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Abstract
We investigate a regularization framework for subject transfer learning in which we train an
encoder and classifier to minimize classification loss, subject to a penalty measuring indepen-
dence between the latent representation and the subject label. We introduce three notions
of independence and corresponding penalty terms using mutual information or divergence as
a proxy for independence. For each penalty term, we provide several concrete estimation
algorithms, using analytic methods as well as neural critic functions. We propose a hands-off
strategy for applying this diverse family of regular- ization schemes to a new dataset, which we
call “AutoTransfer”. We evaluate the performance of these individual regularization strategies
under our AutoTransfer framework on EEG, EMG, and ECoG datasets, showing that these
approaches can improve subject transfer learning for challenging real-world datasets
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Abstract—We investigate a regularization framework for
subject transfer learning in which we train an encoder and
classifier to minimize classification loss, subject to a penalty
measuring independence between the latent representation and
the subject label. We introduce three notions of independence
and corresponding penalty terms using mutual information
or divergence as a proxy for independence. For each penalty
term, we provide several concrete estimation algorithms, using
analytic methods as well as neural critic functions. We propose
a hands-off strategy for applying this diverse family of regular-
ization schemes to a new dataset, which we call “AutoTransfer”.
We evaluate the performance of these individual regularization
strategies under our AutoTransfer framework on EEG, EMG,
and ECoG datasets, showing that these approaches can improve
subject transfer learning for challenging real-world datasets.

Index Terms—Transfer Learning, Deep Learning, Regular-
ized Representation Learning, EEG, EMG, ECoG, AutoML

I. INTRODUCTION

In this work, we investigate methods for transfer learning
in the classification of biosignals data. Previous work has es-
tablished the difficulty of transfer learning for biosignals and
even the issue of so-called “negative transfer” [1], in which
naı̈ve attempts to combine datasets from multiple subjects or
sessions can paradoxically decrease model performance, due
to differences in response statistics. We address the problem
of subject transfer by training models to be invariant to
changes in a nuisance variable representing subject identifier
(ID). We examine previously established approaches and de-
velop several new approaches based on recent work in mutual
information estimation and generative modeling. We evaluate
these methods on a variety of electroencephalography (EEG),
electromyography (EMG), and electrocorticography (ECoG)
datasets, to demonstrate that these methods can improve
generalization to unseen test subjects. We also provide an
automated hyperparameter search procedure for applying
these methods to new datasets, which we call “AutoTransfer”.

Our basic approach to the transfer learning problem is
to censor an encoder model, such that it learns a represen-
tation that is useful for the task while containing minimal
information about changes in a nuisance variable (i.e., sub-
ject ID). The motivation behind our approach is related to
the information bottleneck method [2], though with a key
difference. Whereas the information bottleneck and related
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methods seek to learn a useful and compressed representation
from a supervised dataset without any additional information
about nuisance variation, we explicitly use additional nui-
sance labels in order to draw conclusions about the types of
variation in the data that should not affect our model’s output.
Many transfer learning settings will have such nuisance labels
readily available, and intuitively, the model should benefit
from this additional source of supervision. Our method
ranked first place in the subject-transfer task of the NeurIPS
BEETL challenge [3].

The key contributions of this paper are three-fold:
• We introduce a framework for subject transfer learning

with nuisance-censored representations.
• We derive regularization penalties to enforce censoring

via mutual information or divergence measures, and pro-
vide concrete estimation algorithms for these penalties
using techniques including neural critic functions and
analytic divergence estimates.

• We thoroughly evaluate these methods on challenging
real-world subject-transfer datasets, showing that these
methods improve generalization to unseen subject data.

