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Abstract
Radio frequency (RF) circuit design demands rich experience of practical know-how and
extensive simulation. Complicated interactions among different building components must
be considered. This becomes more challenging at higher frequency and for sophisticated
circuits. In this study, we proposed a novel design automation methodology based on deep
reinforcement learning (RL). For the first time, we applied RL to design a wideband non-
uniform distributed RF power amplifier known for its high dimensional design challenges. Our
results show that the design principles can be learned effectively and the agent can generate
the optimal circuit parameters to meet the design specifications including operating frequency
range (2-18GHz), output power (>37dBm), gain flatness (<4dB) and average return loss
(>5.8 dB) with GaN technology. Notably, our well-trained RL agent outperforms human
expert given the same design task, with 78% accuracy and offers generalizability, which is
lacked in the conventional optimization approach to shorten the time-to-market.
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Abstract— Radio frequency (RF) circuit design demands 
rich experience of practical know-how and extensive simulation.  
Complicated interactions among different building components 
need to be considered. This becomes even more challenging at 
higher operating frequency and for sophisticated circuits. In this 
study, we proposed a novel design automation methodology 
based on deep reinforcement learning (RL). For the first time, 
we applied RL to design a wideband non-uniform distributed 
RF power amplifier, which is known for its high dimensional 
design challenges. Our results show that the design principles 
can be learned effectively, and the agent can generate the 
optimal circuit parameters to meet the design specifications 
including operating frequency range (2-18GHz), output power 
(>37dBm), gain flatness (<4dB) and average return loss (>5.8 
dB) with GaN technology. Notably, our well-trained RL agent 
outperforms human expert given the same design task, with 
78% accuracy and offers generalizability, which is lacked in the 
conventional optimization approach to shorten the time-to-
market. 
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I. INTRODUCTION  
High power, wide bandwidth, and high efficiency radio 

frequency power amplifier (RFPA) has been in the central 
demand of RF hardware for modern wireless transmitters. 
However, RFPA design is challenging due to various 
technical difficulties including complicated transistors 
operation and device parasitic. Recently, wideband non-
uniform distributed power amplifier (NDPA) is empowered 
by advanced semiconductor devices, e.g., GaN high electron 
mobility transistors (HEMTs) to offer improved performance 
[1]. Nevertheless, NDPA design in practice requires 
sophisticated manual synthesis and tedious tuning of high 
dimensional circuit parameters such as impedance matching 
network [2, 3, 4] and transistor sizing. Optimal design aims to 
get a trade-off between various demanding specifications, 
which often needs exhaustive manual search, mainly due to 
the nonlinearities and complex correlations among circuit 
characteristics. 

Very recently, artificial intelligent (AI) technique is being 
explored to address analog circuit design challenges via 
hardware design automation [5], which have been reported to 
be efficient and effective [5, 6, 7,13]. Nevertheless, to the 
authors’ best knowledge, this exploration for radio frequency 
integrated circuits (RFIC) design is still very limited in terms 
of nonlinearity and circuit complexity. Hence, this current 
study focuses on how to leverage the powerful approximation 
ability of deep reinforcement leaning to address the highly 
nonlinear properties in RFIC such as power amplifier design. 
For the first time, we proposed a reinforcement learning-based 
algorithm to design NDPA automatically. In specific, given 
design specifications, fixed number of active transistor cells 
and topology, a trained deep RL model by applying our 

algorithm can generate the optimal device parameters that 
fulfill the design goals rapidly. 

II. MANUAL DESIGN OF NDPA 

A. Descriptions of NDPA Schematic 
A typical schematic of NDPA with three cells is shown in 

Fig. 1. With the distributed structure, the effect of parasitic 
shunt capacitance of transistor could be reduced so that a 
higher cut-off frequency is achievable. The resistor in parallel 
RC network plays the role of stabilization, and the capacitor 
helps to cancel out the shunt parasitic capacitance of the 
transistors [8], to increase cut-off frequency. This effect could 
be further mitigated by the transmission lines (TL) deployed 
on both gate and drain sides. The non-uniform structure allows 
for different choices of transistor size, so that the left drain 
termination resistor in distributed power amplifier could be 
removed and more power could be delivered to the load. 

