, we propose to unify these
two frameworks resulting in Robust Constrained MDPs (RCMDPs). The motivation
is to develop a framework that can satisfy safety constraints while also simultaneously
offer robustness to model uncertainties. We develop the RCMDP objective, derive
gradient update formula to optimize this objective and then propose policy gradient
based algorithms. We also independently propose Lyapunov-based reward shaping
for RCMDPs, yielding better stability and convergence properties.

1 Introduction

Reinforcement learning (RL) is a framework to address sequential decision-making
problems Sutton & Barto (2018); Szepesvári (2010). In RL, a decision maker learns
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a policy to optimize a long-term objective by interacting with the (unknown or
partially known) environment. The RL agent obtains evaluative feedback usually
known as reward or cost for its actions at each time step, allowing it to improve
the performance of subsequent actions Sutton & Barto (2018). With the advent of
deep learning, RL has witnessed huge successes in recent times Silver et al. (2017).
However, since most of these methods rely on model-free RL, there are several
unsolved challenges, which restrict the use of these algorithms for many safety critical
physical systems Vamvoudakis et al. (2015); Benosman (2018). For example, it is very
difficult for most model-free RL algorithms to ensure basic properties like stability of
solutions, robustness with respect to model uncertainties, etc. This has led to several
research directions which study incorporating robustness, constraint satisfaction,
and safe exploration during learning for safety critical applications. While robust
constraint satisfaction and stability guarantees are highly desirable properties, they
are also very challenging to incorporate in RL algorithms. The main goal of our
work is to formulate this incorporation into robust constrained-MDPs (RCMDPs),
and derive corresponding theories necessary to solve them.

Constrained Markov Decision Processes (CMDPs) are a super class of MDPs that
incorporate expected cumulative cost constraints Altman (2004). Several solution
methods have been proposed in the literature for solving CMDPs: trust region based
methods Achiam et al. (2017), linear programming-based solutions Altman (2004),
surrogate-based methods Chamiea et al. (2016); Dalal et al. (arXiv:1801.08757,2018),
Lagrangian methods Geibel & Wysotzki (2005); Altman (2004). We refer to these
CMDPs as non-robust, since they do not take model uncertainties into account. On
the other hand, another line of work explicitly handles model uncertainties and is
known as Robust MDPs (RMDPs) Nilim & Ghaoui (2004); Wiesemann et al. (2013).
RMDPs consider a set of plausible models from so called ambiguity sets. They
compute solutions that can perform well even for the worst possible realization of
models Russel & Petrik (2019); Wiesemann et al. (2013); Iyengar (2005). However,
unlike CMDPs, these RMDPs are not capable of handling safety constraints.

Safety constraints are important in real-life applications Altman (2004). One cannot
afford to risk violating some given constraints inmany real-life situations. For example,
in autonomous cars, there are hard safety constraints on the car velocities and steering
angles Lin et al. (2018). Moreover, training often occurs on a simulated environment
for many practical applications. The goal is to mitigate the sample inefficiency of
model-free RL algorithms van Baar et al. (2019). The result is then transferred to
the real world, typically followed by fine-tuning, a process referred to as Sim2Real.
The simulator is by definition inaccurate with respect to the targeted problem, due to
approximations and lack of system identification. Heuristic approaches like domain
randomization van Baar et al. (2019) and meta-learning Finn et al. (2017) try to
address model uncertainty in this setting, but they often are not theoretically sound. In
safety critical applications, it is expected that a trained policy in simulation will offer
certain guarantees about safety, when transferred to the real-world Lazaric (2012).
This point is equally important in the domain of federated learning. Indeed, in recent
years there have been an increasing interest in the field of federated reinforcement
learning (FRL), where several agents cooperated to obtain an optimal policy, in an
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average sense; for example by sharing their local optimal policies with a federating
central agent, and without sharing their local data with other agents. Unfortunately,
when such FRL algorithms are based on simulation models of the environment, these
algorithms suffer from the same pitfalls of model-based RL, in the sense that model
uncertainties will unavoidably hinder the overall performance of FRL algorithm at
the deployment phase. This lack of robustness issue, is sometimes referred to in FRL
research community, as simulation-reality gap, e.g., Qi et al. (2021).

In light of these practical motivations, we propose to merge the two concepts of
RMDPs and CMDPs, leading to a new framework we refer to as RCMDPs. The
motivation is to ensure both safety and robustness. The goal of RCMDPs is to
learn policies that simultaneously satisfy certain safety constraints and also perform
well under worst-case scenarios. The contributions of this paper are threefold: 1)
formulate the concept of RCMDPs and derive related theories, 2) propose gradient
based methods to optimize the RCMDP objective, and 3) independently derive a
Lyapunov-based reward shaping technique.

The chapter is organized as follows: Section 2 describes the formulation of
our RCMDP framework and the objective we seek to optimize. A Lagrange-based
approach is presented in Section 3 along with required gradient update formulas and
corresponding policy optimization algorithms. Section 4 is dedicated to the Lyapunov
stable RCMDPs and presents the idea of Lyapunov-based reward shaping. We draw
concluding remarks in Section 5.