II. LEARNING FRAMEWORK

Consider a dataset {(x, y, s)}N1 consisting of N triples
of data x ∈ RD, discrete task labels y ∈ {1, . . . , C}, and
discrete nuisance labels s ∈ {1, . . . ,M}. Let the generative
model for the data distribution be defined as:

pdata(x, y, s) = p(s)p(y|s)p(x|y, s). (1)

Our transfer learning model consists of a parametric
encoder fθ(.) : RD → RK producing a K-dimensional
latent representation z = fθ(x), as well as a parametric
task classifier gϕ(.) : RK → RC . We train this model to
approximate the posterior distribution over labels given an
input item x: gϕ(fθ(x)) ≈ pdata(y|x). For a given choice
of parameters θ, our encoder model implies a conditional
distribution qθ(z|x) on features z given the data x. We can
then define other conditional distributions of the features as:

qθ(z|y, s) =
∫
p(x|y, s)qθ(z|x)dx, (2)

qθ(z|y) =
∫
p(x|y)qθ(z|x)dx, (3)

p(x|y) =
∫
p(x|y, s)p(s|y)ds. (4)



Fig. 1: AutoTransfer pipeline for subject-invariant feature
censoring in transfer learning. Top: Model architecture. Sub-
ject s produces biosignals data x, which is mapped by
encoder fθ to latent code z. Classifier gϕ gives class proba-
bilities ŷ, resulting in task loss Ltask. Censoring models αψ
compute regularization penalty Lcensor to enforce indepen-
dence. Bottom: Regularization strategy. Subjects s1, s2 are
encoded, and their latent feature distributions are regularized.

A. Empirical Risk Minimization (ERM)

In the standard ERM framework, we would seek to jointly
learn parameters θ, ϕ that minimize the expected classifica-
tion risk, which we would approximate using an empirical
average over our training data. For some specified loss
function L and data distribution pdata(x, y, s), the risk is
defined as the expected classification loss:

R(θ, ϕ) = E
pdata(x,y,s)

[L(gϕ(fθ(x)), y)] . (5)

B. Regularized ERM using Censoring

We consider a regularized form of the ERM framework,
with an added penalty to enforce independence between the
learned representation z and the nuisance variable s, so
that the classifier model gϕ can achieve similar performance
across different subjects. This regularized learning framework
is outlined in Fig. 1.

We consider three overall notions of independence between
latent representation and nuisance variable, which we refer
to as “censoring modes”:

1) In “marginal censoring”, we try to make representation
z marginally independent of nuisance variable s: z ⊥ s.

2) In “conditional censoring”, we try to make z condition-
ally independent of s, given the task label y: z ⊥ s|y.

3) In “complementary censoring”, we partition the latent
space into two halves z = (z(1), z(2)), such that the
first half z(1) is marginally independent of s, while
maximizing the mutual information between the second
half z(2) and s.

Marginal censoring captures the simplest notion of a
“subject-independent representation”. When the distribution
of labels does not depend on the nuisance variable p(y|s =

s1) = p(y|s = s2), and the nuisance variable s is therefore
not useful for the downstream task, this marginal censoring
approach will not conflict with the task objective. However,
there may naturally exist some correlation between y and
s (i.e., subjects may perform the task differently); thus a
representation z that is trained to be useful for predicting
the task labels y may necessarily also be informative of s.
Conditional censoring accounts for this conflict between the
task objective and censoring objective by allowing that z
contains some information about s, but no more than the
amount already implied by the task label y. Complementary
censoring accounts for this conflict by requiring that one part
of the representation z is independent of the nuisance variable
s, while allowing the other part to depend strongly on the
nuisance variable.

We capture these three censoring modes in a regularized
ERM objective:

(θ∗, ϕ∗) = argmin
θ,ϕ

R(θ, ϕ) + λLcensor, (6)

where Lcensor is a penalty enforcing the desired independence.
Table I details the different forms for this penalty that we
consider, and the estimation methods used for each.

III. ESTIMATION TECHNIQUES

In this section, we derive several concrete methods for esti-
mating the mutual information and divergence penalties used
in the regularized objective functions outlined above. Further
details including pseudocode for the marginal, conditional,
and complementary versions of each technique can be found
starting in Appendix A1 of [8].

