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Auto-Tuning of Controller and Online Trajectory
Planner for Legged Robots

Alexander Schperberg, Stefano Di Cairano, and Marcel Menner

Abstract—This letter presents an approach for auto-tuning
feedback controllers and online trajectory planners to achieve
robust locomotion of a legged robot. The auto-tuning approach
uses an Unscented Kalman Filter (UKF) formulation, which
adapts/calibrates control parameters online using a recursive
implementation. In particular, this letter shows how to use
the auto-tuning approach to calibrate cost function weights
of a Model Predictive Control (MPC) stance controller and
feedback gains of a swing controller for a quadruped robot.
Furthermore, this letter extends the auto-tuning approach to
calibrating parameters of an online trajectory planner, where
the height of a swing leg and the robot’s walking speed are
optimized, while minimizing its energy consumption and foot
slippage. This allows us to generate stable reference trajectories
online and in real time. Results using a high-fidelity Unitree A1
robot simulator in Gazebo provided by the robot manufacturer
show the advantages of using auto-tuning for calibrating feedback
controllers and for computing reference trajectories online for
reduced development time and improved tracking performance.

Index Terms—Legged Robots; Machine Learning for Robot
Control; Calibration and Identification; Integrated Planning and
Learning; Probability and Statistical Methods

I. INTRODUCTION

PLANNING and control of legged systems is challenging
due to the tight coupling of reaction forces generated

by foot contacts with the environment and the motion of
the robot’s base. This problem is further complicated as
legged systems for real-world deployment are expected to
traverse highly unstructured environments such as debris,
obstacles, and rough terrain. Traditional control designs such
as those employing Raibert or heuristic controllers [1] can
only guarantee physical feasibility on smooth or flat surfaces.
Optimization-based approaches often use a cost function to
account for kinematic, dynamic, and friction-cone constraints.
E.g., the Linear Inverted Pendulum approach optimizes over
the Center of Mass (CoM) position, where the footsteps must
be specified a priori to satisfy the Zero-Moment Point [2].
This approach has some drawbacks because pre-defining the
footholds’ locations on the ground may restrict the robot’s
range of achievable motion. Further, whole-body controllers
that do not require pre-defined footholds, e.g., in [3], may be
sub-optimal as they only consider the current joint torques.
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Fig. 1: Auto-tuning framework. We initialize the reference
trajectory for the first few footsteps and CoM base using tra-
jectory optimization. Then, auto-tuning is applied to estimate
new reference trajectories which account for desired physical
parameters. Further, auto-tuning is applied on cost function
weights for a stance controller (MPC) and feedback gains of
a swing controller (PD).

On the other hand, trajectory Optimization (TO) is often
used for predictive planning of feasible motions for legged
systems [4]–[7]. TO methods typically employ some form
of centroidal dynamics, optimizing over contact forces [4].
However, TO is computationally expensive and often not
suitable for online re-planning [8]. Further, open-loop planners
are susceptible to changes in terrain.

Due to the inverse relationship between the complexity of
the dynamic model used for locomotion and the computation
time required for an optimization solver, a popular approach
is to employ Reinforcement Learning (RL) [9]–[14]. E.g.,
in [9], a stochastic policy is realized with neural networks
to simulate a foothold and base motion controller using Trust-
Region Policy Optimization. This is done by considering a
reward function that consists of several physical parameters
such as the error between actual and reference footstep posi-
tion, penalizing foot slippage or large swing-leg velocities, or
sudden changes in base orientation. An RL approach has also
been successfully demonstrated in [10], which learns a neural
network that acts only on a stream of proprioceptive signals
for locomotion on uneven terrain.

Although tremendous progress has been made in the RL
literature to achieve legged robot locomotion, this approach
is highly complex and requires significant amounts of data.
For example, in [10], a two-stage training process is required
that involves a teacher/student policy in addition to particle-



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

filtering, which maintains certain terrain parameters used to
classify what is and is not traversable during training. In [9],
the reward function and corresponding weighing parame-
ters required intricate fine-tuning and assumes the user has
extensive computational resources available during training.
Another work can be found in [15], which uses RL to create
adaptive trajectories based on following a reference trajectory
calculated offline first through TO. Similar to our work, they
also use step clearance and slippage as objectives to their
calibration. However, different from ours, while we also use
TO methods, we only rely on the reference trajectory from TO
for the first few footsteps, while future footsteps are planned
online. Overall, the complexity of formulating the correct
reward function in RL and the effort required for tuning hyper-
parameters may cause significant delay in development time.
This also may make RL difficult to reproduce or generalize to a
wide-variety of robotic platforms without significant amounts
of tuning.