2 Problem Formulation: RCMDP concept

We consider Robust Markov Decision Processes (RMDPs) with a finite number of
states S = {1, . . . ,S} and finite number of actionsA = {1, . . . , A}. Every action a ∈ A
is available for the decision maker to take in every state s ∈ S. After taking an action
a ∈ A in state s ∈ S, the decision maker transitions to a next state s′ ∈ S according
to the true, but unknown, transition probability p?s,a ∈ ∆

S and receives a reward
rs,a,s′ ∈ R. We use ps,a to denote transition probabilities from s ∈ S and a ∈ A, and
condense it to refer to a transition function as p =

(
ps,a

)
s∈S,a∈A ∈

(
∆S

)S×A. We
condense the rewards to vectors rs,a =

(
rs,a,s′

)
s′∈S ∈ R

S and r =
(
rs,a

)
s∈S,a∈A.

Our RMDP setting assumes that the transition ps,a is chosen adversarially from
an ambiguity set Ps,a ∈

(
∆S

)S×A for each s ∈ S and a ∈ A. An ambiguity set Ps,a,
defined for each state s ∈ S and action a ∈ A, is a set of feasible transitions quantifying
the uncertainty in transition probabilities. We restrict our attention to s,a−rectangular
ambiguity sets which simply assumes independence between transition probabilities
of different state-action pairs Le Tallec (2007); Wiesemann et al. (2013). We define
the L1−norm bounded ambiguity sets around the nominal transition probability
p̄s,a = E[p?s,a |D], for some dataset D as:

Ps,a =
{
p ∈ ∆S :



p − p̄s,a




1 ≤ ψs,a

}
,
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where ψs,a ≥ 0 is the budget of allowed deviations. This budget ψs,a can be computed
for each s ∈ S, a ∈ A using Hoeffding bound Russel & Petrik (2019): ψs,a =√

2
ns ,a

log SA2S

δ , where ns,a is the number of transitions in datasetD originating from
state s and an action a, and δ is the confidence level. This ψs,a, if used to compute a
policy in RMDPs, then guarantees that the computed return is a lower bound with
probability δ. Note, that this is just one specific choice for the ambiguity set. Our
method can be extended to any other type of ambiguity set, e.g., L∞−norm, Bayesian,
weighted, sampling based, etc.We useP to generally refer to3 Pτ =

⊗
st ∈S,at ∈A

Ps,a,
where τ denotes the total number of time steps starting from T − τ, with T the length
of the horizon, and t ∈ {T − τ,T − τ + 1, . . . ,T}. For example, with τ = T we have
PT =

⊗
st ∈S,at ∈A

Ps,a starting from time step 0. This collectively represents the
ambiguity set along with the notion of independence between state-action pairs
in a tabular setting with discrete states and actions. Sampling-based sets under
approximate methods, e.g., neural networks, for large and continuous problems also
extend on this similar notion of ambiguity sets Tamar et al. (2014); Derman et al.
(2018).

A stationary randomized policy π(·|s) for state s ∈ S defines a probabil-
ity distribution over actions a ∈ A. The set of all randomized stationary poli-
cies is denoted by Π ∈

(
∆A

)S. We parameterize the randomized policy for
state s ∈ S as πθ (·|s) where θ ⊆ Rk is a k−dimensional parameter vector. Let
ξ = {s0,a0,r0, . . . , sT−1,aT−1,rT−1, sT } be a sampled trajectory generated by execut-
ing a policy πθ from a starting state s0 ∼ p0 under transition probabilities p ∈ P,
where p0 is the distribution of initial states. Then the probability of sampling a tra-
jectory ξ is: pπθ (ξ) = p0(s0)

∏T−1
t=0 πθ (at |st )p(st+1 |st,at ) and the total reward along

the trajectory ξ is: g(ξ,r) =
∑T−1

t=0 γ
trst ,at ,st+1 Puterman (2005); Sutton & Barto

(2018). The value function vπθp : S→ R for a policy πθ and transition probability p
is: vπθp = Eξ∼p

[
g(ξ,r)

]
and the total return is:

ρ(πθ, p,r) = pT0 v
πθ
p .

Because the RMDP setting considers different possible transition probabilities
within the ambiguity set P, we use a subscript p (e.g. vπθp ) to indicate which one is
used, in case it is not clear from the context.

We define a robust value function v̂πθ
P

for an ambiguity set P as: v̂πθ
P
= minp∈P v

πθ
p .

Similar to ordinary MDPs, the robust value function can be computed using the
robust Bellman operator Iyengar (2005); Nilim & Ghaoui (2005):

(TPv)(s) := max
a∈A

min
p∈Ps ,a

(rs,a + γ · pTv).

The optimal robust value function v̂?, and the robust value function v̂πθ
P

for a policy
πθ are unique and satisfy v̂? = TP v̂

? and v̂πθ
P
= T

πθ
P
v̂πθ Iyengar (2005). The robust

return ρ̂(πθ,P,r) for a policy πθ and ambiguity set P is defined as Nilim & Ghaoui
(2005); Russel & Petrik (2019):

3 Where
⊗

denotes the Cartesian product of sets.
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ρ̂(πθ,P,r) = min
p∈P

ρ(πθ, p,r) = pT0 v̂
πθ
P
,

where p0 is the initial state distribution.

