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Abstract—A learning-based THz multi-layer imaging has been
recently used for contactless three-dimensional (3D) positioning
and encoding. We show a proof-of-concept demonstration of an
emerging quantum machine learning (QML) framework to deal
with depth variation, shadow effect, and double-sided content
recognition, through an experimental validation.

I. INTRODUCTION

The use of terahertz (THz) wave has drawn much attention
for various industrial applications due to contactless sensing,
usability under adversarial conditions (e.g., fire and smoke),
and robustness to dust and dirt [1]–[7]. We consider THz
positioning in a raster scanning mode [1]–[3] to recognize
three-dimensional (3D) internal layers as shown in Fig. 1(a).

Compared with 1D [1]–[3] and 2D encoders [4]–[6], the
multi-layer 3D THz encoders [7] can increase capacity by
exploiting THz penetration capability through non-conducting
materials. Nevertheless, we need to deal with practical chal-
lenges: 1) depth variation due to the platform vibration; 2)
shadow effect caused by non-uniform penetrating illumination
from front layers to deep layers; and 3) content recognition
in the back surface of each layer. Recently, deep learning has
shown promising results to tackle those issues [6], [7].

In this paper, we further extend it by introducing an
emerging quantum machine learning (QML) framework [8],
which offers exponentially rich state representation for feature
extraction. To the best of our knowledge, this is the very first
proof-of-concept paper of QML applied to THz sensing.

II. QML-ASSISTED THZ MULTI-LAYER IMAGING

A. Quantum Machine Learning (QML)

An emerging QML framework has been recently applied
to variout applications including sensing and communica-
tions [9]–[11], envisioning future era of quantum supremacy.
Quantum computers have the potential to realize computa-
tionally efficient signal processing compared to traditional
digital computers by exploiting quantum mechanism, e.g.,
superposition and entanglement, in terms of not only execution
time but also energy consumption. In the past few years,
several vendors have successfully manufactured commercial
quantum processing units (QPUs). For instance, IBM released
127-qubit QPUs in 2021, and plans to produce 1121-qubit
QPUs by 2023. Recently, hybrid quantum-classical algorithms
based on the variational principle were introduced as a state-
of-the-art QML method to deal with quantum noise.
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(a) THz-TDS multi-layer imaging (b) Shaddow effect

Fig. 1: (a) THz-TDS 3D positioning with multi-layer 2D
encoders; (b) the shadow of three letters on the 1st layer is
seen on the 2nd layer.

B. Proposed QML Method

We consider a variational quantum circuit (VQC) to ex-
tract features as shown in Fig. 2. The VQC uses amplitude
embedding to prepare quantum state according to THz-TDS
waveform-domain signal, and the state evolves through a 2-
design ansatz [8], which can approximately represent arbitrary
unitary rotations, whose size is exponential to the number of
variational angle parameters. The advantage of the VQC lies in
the fact that even small number of qubits and trainable param-
eters can support a long waveform (e.g., 10-qubit circuits can
encode 1024-sample signals). After quantum measurement, the
extracted features are post-scaled or processed by additional
classifier. We then try to optimize VQC by minimizing the
binary cross-entropy loss on each surface of material layers to
address the shadow effect and contents recovery.

The QML feeds THz-TDS waveform-domain signal with a
size of 196-sample points, which are embedded into quantum
amplitudes of 8-qubits QPU. The quantum states are modified
by the 2-design ansatz having 2 layers of staggerred Pauli-
Y rotations and controlled-Z entanglers. Finally, the quantum
state is measured as a transformed feature vector of size 196.
We further use a deep neural network (DNN) model to analyze
the feature vector for the classification. The DNN model uses
5 linear layers with Mish activations and batch normalizations,
whose node sizes are halved successively. The number of
trainable parameters is 28 and 36,674, respectively for QML
and DNN models. They are trained over 1000 epochs by
the stochastic gradient descent algorithm with a learning rate
decaying by 0.5 every 10 epochs from the initial value of 5.0.
The minibatch size is chosen to be 128.

III. EXPERIMENTAL VALIDATION

Fig. 3 shows our THz-TDS testbed, where a 3-layer sample
is mounted on the raster scanning stage. Both front and back
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Fig. 2: VQC feature extraction for THz waveform analysis.
VQC employs amplitude embedding and 2-design ansatz to
convert THz-TDS waveform into a feature vector. For 3-layer
sample, 6 binary classification scores for all front and back
surfaces are computed for the model output.
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Fig. 3: THz-TDS multi-layer imaging testbed for raster scan
of double-sided papers.

surfaces of each layer are drawn with pencils to cover an area
of 40× 40 mm2 that is divided into 8× 8 = 64 pixels. Each
pixel of the size 5×5 mm2 is associated with a unique binary
label c according to the pencil drawings. For instance, c =
[1, 0, 1, 0, 1, 0] implies that all front surfaces are covered by
the drawing while the back surfaces are blank. With a scanning
stepsize of 0.5 mm, we have a set of 10×10 = 100 THz-TDS
waveforms for each pixel and then randomly split them into
the training (60%), validation (10%), and test (30%) datasets.

The learning trajectory in terms of the total classification
accuracy over 6 surfaces is shown in Fig. 4 over epochs. It
is seen that the QML-based model converges at around 100
epochs, which is faster than the DNN-based model. Moreover,
the QML method achieves nearly perfect prediction accuracy.

Fig. 5 shows the comparison of the traditional time-gated
reflection intensity approach with several learning-based ap-
proaches. The traditional approach suffers from the shadow-
ing effect from the front layers to the deep layers and the
limited separation between two closely spaced surfaces. On
the contrary, the learning-base methods show better content
recovery over the 6 surfaces with a reduced shadowing effect.
Nevertheless, deeper layers show less confident scores than
the front layers as expected. The state-of-the-art DNN method
having 36,674 trainable parameters significantly outperforms
the classical logistic regression method. Whereas, the proposed
QML-based method having just 28 VQC parameters achieves

(a) DNN (b) QML+DNN

Fig. 4: Training trajectory of classification accuracy over
epochs for validation dataset.
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Fig. 5: THz imaging recovery performance comparison: re-
flection intensity method; logistic regression method; DNN
method; QML+DNN method.

an excellent accuracy of 99.6% to assist the DNN classifier.

IV. CONCLUSIONS

This paper proposed the first proof-of-concept QML-based
THz multi-layer content extraction for high-capacity 3D po-
sitioning. The proposed quantum feature extraction method
integrated with DNN model was experimentally verified to
improve performance against depth variations and shadowing
effect for double-sided 3-laminate imaging.
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