This letter proposes to use an alternative method, see Fig. 1,
to the above approaches for achieving robust locomotion.
In [16], [17], a Kalman filter technique was used to estimate
control parameters with a training objective that evaluates the
performance of a closed-loop system online using a recur-
sive implementation. This approach was successfully used to
automatically tune a variety of control architectures such as
the weights of a neural network, cost function weights of an
LQR, or gains of a PID controller to achieve stable motion of
an autonomous vehicle. Although auto-tuning methods have
been applied before to tune various controller gains, typically
using some form of Bayesian optimization (BO) [18], [19], the
applied method differs as we do not require a trial-and-error
implementation, do not need a surrogate function, and can
handle disturbances due to the recursive nature of the applied
method [16], [17]. One of the issues with BO is that their
performance decreases in higher dimensions [20]. In [21], this
problem was overcome by including domain knowledge into
BO for tuning walking controllers of humanoid robots. In [22],
the parameters of running and jumping motions are tuned
through a policy search of generic sets of motion primitives
and their cost functions. Both [21], [22] require a trial-
and-error implementation which requires extensive training
using simulators before application to hardware. Our method
however, is able to calibrate control parameters on a single
run without relying on trial-and-error.

Additionally, while other algorithms have been proposed
to tune controller gains [23], [24], these algorithms have
never been applied (or evaluated) to directly tune reference
trajectories without having to include a predefined set of
reference trajectories [25].

This letter employs the method of auto-tuning initially
proposed in [16], [17] on a legged system using an unscented
Kalman filter (UKF) implementation and apply it not only
to controller gains, but directly on physically-meaningful pa-
rameters such as ‘step clearance’, ‘forward progress’, ‘energy
efficiency’, and ‘dynamic and kinematic gait stability’, see
Fig. 2. This is achieved by online tuning the robot’s future
reference trajectories which uses a training objective to satisfy
user-defined specifications or requirements. We demonstrate
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Fig. 2: Auto-Tuning reference trajectories in Gazebo. The
robot follows a reference trajectory that is being tuned by the
auto-tuning formulation. The figure shows the robot following
a desired velocity (forward progress), a desired foot height
(step clearance), minimizing foot slippage (ground reaction
forces), and minimizing energy consumption.

the method on a quadruped robot, the Unitree A1, in a high-
fidelity physics simulation provided by the robot manufacturer.
We demonstrate walking on both even and uneven terrain, and
present several test-cases such as tuning reference trajectories
that satisfy the physical parameters mentioned previously,
and controller weights of a swing and stance controller. The
presented method for automating the controller calibration and
the trajectory planner can save development/deployment time
as manually tuning control parameters can be tedious and
time consuming, facilitates in abstracting the tuning problem
into physically meaningful parameters, and enables greater
autonomy of robotic systems.

II. PRELIMINARIES

A. Notation

Given two integer indices n,m with m<n and xi ∈Rnx ,
we define xm|n∈Rnx(n−m+1) as the vectorized sequence that
comprises xi from i=m through i=n,

xm|n :=

xm
...

xn

 .
We define ‖x‖Σ := xTΣx and N (µ,Σ) as the Gaussian
distribution with mean vector µ and covariance matrix Σ.
The notation x ∼ N (µ,Σ) means x sampled from N (µ,Σ).
Further, diag(λ)∈Rnλ×nλ is a matrix, whose diagonal entries
are the entries of a vector λ∈Rnλ .

B. Unscented Kalman Filter for Control Parameter Tuning

This letter applies the auto-tuning method proposed in [16],
[17] to calibrate control parameters of the Model Predictive
Control (MPC) stance controller, the PD swing controller,
as well as the reference trajectory. The auto-tuning method
is based on an UKF, which “estimates" the optimal control
parameters measured with respect to a training objective. The
UKF uses deterministic samples (called sigma points) around
the mean, which are propagated and used to update the mean
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and covariance estimates [26]. Further, it uses a model of the
system dynamics in order to obtain evaluations of the sigma
points, which are then used to update the control parameters.