2.1 Robust Constrained MDP (RCMDP):

In addition to rewards rs,a for RMDPs described above, we incorporate a constraint
cost d ′s,a,s′ ∈ R, where s, s′ ∈ S and a ∈ A, representing some kind of constraint on
safety for the agent’s behavior. Consider for example an autonomous car that makes
money (reward r) for each complete trip but incurs a big fine (constraint cost d) for
traffic violations or a collision. We define the constraint cost d ′s,a,s′ to be a negative
reward ds,a,s′ = −d ′s,a,s′ , which brings consistency in representing the worst-case
with a minimum over the ambiguity set P for both the objective and the constraint.
An associated constraint budget β ∈ R+ describes the total budget for constraint
violations. This arrangement resembles the constrained-MDP setting as described in
Altman (2004), but with additional robustness.

Similar to reward based estimates described above, the total constraint cost along
a trajectory ξ is: g(ξ, d) =

∑∞
t=0 γ

tdst ,at ,st+1 , the robust value function for policy πθ
and ambiguity set P is: ûπθ = minp∈P Eξ∼p

[
g(ξ, d)

]
and the robust return:

ρ̂(πθ,P, d) = min
p∈P

ρ(πθ, p, d) = pT0 ûπθ .

Similar to v̂?, the optimal constraint value function û? is also unique and independently
satisfies the Bellman optimality equation Altman (2004). We now formally define the
objective of Robust Constrained MDP (RCMDP) as below:

maximize
πθ ∈ Π

ρ̂(πθ,P,r), (1a)

subject to ρ̂(πθ,P, d) ≥ β. (1b)

This objective resembles the objective of a CMDP Altman (2004), but with additional
robustness integrated by the quantification of the uncertainty about the model. The
interpretation of the objective is to find a policy πθ that maximizes the worst-case
return estimates, while satisfying the constraints in all possible situations.

3 Robust Constrained Optimization

A standard approach for solving the optimization problem (1) is to apply the Lagrange
relaxation procedure (Bertsekas (2003), Ch.3), which turns it into an unconstrained
optimization problem:
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L(πθ, λ) = ρ̂(πθ,P,r) − λ
(
β − ρ̂(πθ,P, d)

)
, (2)

where λ is known as the Lagrange multiplier. Note that, the objective in (2) is
non-convex and therefore is not tractable. The dual function of L(πθ, λ) involves a
point-wise maximum with respect to πθ and is written as Paternain et al. (2019):

d(λ) = max
πθ ∈Π

L(πθ, λ).

The dual function d(λ) provides an upper bound on (2) and therefore needs to be
minimized to contract the gap from optimality:

D
? = min

λ∈R+
d(λ). (3)

The dual problem in (3) is convex and tractable, but the question remains about how
large the duality gap is. In other words, how sub-optimal the solution D? of the dual
problem (3) is with respect to the solution of the original problem stated in (1). To
answer that question, Paternain et al. (2019) show that strong duality holds in this
case under some mild conditions and the duality gap is arbitrarily small even with the
parameterization (πθ ) of policies. We thus aim to optimize the dual version of this
problem using gradients.

Proposition 1 The relaxed RCMDP objective of (2) can be restated as:

L(πθ, λ) =
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
− λβ. (4)

Proof We defer the detailed derivation to Appendix 6.1. �

The goal is then to find a saddle point (πθ∗, λ∗) of L in (4) that satisfies L(πθ, λ∗) ≤
L(πθ

∗, λ∗) ≤ L(πθ
∗, λ), ∀θ ∈ Rk and ∀λ ∈ R+. This is achieved by ascending in

θ and descending in λ using the gradients of objective L with respect to θ and λ
respectively Chow & Ghavamzadeh (2014).

Theorem 1 The gradient of L with respect to θ and λ can be computed as:

∇θL(πθ, λ) =
∑
ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ (at |st )
πθ (at |st )

,

∇λL(πθ, λ) =
∑
ξ

pπθ (ξ)g(ξ, d) − β.

Proof See Appendix 6.2 for the detailed derivation. �

With a fixed Lagrange multiplier λ, the constraint budget β in (4) offsets the sum
by a constant amount. We can therefore omit this constant and define the Bellman
operator for RCMDPs. We then show that this operator is a contraction.
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Proposition 2 (Bellman Equation) For a fixed policy πθ and discount factor γ, the
RCMDP value function ŵπθ satisfies a Bellman equation for each s ∈ S:

ŵπθ (s) = min
p∈Ps ,πθ (s)

Es′∼p

[
r ′s,πθ (s),s′ + γŵ

πθ (s′)
]
, (5)

where r ′
s,πθ (s),s′

= rs,πθ (s),s′ + λds,πθ (s),s′ .

Proof The proof is deferred to Appendix 6.3. �

We define the Bellman optimality equation for RCMDPs as:

(Trc
P ŵ)(s) := max

a∈A
min

p∈Ps ,a

(r ′s,a + γ Ûp
Tŵ). (6)

Proposition 3 (Contraction) The Bellman operator Trc
P
defined in (6) is a contraction.

Proof The proof follows directly from Theorem 3.2 of Iyengar (2005). �

The RCMDP Bellman operatorTrc
P
therefore satisfies the Bellman optimality equation

and converges to a fixed point of the optimal RCMDP value function ŵ?.