A. Mutual Information Estimation Methods

We consider two ways to estimate the mutual information
penalties required for the censoring objectives given above.
First, we use an adversarial nuisance classifier, whose cross
entropy loss provides a surrogate for the mutual information
between s and z (see Section III-A1). Second, we use Mutual
Information Gradient Estimation (MIGE) [4], which uses
score function estimators to compute the gradient of mutual
information. We consider several kernel-based score function
estimators (see Section III-A2).

1) Adversarial Censoring (Adv): We consider minimizing
the conditional mutual information between z and s given
y using an adversarial nuisance classifier model α with pa-
rameters ψ that maps latent representations z to a probability
distribution over the nuisance variable s: αψ(.) : RK → RM .
Previous research [5], [9] has established the technique of
learning subject-invariant representations by training models
in the presence of an adversarial subject classifier model.

Recall that for a given choice of encoder parameters θ,
we obtain representations z = fθ(x) for each data point.
For a given choice of adversary parameters ψ and encoder
parameters θ, computing the adversary’s cross entropy loss
LCE, ADV(θ, ψ) = Epdata(x,y,s)[− logαψ(s|z)] gives an up-
per bound on the conditional entropy H(s|z). Noting that
the mutual information can be decomposed as I(z; s) =
H(s)−H(s|z) and that the marginal entropy H(s) is constant



TABLE I: Conceptual forms for regularization penalty Lcensor, and concrete estimation methods used for each penalty

Censoring Mode Desired Effect Mutual Information form of Lcensor Divergence form of Lcensor
Marginal z ⊥ s I(z; s) D(qθ(z)||qθ(z|s))
Conditional z ⊥ s|y I(z; s|y) D(qθ(z|y)||qθ(z|s, y))
Complementary z(1) ⊥ s,max I(z(2), s) I(z(1); s)− I(z(2); s) D(qθ(z

(1))||qθ(z(1)|s))−D(qθ(z
(2))||qθ(z(2)|s))

Estimation Methods - MIGE [4], Adversary [5] MMD/Pairwise MMD [6], BEGAN Disc [7]

with respect to all model parameters, this gives a bound on
the mutual information, which can be used as a surrogate
objective for minimizing the mutual information:

I(z; s) ≥ H(s)− LCE, ADV(θ, ψ). (7)

This bound will be tight for an adversary whose predicted
distribution over subjects is close to the true posterior dis-
tribution; thus we can improve the quality of this surrogate
objective by using a strong adversary model that is trained
to convergence. See Appendix A1 of [8] for further details.

2) Mutual Information Gradient Estimation (MIGE) Cen-
soring: Given the difficulty of estimating mutual information
in high dimensions, Wen, Zhou, He, et al. [4] provide
a method to estimate the gradient of mutual information
directly. This suffices for cases like ours, in which an objec-
tive function containing a mutual information term will be
minimized by gradient descent. Appendix Section C of Shi,
Sun, and Zhu [10] derives a method for using a score function
estimator to approximate the gradient of an entropy term.
Appendix Sections A and B of Wen, Zhou, He, et al. [4] show
how to apply this idea for estimating the gradient of entropy
terms to estimating the gradient of mutual information.

a) Score Function Estimation: The score function terms
∇z log qθ(z) and ∇z log qθ(z|s) required for MIGE penal-
ties can be computed using any score function estimation
method available. The original implementation by Wen,
Zhou, He, et al. [4] used the Spectral Stein Gradient Es-
timator (SSGE) [10]. We explore other kernel-based score
function estimation methods based on the work of Zhou,
Shi, and Zhu [11], who frame the problem of score function
estimation as a regularized vector regression problem. See
Appendix A2d of [8] for further details about the estimators
used and how their hyperparameters were set.