The method is model-based, i.e., it uses a model of a
dynamical system (denoted by dyn(xk,uk)),

xk+1 = dyn(xk,uk) + wk (1)

with the state xk ∈ Rn, the control input uk ∈ Rm, and
process noise or model mismatch wk at time k. The method
calibrates control parameters, θ ∈ RL, of a generic controller,
uk = κθ(xk) to minimize the training objective

‖yk − h(θk)‖C−1
y

(2)

with a positive definite Cy , desired nominal values yk, and
specification function h(θ), where

h(θ) := r(xk−N ,xk−N+1, ...,xk,uk−N , ...,uk−1),

i.e., yk = h(θk) when the dynamical system satisfies all the
specifications in the training objective, exactly.

For the legged robot, the control parameters are tuned during
operation (episodically, from time step k−N to k) according
to

θk = θk−N + ∆θk, (3)

where the update ∆θk is computed based on sensor measure-
ments, xk, uk, and the training objective in (2).

The idea of the auto-tuning method is to treat the con-
trol parameter adaptation problem as an optimal estimation
problem with prior distributions ∆θpriork ∼ N (0,Cθ) and
yk ∼ N (h(θk),Cy). Thus, the parameter tuning law in (3)
results from the corresponding posterior distribution,

∆θk = Kk

(
yk − ĥk

)
(4a)

with the Kalman gain, Kk, computed as

θ̂k =
∑2L
j=0 v

a
j θ

sp,j
k (4b)

ĥk =
∑2L
j=0 v

a
i h

sp,j
k (4c)

hsp,j
k = h(θsp,jk ) (4d)

Sk = Cv +
∑2L
j=0 v

c
j(h

sp,j
k − ĥk)(hsp,j

k − ĥk)> (4e)

Zk =
∑2L
j=0 v

c
j(θ

sp,j
k − θ̂k)(hsp,j

k − ĥk)> (4f)

Kk = ZkS
−1
k (4g)

and the posterior covariance, which is used to generate the
sigma points, computed as

Pk|k−N = Cθ +
∑2L
j=0 v

c
i (θ

sp,j
k − θ̂k)(θsp,jk − θ̂k)> (4h)

Pk|k = Pk|k−N −KkSkK
>
k , (4i)

where θsp,jk is the jth sigma point, vcj and vaj denote weights
associated with the sigma points, Zk is the cross-covariance
matrix, Sk is the innovation covariance, and Pk|k is the
estimate covariance. Hence, the UKF implementation uses
2L+ 1 sigma points. The reader is referred to [16], [17] for
more details.

Remark 1: For each sigma point evaluation (4d), the system
dynamics (1) is simulated, where the model mismatch, wk, is
calculated using measured data, xk−N through xk.

Remark 2: We choose the weights va0 = vc0 = 0, vai =
vci = (1− va0 )/(2L) and the sigma points as θsp,0k = θk,
θsp,jk = θk +

√
L/(1− va0 )Γj for j = 1, ..., L, and θsp,jk =

θk−
√
L/(1− va0 )Γj for j=L+ 1, ..., 2L with Γj being the

jth column of Γ and Pk−N |k−N = ΓΓ>, i.e., Γ is calculated
using the Cholesky decomposition.

III. ROBOT CONTROL ARCHITECTURE

A. Swing Controller

The swing controller in this letter is similar to [27], which
is used to compute the torque for each foot i for all three joints
of the robot as (time step k omitted for simplicity)

τ i = J>i
[
Kp

(
pbi, ref − pbi

)
+ Kd

(
vbi, ref − vbi

)]
+JiΛi

(
abi, ref − J̇>i q̇i

)
+ Viq̇i + Gi

(5)

where τ i ∈ R3 is the joint torque, qi ∈ R3 and q̇i ∈ R3 are
the current joint position and velocity of foot i, Ji ∈ R3×3

is the foot Jacobian, Kp and Kd are the proportional and
derivative (PD) gain matrices (3×3 diagonal positive semi-
definite), pbi, ref ∈ R3 and pbi ∈ R3 are the reference and
current footstep positions in the body frame, vbi, ref ∈ R3 and
vbi ∈ R3 are the reference and current footstep velocities in the
body frame, abi, ref ∈ R3 is the reference footstep acceleration
in the body frame, Vi ∈ R3 is the torque due to the coriolis
and centrifugal forces, Gi ∈ R3 is the torque due to gravity,
and Λi ∈ R3×3 is the operational mass matrix.