3.1 Policy Gradient Algorithm:

Algorithm 1 presents a robust constrained policy gradient algorithm based on the
gradient update rules derived above in Theorem 1. The algorithm proceeds in an
episodic way based on trajectories and updates parameters based on the Monte-Carlo
estimates. The algorithm requires an ambiguity set P as its input, which can be
constructed with empirical estimates for smaller problems Wiesemann et al. (2013);
Russel & Petrik (2019); Behzadian et al. (2021). For larger problems it can be a
parameterized estimate instead Janner et al. (2019).

The step size schedules used in Algorithm 1 satisfy the standard conditions for
stochastic approximation algorithms Borkar (2009). That is, θ-update is on the fastest
time-scale ζ2(k), whereas λ-update is on a slower time-scale ζ1(k), and thus results
in a two time-scale stochastic approximation algorithm. We derive its convergence to
a saddle point as below.

Theorem 2 Under assumptions (A1) - (A7) as stated in Appendix 6.5, the sequence
of parameter updates of Algorithm 1 converges almost surely to a locally optimal
policy πθ? as the number of trajectories k →∞.

Proof We report the proof in Appendix 6.5.1. �
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Algorithm 1: Robust-Constrained Policy Gradient (RCPG) Algorithm
Input: A differentiable policy parameterization πθ , ambiguity set P, confidence level δ,

step size schedules ζ2 and ζ1.
Output: Policy parameters θ

1 Initialize policy parameter: θ ← θ0
2 for k ← 0, 1, 2, . . . do
3 Sample initial state s0 ∼ p0, initialize trajectory: ξ ← ∅
4 for t ← 0, 1, 2, . . . ,T do
5 Sample action: at ∼ πθ (· |st )

6 Worst-case transitions with confidence α: p̂πθ ← arg minp∈Ps ,a
pT v̂πθ

7 Sample next state: st+1 ∼ p̂πθ , observe rst ,at ,st+1 and dst ,at ,st+1 .
8 Record transition: ξ ←

{
st , at , st+1, rst ,at ,st+1 , dst ,at ,st+1 ,

∇θ πθ (at |st )
πθ (at |st )

}
9 θ-update: θ ← θ + ζ2(k)∇θL(πθ , λ)

10 λ-update: λ← λ − ζ1(k)∇λL(πθ , λ)

11 return θ;

3.2 Actor-Critic Algorithm:

The general issue of having high variance in the Monte Carlo based policy gradient
algorithm can be handled by introducing state values to use as baselines Sutton &
Barto (2018). As the optimal value function for RCMDPs can be computed using
Bellman style recursive updates as shown in (5), an extension of the above PG
algorithm to the actor-critic framework is straightforward. Algorithm (2) reported in
Appendix 6.4 presents an actor-critic (AC) algorithm for RCMDPs. The state-value
parameterization with f brings a new dimension in algorithm (2) and results in a three
time-scale stochastic algorithm. The convergence properties for this AC algorithm
can be derived in a way similar to Theorem 2 and we therefore omit the detailed
derivations.

4 Stable Robust-Constrained RL: Lyapunov-based RCMDP
Concept

In this section, we propose Lyapunov-based4 reward shaping for RCMDPs. The
motivation of this is threefold: i) learn a good policy faster, ii) serve as a proxy to
guide robustness when an estimate for the value function is not readily available and
iii) guarantee stability (in the sense of Lyapunov) in the learning process. We first
briefly introduce the idea of Lyapunov stability, Lyapunov function, and some of

4 Other works have applied different notions of Lyapunov stability in the context of model-based
RL Farahmand & Benosman (2017); Berkenkamp et al. (2017) and MDPs Perkins & Barto (2001);
Chow et al. (2018), however, none of these works incorporate explicit robustness in their formulation,
i.e., in the context of RCMDP.
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its useful characteristics. We then introduce the notion of additive shaping reward
strategy based on Lyapunov functions and analyze its properties.

Definition 1 (Lyapunov stability) Haddad (2008) Consider the general nonlinear
discrete system (Sy) st+1 = f (st ), where s ∈ D ∈ Rn, D is an open set containing s?,
f : D→ D is a continuous function on D. Then, the equilibrium point s? of (Sy)
satisfying s? = f (s?), is said to be:

- Lyapunov stable if ∀ε > 0, ∃γ(ε) > 0, s.t., if ‖s0 − s?‖ < γ, then ‖st − s?‖ <
ε, ∀t ∈ Z+

- Asymptotically stable if Lyapunov stable and ∃γ > 0, s.t., if ‖s0 − s?‖ < γ, then
lim
t→∞
‖st − s?‖ = 0.

Definition 2 (Lyapunov direct method) Haddad (2008) Consider the system (Sy),
and assume that there exists a continuous Lyapunov function V : D→ R, s.t.,


V(s?) = 0 (7a)
V(s) > 0, s ∈ D \ {s?} (7b)
V( f (s)) − V(s) ≤ 0, s ∈ D, (7c)

then the equilibrium point s? is Lyapunov stable. If, in addition V( f (s)) − V(s) <
0, s ∈ D \ {s?}, then s? is asymptotically stable.