B. Divergence Estimation Methods

As outlined in Table I, we also consider regularization
penalties based on the divergence between two distribu-
tions. For marginal censoring, the definition of conditional
probability tells us that the desired independence z ⊥ s
also implies that the distributions qθ(z) and qθ(z|s) are
equivalent, or alternatively that the distributions qθ(z|si) and
qθ(z|sj ̸=i) are equivalent. Analogous divergences can be
used for conditional or complementary censoring. We provide
three methods for censoring using divergence estimates; the
first two are closely related, while the third is quite distinct.

The first two methods rely on a kernel-based estimate
of the Maximum Mean Discrepancy (MMD) [6], which
provides a numerical measure of distance between two dis-
tributions. The MMD between two distributions is 0 when
the distributions are equivalent. In Section III-B1, we use

MMD as a surrogate for the divergence between qθ(z) and
qθ(z|s), which we refer to as simply the “MMD” censoring
approach. In Section III-B2, we use MMD as a surrogate for
the divergence between qθ(z|si) and qθ(z|sj ̸=i), which we
refer to as the “Pairwise MMD” censoring approach.

In the third method, we use a neural discriminator model
based on Boundary Equilibrium Generative Adversarial Net-
works (BEGAN) [7]. In the original work, this discriminator
provides a surrogate measure of the divergence between real
and generated data distributions. In our work, we use the
discriminator to provide a measure of the divergence between
qθ(s) and qθ(z|s), which allows us to reduce the dependence
of z on s. See Section III-B3 for further details.

1) MMD Censoring: The MMD [6] provides a desirable
measure of divergence between distributions because it makes
no assumptions about the parametric form of the distribu-
tions being measured, and because it can be approximated
efficiently with a kernel estimator, given a batch of samples
from each distribution. The MMD is an integral probability
metric, describing the divergence between two distributions
p(·) and q(·) as the difference between the expected value
of a test function f ∈ F under each distribution, for some
worst-case f from a class of functions F :

MMD(F , p, q) = sup
f∈F

(
E

x∼p(x)
[f(x)]− E

y∼p(y)
[f(y)]

)
. (8)

Gretton, Borgwardt, Rasch, et al. [6] derive a kernel estimate
of the MMD using a radial basis function kernel (see details
in Appendix B1 of [8]). We use their empirical estimate, with
a kernel length scale set by the median heuristic [12] as we
do for a subset of MIGE experiments.

2) Pairwise MMD (PairMMD) Censoring: Computing the
MMD between qθ(z) and qθ(z|s) provides us a quantita-
tive measure of the dependence between z and s, and by
minimizing it we can enforce the indepences we desire. We
can similarly measure the divergence between qθ(z|si) and
qθ(z|sj ̸=i) to enforce these independences. To compute an
overall penalty using this “pairwise” approach, we consider
all combinations of

(
M
2

)
distinct values of the nuisance

variable, and compute an average over these individual terms.
Since computing the full quadratic set results in a potentially
large overhead, we consider two approximations by selecting
a random subset of terms to compute as below.

First, we consider using a parameter b ∈ [0, 1] control-
ling a Bernoulli distribution to select a random subset of
all possible pairs of si, sj for i ̸= j, which we call a
“Bernoulli” subset selection. Second, we consider using an
integer d ∈ {1, . . . ,M} controlling the number of nuisance
values included, and compute a term for all combinations
within this subset, which we call a “clique” subset selection.



TABLE II: Censoring hyperparameters explored in AutoTransfer

Censoring Method Parameter Values Explored
Adv, MIGE, BEGAN Disc Regularization Coefficient λ 1, 0.3, 0.1, 0.03, 0.01
MMD, PairMMD Regularization Coefficient λ 1, 3, 10, 30, 100
MIGE Score Function Estimator Fscore SSGE [10], MIGE, ν-Method, Tikhonov, Stein [11]
MIGE Score Function Estimator Regularization γ 0.01, 0.001, 0.0001
MIGE Adaptive Length-scale Method Median, t-SNE-style

These two selection procedures are described in more detail
in Appendix B2 of [8].