B. Stance Controller

The stance MPC calculates ground reaction forces fi for all
feet i and is formulated as in [27],

min
x,f

NMPC∑
k=0

‖xk − xk,ref‖Q + ‖fk‖R (6a)

subject to

fk,min ≤ fk,z ≤ fk,max

−µfk,z ≤ ±fk,x ≤ µfk,z
−µfk,z ≤ ±fk,y ≤ µfk,z

xk+1 = Axk + Bfk
Dkfk = 0

(6b)

with the state

xk =


Θk

rk
ωk
vk

 , (6c)

where Θ is the robot’s orientation, r is the CoM base position,
ω is the angular velocity, v is the linear velocity, µ is the
friction coefficient, A and B are the dynamic matrices for state
propagation, Dk is a force selection matrix (selecting forces
that are not in contact to be equal to zero), and Q ∈ R12×12

and R ∈ R12×12 are diagonal positive semi-definite cost
matrices, see [27] for further details. The joint torques, which
are the input to the torque-controlled motors, are obtained
using the forces fk resulting from (6) as

τ i,k = J>i,kR
w,>
b,i,k (−fi,k) , (7)
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where fi,k ∈ R3 is the force vector associated with leg i as
subset of fk, and Rw

b,i,k is the rotation matrix from world to
body frame of leg i at time step k.

C. Problem Definition and Contributions

In this letter, we implement model-based controllers and
auto-tune their control parameters. Model-based control offers
the advantages that the physics of a dynamical system are
utilized to make informed decisions, less data are needed
to improve the robot’s performance, safety guarantees may
be provided, and that the computational structure remains
fixed. This control philosophy stands in contrast to black-box
controllers and reduces the amount of required tuning to a few
selected control parameters.

Problem A: Auto-tune the gains of the swing controller
in (5), i.e., Kp, Kd. Section IV-A addresses this problem by
adjusting the controller calibration method in [16], [17] to a
swing controller of a legged robot. This is achieved by defining
a training objective suited for a swing controller as well as
deriving a motion model suited to model the swing motion of
a legged robot.

Problem B: Auto-tune the cost function weights of the
stance controller in (6), i.e., Q, R. Section IV-B addresses
this problem by adjusting the controller calibration method
in [16], [17] to a stance controller of a legged robot. This is
achieved by defining a training objective suited for a stance
controller as well as deriving a motion model suited to model
the stance phase of a legged robot.

Problem C: Develop concept for online computation of
reference trajectories. Section IV-C addresses this problem by
continuously generating reference trajectories for continuous
operation of a legged robot.

Problem D: Develop concept for adaptively refining refer-
ence trajectory to the current task and the current environment.
Section IV-D addresses this problem by adjusting the method
in [16], [17] to calibrate parameters of reference trajectories.
This is achieved by parameterizing the reference trajectories,
defining a suitable training objective for the operation of the
legged robot, and deriving a motion model for the robot’s
movements.

Finally, Section V presents the application of the proposed
algorithms to a third-party high-fidelity simulator of the Uni-
tree A1 in Gazebo. The high-fidelity simulator is provided
by Unitree [28] and it includes contact dynamics, multi-body
dynamics, sensor noise, etc.

IV. AUTO-TUNING CONTROLLER AND REFERENCE
TRAJECTORIES OF LEGGED ROBOT

The overall implementation of the auto-tuning method is
as follows: (1) we generate a feasible motion plan for the
first few footsteps using TO; (2) we use this initialization
as part of the reference-generator function to estimate new
trajectories without optimization; (3) the auto-tuning formula-
tion is employed for both improved trajectory tracking (i.e.,
auto-tuning the swing or stance controller) and modifying the
trajectories directly in order to minimize energy consumption,
produce forces that minimize slippage, or satisfy a desired

step clearance (i.e., step height) or forward progress (i.e., base
velocity), see Fig. 2

A. Training Objectives for Auto-Tuning Swing Controller

For auto-tuning the swing controller in (5), we parametrize
the gains, i.e., Kp = Kp(θ), Kd = Kd(θ), and we use the
dynamical model using the notation in (1) for leg i,

xi,k =

[
qi,k
q̇i,k

]
(8a)

dyn(xi,k, τ i,k) =

[
qi,k + dtq̇i,k + dt2q̈i,k

q̇i,k + dtq̈i,k

]
(8b)

q̈i = Mi(qi)
−1(τ i −Vi(qi, q̇i)−Gi(qi)), (8c)

where Mi ∈ R3×3 is the mass matrix in the joint space, and
q̈i ∈ R3×3 is the current joint acceleration of foot i. The
training objective (2) is defined to improve reference trajectory
tracking as

yk =

[
pref
i,k−N |k

vref
i,k−N |k

]
, h(θ) =

[
pi,k−N |k
vi,k−N |k

]
, (8d)

where pref
i,k−N |k and vref

i,k−N |k are positions and velocities of
foot i from time step k−N through k as in (10) and (11).