4.1 Stability Constraints for RMDPs

We propose to incorporate the Lyapunov stability descent property (7c) as a constraint
in the RCMDP objective (1) , where the constraint cost is given by d ≡ ds =
−(V(st+1) − V(st )). We set the budget β = 0 to enforce Lyapunov stability or set
β > 0 for achieving asymptotic stability. Note that in this setting, we assume that the
only constraint cost is the stability cost ds , and thus we are in the setting of RMPDs
to which we add a virtual stability constraint cost.

In this setting, we applyAlgorithm1 to propose a Lyapunov stable-RCPGalgorithm,
and use the results of Theorem 2, to deduce its asymptotic convergence to a local
optimal stationary policy for the infinite horizon case. We summarize this in the
following proposition.

Proposition 4 Under assumptions (A1) - (A7) as stated in 6.5, the sequence of
parameter updates of Algorithm 1, where d ≡ ds, β = 0, converges almost surely to
a locally optimal a.s. Lyapunov stable policy θ? as k →∞. Furthermore, if β > 0,
the policy is a.s. asymptotically stable.

Proof Consider the control problem defined by (1), under assumptions (A1) - (A7),
and where d ≡ ds = −(V(st+1) −V(st )). Then, based on Theorem 2, we can conclude
that Algorithm 1, converges asymptotically almost surely to a local optimal policy θ?.
Furthermore, since θ? is computed under the constraint of Lyapunov descent property
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in expectation, the equilibrium point of the controlled system is a.s.5 Lyapunov
stable (Definition 3.5, Mahmoud et al. (2003)) when β = 0, and a.s. asymptotically
Lyapunov stable (Definition 3.8, Mahmoud et al. (2003)) when β > 0. �

Remark 1 The convergence speed of the Lyapunov-RL algorithm defined in Proposi-
tion 4 is correlated with the Lyapunov descent constraint (7c). If the Lyapunov descent
gap V(st+1, π(st+1)) − V(st, π(st )) is large, the RL algorithm will reach the optimal
(Lyapunov stable) policy faster. Unfortunately, the choice of the ‘best’ Lyapunov
function is a difficult problem, and remains a case-by-case design problem, often
informed by the physics of the controlled system.

4.2 Stability Constraints for RCMDPs

In the case where the problem at hand is an RCMPD with a constraint cost d (e.g.
physical obstacle avoidance constraints for a mobile robot). We take the parallel
between the notions of soft constraints, where the Lyapunov descent constraints is
not enforced as a constraint cost as in Sec. 4.1, and reward shaping Ng et al. (1999).
Indeed, we propose to add the Lyapunov stability descent constraint directly to the
reward r of the RCMDP (1).

4.3 Reward Shaping with Lyapunov Constraint:

We define the shaping reward function fs,a,s′ → R based on this Lyapunov descent
property.

fs,a,s′ = −(V(s′) − V(s)) (8)

The motivation behind this is quite intuitive: a transition towards descend direction
leads to a desired region of the state space faster and therefore should be rewarded. So,
if we were to receive a reward rs,a,s′ in the original setting, we instead would pretend
to receive a reward of rs,a,s′ + fs,a,s′ on the same event. This renders a transformed
RCMDPM′ with same state space, action space and transition probabilities. Only
the reward function is reshaped with additional reward signals f .

Theorem 3 Every optimal finite-horizon policy in transformed RCMDPM′ is also
an optimal finite-horizon policy in the original RCMDPM under Lyapunov-based
reward transformation stated in (8). Furthermore, under the assumption of transient
MDP, every infinite-horizon policy in transformed RCMDP M′ is also an optimal
finite-horizon policy in the original RCMDPM.

Proof In the finite-horizon case, this result is a simple extension of Theorem 1 of Ng
et al. (1999) into the RCMDP setting and the proof follows directly from Ng et al.

5 Almost surely–a.s.–(asymptotic) Lyapunov stability is to be understood as (asymptotic) Lyapunov
stability for almost all samples of the states.
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(1999). In the infinite-horizon case, one needs to rely on the transient assumption
for the MDP (in the sense of Def. 7.1 in Altman (2004)) to conclude about the
convergence of the finite-horizon problem to the infinite-horizon problem, using the
arguments in (Theorem 15.1, Altman (2004)) . See 7.1 for the full derivation. �

Remark 2 Note that the concept of Lyapunov reward transformation is independent of
the RL algorithm, and thus can be applied with any existing mainstream approaches
such as TRPO, PPO, or CPO. The Lyapunov reward transformation will allow faster
convergence for these existing approaches.

5 Conclusion

In this chapter, we introduced the concept of robust constrained MDPs (RCMDPs)
to simultaneously deal with constraints and model uncertainties in reinforcement
learning, which has clear applications in sim2real transfer RL and in closing the
simulation-reality gap in federated RL, e.g., Qi et al. (2021).We proposed the RCMDP
framework, derived related theoretical analysis and proposed algorithms to optimize
the objective of RCMDPs. We also proposed an extension to Lyapunov-RCMDPs
(L-RCMDPs) for RCMDPs based on the Lyapunov stability theory. We analyzed
the performance of our L-RCMDP algorithms in the context of reward-shaping.
We provided theoretical analysis of Lyapunov stability and asymptotic convergence
for our methods. Future work should focus on automated learning of the Lyapunov
function from the domain itself, quantification of the Lyapunov induced acceleration
in the learning, and application of the proposed approach to some practical problem
domains.