3) BEGAN Discriminator Censoring: BEGAN [7] uses
an adversarial training scheme to learn a generative model.
A generator network G tries to approximately map samples
from a unit Gaussian distribution in its latent space to sam-
ples from the target data distribution, while a discriminator
network D tries to distinguish real and fake data samples,
as in a standard GAN setup [13]. This model uses an
autoencoder as the discriminator to compute a lower bound
on the Wasserstein-1 distance between the distribution of
its autoencoder loss on real and generated data. In other
words, the discriminator separates the two distributions by
learning an autoencoder map that works well only for the
“true” data distribution; the generator tries to produce data
that matches the “true” data distribution and is well-preserved
by this autoencoder map. The training is further stabilized
by introducing a trade-off parameter to adaptively scale the
magnitude of the discriminator’s two loss terms.

The role of the discriminator in this original setup is to
provide a surrogate objective so that the generator can bring
two distributions (the true data distribution pdata(x), and its
own generated distribution pG(x)) closer together. We use
their method to provide a signal that allows our encoder
model fθ to approximately minimize the divergence terms.

IV. EXPERIMENTS

In order to evaluate the proposed regularization approaches
described in (6) and Table I, we perform experiments with
several challenging real-world datasets. For each dataset, we
explore all of the censoring estimation procedures described
above. For detailed pseudocode, see Algorithms 1 through 17,
detailed in Appendix B2 of [8]. We first search for promising
hyperparameter ranges, then evaluate the most promising
subset of hyperparameters using k-fold cross-validation and
evaluate our AutoTransfer method on the resulting collection
of models.

A. Datasets

We use a diverse set of physiological datasets: EEG (rapid
serial visual presentation, RSVP [14]; error-related potentials,
ErrP [15]), EMG (American Sign Language, ASL [16]),
and ECoG (facial recognition, EcogFacesBasic [17]). To
standardize the comparison across datasets, all data were pre-
processed by z-scoring each channel of each trial. Additional
feature engineering could improve absolute performance,
though such techniques are orthogonal to the focus of the
present study. For further dataset details, see Appendix C of
[8].

B. Network Architectures and Training
The neural network architectures for our feature extractor

network fθ is based on EEGNet [18]. The classifier network
gϕ consists of a single linear layer with softmax activation.

Models are trained to maximize balanced accuracy by
using weighted cross entropy; for class k with Nk examples
in the training set, the unnormalized weight w̃k is set as the
inverse of the class proportion w̃k =

∑
iNi/Nk, and then

the sum of weights is normalized to one, wk = w̃k/
∑
i w̃i.

In each training fold, we designate one held-out subject
for validation and one for test. The validation subject is used
for model selection, as well as for early stopping. Models
are trained for a maximum 500 epochs using the AdamW
optimizer [19]. We begin with a learning rate of α1 = 10−3,
and decay the learning rate by the inverse square-root of the
epoch number, such that at epoch t, we use a learning rate
of αt = α1/

√
t. The epoch of minimum validation loss is

then evaluated on the test subject.

C. Hyperparameter Tuning
For each dataset under consideration, we tune several key

hyperparameters for each of our estimation methods. We use
the same data split for all settings explored; one subject
is kept for validation, and another is kept for testing. We
then select the best 3 settings for each of the five methods
discussed above according to balanced validation accuracy.
For each method, we vary the Lagrange multiplier coefficient
λ. For the MIGE censoring, we also vary the score function
estimator between the default SSGE, and three alternative
kernel-based estimators discussed in Section III-A2a. For
these three alternative score function estimators, we vary
their own internal regularization parameter γ, and vary the
method of setting the kernel length scale as discussed in
Appendix A2e of [8]. Table II summarizes the range of
hyperparameters explored for each method. Note that this
hyperparameter search for both finite descrete values and
contineous values can be fully automated by, e.g., Bayesian
optimization in an AutoML framework [20].