The model mismatch wk−N |k ∈ R6 for the swing controller
is computed using (8) and the measured states for the past
swing execution. The UKF-based control parameter adaptation
method uses (5) and (8) to “simulate" an execution of a swing
using the gains defined by the sigma points, Kp(θ

sp,j) and
Kd(θ

sp,j), considering the model mismatch, wk−N |k. Note
that pbi,k and vbi,k in (5) can be calculated using the robot
forward kinematics, which uses qi,k as input, and the footstep
Jacobian by vbi,k = Ji(qi,k)q̇i,k.

B. Training Objectives for Auto-Tuning Stance Controller

For auto-tuning the stance controller cost function weights
in (6), i.e., Q = Q(θ), R = R(θ), we use the dynamical
model (1) as

dyn(xk, fk) =


Θk + Rw

b ωk
rk + dtvk

ωk + dt(
∑4
i=1 Î−1

[
pbi,k

]
×

f ik)

vk + dt(
∑4
i=1

f ik
m + g)

 (9a)

with the state xk defined as in (6), where Î represents
the inertia tensor in the world frame (× indicates a skew
matrix) [27], Rw

b is the rotation matrix from world to body
frame, and g is the gravity vector. The training objective in (2)
is defined to improve reference trajectory tracking as

yk =
[
xref
k−N |k

]
, h(θ) =

[
xk−N |k

]
(9b)

Here, too, the UKF-based control parameter adaptation method
uses (6) and (9) to “simulate" the MPC using the cost function
weights defined by the sigma points Q(θsp,j), considering the
model mismatch wk−N |k.
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C. Generating Reference Trajectories

To ensure kinematic and dynamically feasible motion for
the first few footsteps, we apply the methods proposed in [4],
which uses trajectory optimization.

1) Reference Trajectory for Feet: In order to continuously
generate new reference trajectories, we use

pref
i,k = pref

i,k−N + vref
i,k−N∆T (10a)

pref
i,k =

p
x,ref
i,k

py,refi,k

pz,refi,k

 , vref
i,k =

v
x,ref
i,k

vy,refi,k

vz,refi,k

 (10b)

where pref
i,k−N denotes the position of foot i on the ground

at time step k−N , pref
i,k is the next position of foot i on the

ground at time step k, which are determined by a desired CoM
body velocity, vref

i,k , and the phase time ∆T , i.e., the time that
the foot is in stance or swing phase. Throughout, we assume
vz,refi,k =0.

Then, we use s(t) = 2πN−k+tN with t=k−N ,k−N+1, ...,
k to create cycloidal footstep reference trajectories in between
the ground positions in (10) with

px,refi,t = px,refi,k−N +
(
px,refi,k − px,refi,k−N

) s(t)− sin(s(t))

2π
(11a)

py,refi,t = py,refi,k−N +
(
py,refi,k − py,refi,k−N

) s(t)− sin(s(t))

2π
(11b)

and

pz,refi,t =


pz,refi,k−N + pzmax

1−cos(s(t))
2

if s(t) ≤ π
pz,refi,k +

(
pzmax + pz,refi,k−N − p

z,ref
i,k

)
1−cos(s(t))

2

if s(t) > π

(11c)

where pzmax is the step clearance/apex height of the swing
trajectory, i.e., the maximum pz component of the footstep
in swing. If the foot is in stance, pzmax =0.