Acknowledgements If you want to include acknowledgments of assistance and the like at the end
of an individual chapter please use the acknowledgement environment – it will automatically be
rendered in line with the preferred layout.
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Appendix

6 RCMDP Derivations

6.1 Proof of Proposition 1

We rewrite the objective (2) and perform some algebraic manipulation as below:

L(πθ, λ) = ρ̂(πθ,P,r) − λ
(
β − ρ̂(πθ,P, d)

)
(a)
= min

p∈P
Eξ1∼p

[
g(ξ1,r)

]
− λ

(
β −min

q∈P
Eξ2∼q

[
g(ξ2, d)

] )
(b)
= Eξ1∼p̃

[
g(ξ1,r)

]
+ λEξ2∼q̃

[
g(ξ2, d)

]
− λβ

=
∑
ξ1∈Ξp̃

pπθ (ξ1)g(ξ1,r) + λ
∑
ξ2∈Ξq̃

pπθ (ξ2)g(ξ2, d) − λβ

Where Ξp̃ is the set of all possible trajectories induced by policy πθ under transition
function p̃. Similarly, Ξq̃ is the set of all possible trajectories induced by policy πθ
under transition function q̃. Step (a) above follows by assuming that the initial state
distribution p0 concentrates all of its mass to one single state s0. And (b) follows
with p̃ = arg minp∈P Eξ1∼p

[
g(ξ1,r)

]
and q̃ = arg minq∈P Eξ2∼q

[
g(ξ2, d)

]
. Note that,

p̃ and q̃ are distinct, independent and depend on rewards r and constraint costs d
respectively. However, the rewards and constraint costs are coupled together in reality,
meaning that the set of two trajectories Ξp̃ and Ξq̃ would not be different. So we
select one set of trajectories Ξ being either Ξp̃ or Ξq̃ . This selection of Ξ may happen
based on our priorities toward robustness of reward r (with corresponding trajectory
Ξp̃) or constraint cost d (with corresponding trajectory Ξq̃). Or, it can also be the best
(e.g. yielding higher objective value) set among Ξp̃ and Ξq̃ satisfying the constraint.
We then have a simplified formulation for L as below:

L(πθ, λ) =
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
− λβ

6.2 Proof of Theorem 1

Proof The objective as specified in (4):

L(πθ, λ) =
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
− λβ

We first derive the gradient update rule of L(πθ, λ) with respect to θ as below:
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∇θL(πθ, λ) =
∑
ξ ∈Ξ

∇θpπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
=

∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
∇θ log pπθ (ξ)

=
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
∇θ log

(
p0(s0)

T−1∏
t=0

p(st+1 |st,at )πθ (at |st )
)

=
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
∇θ

(
log p0(s0) +

T−1∑
t=0

log p(st+1 |st,at ) + log πθ (at |st )
)

=
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

) T−1∑
t=0
∇θ log πθ (at |st )

=
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ (at |st )
πθ (at |st )

Next, we derive the gradient update rule for L(πθ, λ) with respect to λ:

∇λL(πθ, λ) = ∇λ

( ∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

)
− λβ

)
=

∑
ξ ∈Ξ

pπθ (ξ)g(ξ, d) − β
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6.3 Proof of Proposition 2

Proof
ŵπθ (s) = min

p∈PT

Eξ∼p
[
g(ξ,r) + λg(ξ, d)

]
(a)
= min

p∈PT

Eξ∼p

[
rs,πθ (s),s′ + γrs′,πθ (s′),s′′ + γ

2rs′′,πθ (s′′),s′′′ . . .

+ λ
(
ds,πθ (s),s′ + γds′,πθ (s′),s′′ + γ

2ds′′,πθ (s′′),s′′′ + . . .
)
|ξ

]
= min

p∈PT

Eξ∼p

[ (
rs,πθ (s),s′ + λds,πθ (s),s′

)
+ γ

(
rs′,πθ (s′),s′′ + λds′,πθ (s′),s′′

)
+ γ2 (rs′′,πθ (s′′),s′′′ + λds′′,πθ (s′′),s′′′

)
+ . . . |ξ

]
= min

p∈PT

Eξ∼p

[
r ′s,πθ (s),s′ + γr ′s′,πθ (s′),s′′ + γ

2r ′s′′,πθ (s′′),s′′′ + . . . |ξ
]

(b)
= min

p∈Ps ,πθ (s)

Es′∼p

[
r ′s,πθ (s),s′ + γ min

p∈PT−1
Eξ′∼p

[
r ′s′,πθ (s′),s′′ + γr ′s′′,πθ (s′′),s′′′ + . . . |ξ

′
] ]

= min
p∈Ps ,πθ (s)

Es′∼p

[
r ′s,πθ (s),s′ + γŵ

πθ (s′)
]

Here (a) follows by expanding total return given a trajectory ξ and (b) follows by
evaluating the one-step immediate transition apart. �

6.4 Actor-Critic Algorithm
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Algorithm 2: Robust Constrained Actor Critic (RC-AC) Algorithm
Input: A differentiable policy parameterization πθ , a differentiable state-value function

wπθ (s, f ), confidence level α, step size schedule ζ1, ζ2 and ζ3.
Output: Policy parameters θ

1 Initialize policy parameter θ ∈ Rk and state-value weights f ∈ Rk ′ ;
2 for j ← 0, 1, 2, . . . do
3 Sample initial state s0 ∼ p0, set time-step t ← 0;
4 while st is not terminal do
5 Sample action: at ∼ πθ (· |st )

6 Worst-case transitions with confidence α: p̂πθ ← arg minp∈Ps ,a
pTwπθ

7 Sample next state st+1 ∼ p̂πθ and observe rst ,at ,st+1 and dst ,at ,st+1 ;
8 TD error: δt ← r′st ,at ,st+1 + γw

πθ (st+1, f ) − w
πθ (st , f );

9 f update: f ← f + ζ1(k)δt ∇ f w
πθ (st , f );

10 θ update: θ ← θ + ζ2(k)δt ∇θL(πθ , λ);
11 λ update: λ← λ − ζ3(k)∇λL(πθ , λ);
12 t ← t + 1;

13 return θ ;

6.5 Convergence Analysis of RCPG Algorithm

Assumptions

(A1) For any state s, policy πθ (.|s) is continuously differentiable with respect to
parameter θ and ∇θπθ (.|s) is a Lipschitz function in θ for every s ∈ S and a ∈ A.

(A2) The step size schedules {ζ2(t), ζ1(t)} satisfy:∑
t

ζ1(t) =
∑
t

ζ2(t) =
∑
t

ζ3(t) = ∞ (9)

∑
t

ζ1(t)2,
∑
t

ζ2(t)2 ≤ ∞ (10)

ζ1(t) = o
(
ζ2(t)

)
(11)

These assumptions are basically standard step-size conditions for stochastic
approximation algorithms (Borkar, 2009). Equation (9) ensures that the discretization
covers the entire time axis. (10) ensures that the errors resulting from the discretization
of the Ordinary Differential Equation (ODE) and errors due to the noise both becomes
negligible asymptotically with probability one (Borkar, 2009). Equations (9) and (10)
together ensure that the iterates asymptotically capture the behavior of the ODE. (11)
mandates that, updates corresponding to ζ1(t) are on a slower time scale than ζ2(t).

6.5.1 Policy Gradient Algorithm

The general stochastic approximation scheme used by Borkar (2009) is of the form:
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xt+1 = tn + a(t)[h(xt ) + ∆t+1] (12)

where {∆t } are a sequence of integrable random variables representing the noise
sequence and {at } are step sizes (e.g. ζ(t)). The expression h(xt ) + ∆t+1 inside the
square bracket is the noisy measurement where h(xt ) and ∆t+1 are not separately
available, only their sum is available. The terms of (12) need to satisfy below
additional assumptions:

(A3)

The function h : Rd → Rd is Lipschitz. That is ‖h(x) − h(y)‖ ≤ L‖x − y‖ for some
0 ≤ L ≤ ∞.

(A4)

{∆t } are martingale difference sequence:

E[∆t+1 |xn,∆n,n ≤ t] = 0

In addition to that, {∆t } are square-integrable:

E[‖∆t+1‖
2 |xn,∆n,n ≤ t] ≤ K(1 + ‖xt ‖2) a.s. for t ≥ 0,

and for some constant K > 0.
Our proposed policy gradient algorithm is a two time-scale stochastic approxima-

tion algorithm. The parameter update iterations of the policy gradient algorithm are
defined as below:

θt+1 = θt + ζ2(t)∇θL(πθ, λ) (13)

λt+1 = λt − ζ1(t)∇λL(πθ, λ) (14)

These gradient update rules defined in (13) and (14) are in a special form as:

xt+1 = xt + a(t) f (xt, εt ), t ≥ 0 (15)

Where {ε} is a zero mean i.i.d. random variable representing noise.
To apply general convergence analysis techniques derived for (12) in Borkar

(2009), we take the special form in (15) and transform it to the general format of (12)
as below:

h(x) = E
[

f (x, ε1)
]
and ∆n+1 = f (xn, εn+1) − h(xn) (16)

With these transformation techniques, we obtain the general update for θ from
(13):
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θ update:

θt+1 = θt + ζ2(t)
[
h(θt, λt ) + ∆

(1)
t+1

]
(17)

where, f (1)(θt, λt ) = ∇θL(πθ, λ) is the gradient w.r.t θ, h(θt, λt ) = E[ f (1)(θt, λt )],
and ∆(1)

t+1 = f (1)(θt, λt ) − h(θt, λt ). Note that, the noise term ε is omitted because the
noise is inherent in our sample based iterations.

Proposition 5 h(θt, λt ) is Lipschitz in θ.

Proof Recall that the gradient of L(πθ, λ) with respect to θ is:

∇θL(πθ, λ) =
∑
ξ ∈Ξ

pπθ (ξ)
(
g(ξ,r) + λg(ξ, d)

) T−1∑
t=0

∇θπθ (at |st )
πθ (at |st )

(18)

Assumption (A1) implies that, ∇θπθ (at |st ) in the equation (18) is a Lipschitz
function in θ for any s ∈ S and a ∈ A. As the expectation of sum of |T | number of
Lipschitz functions is also Lipschitz, we conclude that h(θt, λt ) is Lipschitz in θ.