D. Cross-Validation
We select the best 3 combinations of hyperparameter

settings according to validation accuracy for each method for
further examination by k-fold cross-validation. Specifically,
for a dataset with M subjects, the cross-subject validation
gives us a collection of M test accuracies, which we can vi-
sualize as a distribution of model performance. We then apply
our AutoTransfer procedure; for a given dataset, we select the
method whose 25th-percentile validation accuracy is highest.
We select methods based on lower quartile performance as a
way to avoid overfitting to the validation subjects.



Fig. 2: Subject transfer balanced accuracy. Left: Test score from each fold, black ‘x’ indicates mean. Right: Accuracy vs test
subject, sorted by baseline performance. Same colors for left and right. Censoring improves subject transfer, especially
in subjects whose transfer performance is initially low. The best single censoring method is dataset dependent, while
AutoTransfer consistently performs well and often matches the best method. See Sec. IV-A for dataset information.

Fig. 2 shows the results of these cross-validation experi-
ments. On the left, each dot represents the transfer perfor-
mance when a certain subject is used as the test set. The
most striking observation is the wide variation in subject

transfer performance; this is the heart of the difficulty in
subject transfer learning. For each dataset, we observe that at
least one of the estimation methods provides an improvement
to the interquartile range, despite the presence of outlier



subjects. Although the most popular censoring method based
on adversarial training works well for most datasets, other
censoring approach such as MIGE censoring can outperform
it for some datasets. This suggests us that exploring different
censoring methods is of great importance depending on
datasets. On the right, each x-axis position represents a single
test subject, and they are sorted according to their baseline
transfer performance. Here we can see that our regularization
penalties offer a strong benefit for some subjects, especially
those whose baseline transfer accuracy is relatively worse.

V. DISCUSSION

We addressed the problem of subject transfer learning for
biosignals datasets by using a regularized learning framework
to enforce one of several possible notions of independence,
which we refer to as censoring modes. We derived esti-
mation algorithms for each of the proposed regularization
penalties. We evaluated these estimation algorithms on a
variety of challenging real-world datasets including EEG,
EMG, and ECoG, and found that these methods can offer
significant improvement, especially for subjects originally
near the lower quartile of transfer performance. Finally, we
provided an automated end-to-end procedure for exploring
and selecting a censoring method on a new dataset, which we
call AutoTransfer. In our cross-validation experiments, Au-
toTransfer consistently offers an improvement over baseline
transfer performance, though it may be below the maximal
single-method performance due to the inherent inter-subject
variability in these tasks. Note that we considered the case
of discrete nuisance variables (subject ID), though most
techniques are readily applicable to the case of continuous-
valued nuisance variables.

Future Work: Our proposed approach is designed to
improve subject transfer performance without making use
of test-time adaptation or information about the statistics of
the transfer subject’s data. In order to construct a holistic
transfer learning system, future work may therefore com-
bine our training-time regularization with other test-time
adaptation strategies such as few-shot learning, parameter
prediction [21]–[23], data augmentation [24], [25], and self-
supervision [26]–[29].

Furthermore, our methods are compatible with a number of
other standard machine learning techniques that may improve
absolute model performance. For example, feature engineer-
ing and hand-tuned feature extraction provide a way to
strictly enforce prior knowledge about signal characteristics;
when collecting biosignals datasets, this might include infor-
mation such as sensor artifacts and signal frequency ranges.
Since we propose a large family of estimation algorithms,
our work may naturally benefit from model ensembling
techniques, though the challenge in this context is to handle
the overfitting issues that are inherent to these challenging
subject transfer datasets. This large family of estimation
algorithms also comes with a large set of model hyperpa-
rameters to consider; it is likely that further hyperparameter
search may offer additional improvement in the final model
performance. Finally, we note that it may be possible to use

a decoder model with a reconstruction loss term as part of a
method for enforcing the regularization strategies.
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