2) Reference Trajectory for Center of Mass: The reference
trajectory of the body’s CoM is specified by[

rrefk
Θref
k

]
=

[
rrefk−N
Θref
k−N

]
+

[
vref
k−N
ωref
k−N

]
∆T (12)

with the current body position, rrefk−N ∈ R3, and orientation,
Θref
k−N ∈ R3, and rrefk ,Θref

k are composed of the next desired
body position, and vref

k−N ,ω
ref
k−N is the desired velocity (linear

and angular) over the phase duration ∆T . Here, we use s̄(t) =
N−k+t
N with t=k−N , k−N+1, ..., k to linearly interpolate

between current and desired states with[
rreft
Θref
t

]
= s̄(t)

[
rrefk
Θref
k

]
+ (1− s̄(t))

[
rrefk−N
Θref
k−N

]
.

D. Training Objectives for Auto-Tuning Reference Trajectory

For auto-tuning the reference trajectory, we use the same
states and dynamic model as for the swing controller in (8).
The main difference is in the implementation of the training
objective and control parameters, i.e., we do not auto-tune the
Kp and Kd gain matrices. Instead, we tune two parameters

often desirable for legged robots, which are to achieve a
desired step clearance in order to step over an obstacle and
reach a desired velocity. Hence for leg i, we parametrize the
step clearance and the desired forward velocity,

pzmax = θz, vx,ref
i,k = θv, θ =

[
θz
θv

]
and the training objective for adapting such parameters is

yk =


pzdes
vxdes
0
0

 , h(θ) =


hz(θ)
hv(θ)
hf (θ)
he(θ)

 , (13)

where hz(θ) is the achieved step clearance, hv(θ) is the
achieved velocity, hf (θ) computes lateral forces of the robot
and is used to reduce slippage, and he(θ) is the energy con-
sumption. Note that pzdes measures the achieved step clearance
in closed loop, whereas pzmax is the control parameter that
defines the reference trajectory. Thus, pzdes and pzmax may be
different, e.g., due to a model mismatch of the physical robot
and the dynamical system model.

1) Step clearance optimization hz(θ): To propagate the
states for optimizing the step clearance, we use the same
method as in Section IV-A. However, here we “simulate" the
various reference trajectories defined using the sigma points
for the swing leg, where we do not change the controller
gains of Kp, Kd. Hence, we modify the reference trajectory of
the footstep using the reference generator function described
in Section IV-C. Thus, hz(θ) = max (pzk−N |k), i.e., the
maximum value of the z component of the footstep trajectory
(after propagation with wk−N |k).

2) Forward progress optimization hv(θ): For forward
progress, we propagate the CoM position using the desired
velocity, vxdes, with (12), where the initial state is the actual
state.

3) Slippage optimization hf (θ): Representing slippage of
the foot first requires the propagation of ground reaction forces
along the trajectory, which can be achieved by rearranging the
MPC state-space equations in (6),

fk = B+(xk+1 −Axk), (14)

where B+ is the Moore-Penrose inverse and xk is propagated
using the sigma points. We chose (14) due to its similarity
to (6), but other slippage formulations are possible, too, e.g.,
as in [29]. If the foot is not in contact, fk = 0. Then, the
foot slippage is computed using similar ideas to friction cone
constraints (see, e.g., [4]) as

hf (θ) =

4∑
i=1

√
fxi,avg + fyi,avg

fzi,avg
,fxi,avg

fyi,avg
fzi,avg

 =
1

N

k∑
t=k−N

|fxi,t||fyi,t|
|fzi,t|

 .
4) Energy consumption optimization he(θ): The energy

consumption is included as it may be desirable to find the
best balance between maximizing step clearance and forward
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progress, while simultaneously minimizing the energy con-
sumption required. The energy consumption can be computed
using the joint velocity q̇, torque τ t, and phase time ∆T , as

he(θ) =

k∑
t=k−N

|q̇t|>|τ t|∆T.

Remark 3: To ensure we do not violate kinematic or
dynamic constraints as we simulate new trajectories using
θ, we can use

∣∣Rb
w [pi,k−rk]−pbi

∣∣ < b, where Rb
w is the

rotation matrix from base to world frame, and pbi is the
nominal footstep position centered in the kinematic bounding
box specified by b ∈ R3. If the bounding box constraint does
not hold, we can impose a cost for that particular simulation
guiding the auto-tuner away from such control parameters.