Proposition 6 ∆(1)
t+1 of (17) satisfies assumption (A4).

We transform our update rule of (14) as:

λ update:

λt+1 = λt − ζ1(t)
[
g(θt, λt ) + ∆

(2)
t+1

]
(19)

where, f (2)(θt, λt ) = ∇λL(πθ, λ) is the gradient w.r.t λ, g(θt, λt ) = EM [ f (2)(θt, λt )],
and ∆(2)

t+1 = f (2)(θt, λt ) − h(θt, λt ).
Notice that ∇λL(πθ, λ) =

∑
ξ p̂θ (ξ)g(ξ, d) − β is a constant function of λ. And

therefore, g(θt, λt ) is a constant function of λ.

Proposition 7 ∆(2)
t+1 of (19) satisfies assumption (A4).

We now focus on the singularly perturbed ODE obtained from (17) and (19).

Ûθ = ζ2(t)h(θt, λt ) (20)

Ûλ = −ζ1(t)g(θt, λt ) (21)

With assumption (A2), λ(·) is quasi-static from the perspective of θ(·) turning (20)
into an ODE. where λ is held fixed:

Ûθ = ζ2(t)h(θt, λ) (22)

We additionally assume that:
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(A5)

(22) has a globally asymptotically stable equilibrium x(λ) such that x is a Lipschitz
map.

Assumption (A5) turns (21) into:

Ûλ(t) = g(x(λt ), λt ) (23)

Let’s further assume that:

(A6)

The ODE (23) has a globally asymptotically stable equilibrium λ?.

(A7)

supt (‖θt ‖ + ‖λt ‖) < ∞ almost surely.

Proof of Theorem 2

Proof Above are the necessary conditions to apply Theorem 2 from chapter 6 of
Borkar (2009), which shows that (θt, λt ) → (x(λ?), λ?). Now the saddle point theorem
assures that θ? = x(λ?) maximizes the Lagrange optimization problem stated in
(4). �

7 Reward Shaping in RCMDPs

7.1 Proof of Theorem 3

Proof The robust optimal q-function satisfy the robust Bellman equation for the
original RCMDPM:

q̂?
M
(s,a) = min

p∈Ps ,a

Es′∼p

[
r ′s,a,s′ + γ max

a′∈A
q̂?
M
(s′,a′)

]
Subtracting V(s) and some algebraic manipulation gives:

q̂?
M
(s,a) + V(s) = min

p∈Ps ,a

Es′∼p

[
r ′s,a,s′ − γV(s

′) + V(s) + γ max
a′∈A

(
q̂?
M
(s′,a′) + V(s′)

) ]
(a)
= min

p∈Ps ,a

Es′∼p

[
r ′s,a,s′ −

(
V(s′) − V(s)

)
+ max

a′∈A

(
q̂?
M
(s′,a′) + V(s′)

) ]
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Here (a) follows by setting γ = 1, and considering the finite-horizon setting, i.e.,
gπ(ξ,r) =

∑N
t=0 γ

trst ,at ,st+1 .
We now define q̂M′(s,a)

δ
= q̂?

M
(s,a) + V(s) and set fs,a,s′ = −

(
V(s′) − V(s)

)
. We

therefore have:

q̂M′(s,a) = min
p∈Ps ,a

Es′∼p

[ (
r ′s,a,s′ + fs,a,s′

)
+ max

a′∈A
q̂M′(s′,a′)

]
But this is exactly the Bellman equation for reward transformed RCMDP M′. We
then have:

q̂?
M′
(s,a) = q̂M′(s,a) = q̂?

M
(s,a) + V(s)

And the optimal policy forM′ satisfies:

π?
M′
(s) ∈ argmax

a∈A

q̂?
M′
(s,a)

= argmax
a∈A

q̂?
M
(s,a) + V(s)

= argmax
a∈A

q̂?
M
(s,a)

And is optimal for the original RCMDPM as well. Similarly, it can be shown that
every optimal policy of original RCMDP M is also optimal for the transformed
RCMDPM′ simply by following exactly same steps as shown above, but with shaping
function − fs,a,s′ and the role ofM andM′ interchanged.

Next, consider the case of infinite-horizon,i.e., λ < 1. To extend the convergence
result obtained for the case of finite-horizon with λ = 1 to this case, we rely on
the results in Altman (2004). Indeed, under the reasonable6 assumption of transient
MDPs (Def. 7.1, p. 75, Altman (2004)), we can conclude, in our specific case of
finite-state and finite-actionMDPs, that ourMDPs are contracting (using the argument
in Altman (2004), p. 99). Next, using Theorem 7.5, Altman (2004), we conclude
that our MDPs admit a uniform Lyapunov function (in the sense of Def. 7.4, p. 77,
Altman (2004)). Finally, under the Slater feasibility condition, i.e., inequality (1b)
satisfied, and using Theorem 15.5, p. 201, Altman (2004), we conclude that the value
of the infinite-horizon problem converges to the value of the finite-horizon one. �

6 Transient MDPs assume that the expected time we spend (under policy π) in any state s is finite.
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