V. RESULTS USING PHYSICS-BASED SIMULATOR

We implemented the auto-tuning algorithms for the Unitree
A1 robot [28] within a realistic simulation using Gazebo
with the bullet physics engine. The Unitree A1 simulator is
made available by the robot manufacturer. The simulation
considers not only localization noise but also friction within
each torque-controlled motor, where torque commands are sent
using the robotic operating system (ROS). Further, the Gazebo
simulation environment is executed in a parallel thread, and
hence the controller and the auto-tuning algorithm need to
be executed during run-time of the simulation. Hence, being
able to execute the applied algorithms using this high-fidelity
simulator indicates their applicability to the physical robot.
The A1 Unitree is a 12.7 kg quadruped robot with 3 degrees
of freedom per leg. For obtaining an initial trajectory as
in [4], we use the nonlinear programming solver IPOPT [30].
Optimization of the MPC stance controller was done using the
quadratic programming solver qpOASES [31]. Constraints and
overall problem formulation were setup using the CasADi [32]
software. The phase time was chosen as 0.2 s, which is also
the update frequency of the parameters. The swing and stance
controller are executed at sampling frequency at dt = 0.01 s,
and NMPC = 5 in (6).

A. Auto-Tuning for Optimizing Step Clearance and Forward
Progress

The first test case is to auto-tune reference trajectories aim-
ing at providing a desired forward progress and step clearance.
Here, we consider only the first and second element in (13),
where we use pzdes = 0.15 m and vxdes = 0.45 m/s. The results
are shown in Fig. 3-A), B), C). In A), we show the cost defined
as ||yk − h(θ)||C−1

y
= ‖

[
pzdes−hz(θ) vxdes−hv(θ)

]
‖C−1

y
as

in (2). Thus, as the cost decreases, the closer the actual step
clearance and forward progress get to the desired value. We
decompose the results in A) and show how the actual velocity
reaches the desired velocity in B), and how the actual step
clearance reaches the desired step clearance in C).

B. Auto-Tuning for Optimizing Step Clearance, Forward
Progress, Slippage, and Energy Consumption

In D), we show the cost when setting a desired step
clearance and forward progress with pzdes = 0.1 m and

vxdes =0.4 m/s, while minimizing energy consumption and foot
slippage as in (13). The cost decreases quickly within a few
time steps, which indicates that the auto-tuning method was
able to find a good balance between reaching its desired step
clearance and forward progress, while ensuring a minimization
of both energy consumption and foot slippage.

C. Auto-Tuning Stance Controller
Next, we demonstrate the auto-tuning method to cal-

ibrate the gains of the stance controller. For simplicity,
here we auto-tune only the diagonal elements of Q =
Q(θ) in (6), but R can similarly be tuned. We initial-
ize Q = diag([1, 1, Q3, Q4, Q5, Q6, 1000, 1, 1, 1, 1, 1]), where
Q3, Q4, Q5, Q6 are initialized to 300, and will be further
calibrated, i.e., Q(θ) with θ ∈ R4. The cost function is
tuned online for 20 s of locomotion using trot gait. In Fig. 3-
E), we present the cost difference between the auto-tuning
case and the no auto-tuning case. The difference decreases
over time, which shows that the auto-tuning improves the
cost using auto-tuning decreased significantly compared to the
cost without using auto-tuning. Additionally, without auto-
tuning, the robot eventually falls after about 8 seconds of
locomotion, because the initial gains of the MPC controller
have not been properly hand-tuned. Note that some hand-
tuning was necessary to ensure initial gains that at least allow
the robot to start moving a few steps without falling. After
auto-tuning the stance controller for 20 s, Q3 = 5245.53,
Q4 = 1172.34, Q5 = 662.45, and Q6 = 1172.25. Further,
we applied the tuned controller along with the tuned swing
controller in Section V-D and demonstrated robust locomotion
on uneven terrain, see Fig. 4.

D. Auto-Tuning Swing Controller
Lastly, we apply the auto-tuning method to calibrate the

gains of the swing controller, Kp and Kd. We choose
θ ∈ R6 consisting of the three diagonal elements of the
proportional gain matrix, Kp, and the three diagonal elements
of the derivative gain matrix, Kd. We initialized Kd =
diag([0.1, 10, 10]) and Kp = diag([150.11, 16.11, 10.11]) to
be equal to the leg’s natural frequency using the inverted
pendulum model multiplied by the operational mass matrix,
see [27] for more detail. Fig. 3-F), shows the difference of
the cost when not auto-tuning with the cost when auto-tuning
for over 20 seconds of locomotion. The cost curve follows
a downward trend, demonstrating that the cost when auto-
tuning is smaller than without auto-tuning. The gains using
auto-tuning outperformed the gain selection without auto-
tuning, which was based on the current natural frequency
calculation and was shown to perform well in [27]. The final
gains after tuning was Kd = diag([13.82, 12.42, 17.80]) and
Kp=diag([166.26, 22.75, 14.03]).

Fig. 4 shows the robot walking on uneven ground using
auto-tuning of the swing controller gains and the stance
controller cost function.

Remark 4: While this letter presents one simulation run,
we have obtained similar results for repeated test cases,
which is expected as the auto-tuning formulation is robust to
noise/disturbances due to its filter-based design.
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Fig. 3: Auto-Tuning results. The auto-tuning method successfully calibrated control parameters that generate reference
trajectories (A-D), and controller gains (E-F). To make this evaluation, we used the cost as calculated using (2). The cost
decreases (A and D) as the control parameters (e.g., forward progress and step clearance) get to their desired reference values.
In E-F, we show the difference between the cost when not auto-tuning with the cost when auto-tuning.

Fig. 4: Results for robust locomotion on uneven terrain. Af-
ter auto-tuning the stance and swing controllers, we employ the
robot on several test cases to demonstrate robust locomotion.
We show the robot traversing over and on large beams and
planks in the left and top right with a trot gait, respectively,
and demonstrate a successful jumping gait in the bottom right.
The robot is not aware of the obstacles and must overcome
them by using the auto-tuned controllers.

E. Computation Times

The computation times of auto-tuning the swing and stance
controllers, as well as the reference trajectory are shown in
Table I. Table I lists the maximum, minimum, and median
computation times of the auto-tuning algorithm for tuning the
gains of the swing controller, the MPC weights of the stance
controllers and the parameters of the reference trajectory (Ref-
erence Traj. A−D in Table I refers to the training objectives
specified by A −D in Fig. 3). The computation times were

TABLE I: Auto-Tuning Computation Times

Auto-Tune Min. Time Median Time Max. Time

Reference Traj. A) 0.0108s 0.0143s 0.0370s
Reference Traj. B) 0.0072s 0.0089s 0.0121s
Reference Traj. C) 0.0086s 0.0093s 0.0235s
Reference Traj. D) 0.0632s 0.0662s 0.0667s

Stance Controller E) 0.0409s 0.0465s 0.0807s
Swing Controller F) 0.0078s 0.0569s 0.1006s

obtained while running on a laptop using 4 CPU cores (Intel
core i7-8850H CPU at 2.60 Ghz) with a Quadro P3200
GPU. Further, the controller ran in parallel with a Gazebo
simulation, which requires more computational resources than
an implementation on hardware would. As the computation
times are below the update rate of the auto-tuner updating at
the end of the phase time with 0.2 s, we can conclude that
the algorithms in this letter can be executed in real time on
comparable computational resources.

Remark 5: The computation times scale linearly with the
amount of parameters to be tuned. Although the applied
algorithms can be executed online, depending on user speci-
fications, there is the option to execute the algorithms offline
or in parallel. E.g., the auto-tuner for the swing and stance
controllers can update the gains on a different thread, which
runs in parallel to the low-level/high-level controllers of the
robot. Additionally, the methods could also be implemented
offline if computational resources are limited.
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VI. CONCLUSIONS

In this work we successfully demonstrated robust locomo-
tion. An auto-tuning method was implemented, which is based
on an unscented Kalman filter formulation, to calibrate the
gains of the swing controller and the cost function weights of
a stance controller. We also demonstrated that the method can
be applied for directly auto-tuning the reference trajectory, i.e.,
reference trajectories are calibrated to make the robot achieve
a desired forward progress and step clearance, while also
minimizing energy consumption and foot slippage. We showed
that the method can be easily generalized to consider diverse
control parameter by demonstrating the auto-tuning on both
controller gains and on physically meaningful parameters of
a reference trajectory. Future work may include experimental
validation on the robot platform and extending the method
to consider tuning for optimal footstep timings of various
gait sequences, consider dynamic environments that require
the auto-tuner to calibrate changing step heights and base
velocities, and also adapt the aggressiveness of the tuning
through the unscented Kalman filter’s covariance matrices
based the robot’s environment or desired task. Future work
may also include more sudden changes in the robot’s motion,
e.g., by leveraging the “prediction model” of the Kalman filter
in addition to the “measurement model” used in this letter.
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