B. Challenges in Manual Tuning 
Based on the theory of NDPA design, with optimal 

combination of these parasitic-sensitive components, most of 
the power can be delivered without reflection between cells 
within the desired wide frequency range. However, the design 
(searching space) for the best combination is tremendous, and 
the conventional optimization method [3, 4] used in manual 
design is less effective, suffering from the curse of 
dimensionality. As a result, even for an experienced RF 
designer, the optimization could quickly become prohibitive 
when the number of cells exceeds certain number (i.e., >5), 
due to the intractable complexity. Moreover, optimization 
must be re-run every time when there is update on the design 
specification or circuit topology, stemming from a lack of 
design knowledge transfer, and generalizability. 

 

Fig. 1. A typical schematic of 3-cell non-uniform distributed PA.   

III. RL APPROACH 

A. Overview 
The proposed RL algorithm is expected to perform design 

automation for NDPA, with suggested devices parameters 
within pre-defined ranges to guarantee manufacturability for 
reasonable design goals. Specifically, given a fixed topology 
of NDPA, once the RL model is well trained, the RL agent is 



supposed to output the optimal set of all device parameters 
fulfilling the given design goals during the deployment phase. 
This can be done normally with a few hundred exploration 
trials within a couple of minutes using desktop PC.  

B. The RL Algorithm Formulation 
A standard environment for a reinforcement learning agent 

is formulated as a Markov decision process (MDP), defined 
by a tuple (S, A, R, γ) [9], where S is the state space. A 
represents the action space. R(s, a) is a reward function, 
scoring how far away the agent is approaching to design goal,  
and more details are given in the following section. Given an 
observable state sÎS, of the environment (which is an EDA 
simulator), the RL agent is supposed to learn a policy π(a|s) to 
maximize the expectation of cumulative discounted rewards, 
where s0 is drawn from a random initial distribution, and γ<1 
is a discount factor for penalizing over optimism with regard 
to future rewards.  

State:  Denoted by a vector obtained by concatenating three 
types of features: 

 1) Node type encoding htype, representing device types, e.g.  
the binary code [0, 0, 0] and [0, 0, 1] represent transistor and 
transmission line (TL) respectively.  

 2) Device parameters hpara, normalized by the upper bound 
of each specific parameter. For transmission line, the 
algorithm tunes the width and length simultaneously.  

 3) Circuits characteristics hspec, S-parameter (SP) 
simulation results [S21, S11, S22], with 17 data points for 
each term over the working frequency band with step of 1 
GHz. Note that HB (harmonic balance) simulation reveals 
more detailed information for power amplifier but time 
consuming. Hence, HB is replaced by SP simulations during 
training phase and only used for final validation after training. 

Action: Discrete action space is adopted in the algorithm, in 
the form of vector e.g., [-2, -1, 0, 1, 2], with the options of 
decrementing or incrementing by one or two units or keeping 
the device parameters unchanged. The number of action 
options is a hyper parameter, determining how aggressively 
we expect the agent to act. 

Reward function:  The design of the reward function is 
empirical and greatly affects the RL learning efficiency. We 
choose the reward function as formulated in equation (1).   

 R=∑ 𝑤! ∗ 𝑟!"
!#$ ,  𝑟! = min(exp((gi-g*)/g*), 1.2), (1) 

where gi is the i-th specification obtained under current policy, 
and g* is the ideal specification. This reward mapping 
encourages the agent to approach the goal with more reward 
due to the exponential function, and the value 1.2 (a free 
parameter) is the saturation value for discouraging too much 
overdesign once the specification is satisfied and encouraging 
robustness pursuit. Empirically, assigning different weights 
helps to guide the agent to pursuit the critical performance. 
We use the six SP simulation performance terms g*: [S21min, 
S21mean, S21variance, S11mean, S22mean, flatness], with the 
empirical weights [5, 0.5, 1, 1, 1, 1.5]. If all of them are 
fulfilled, the learning episode terminates, and the obtainable 
reward should be above 10. 

C. Model Embedding 
Electronic circuit is naturally well-suited for graphical 

representation, which captures the interplay between nodes. 
Recent research work [6,13] has shown its effectiveness in 
analog circuits design, but at low frequency. We embed 
NDPA with GCN (graphical convolutional network) [10], 
with each device denoted by one node, plus three common DC 
biasing nodes (GND, VDS, VGS) connecting all cells with 
three layers of GCN embedding. The node feature is the 
concatenated vector [htype, hpara]. 

Another embedding with MLP (multiple layer perceptron) 
is created for circuits characteristics hspec to extract their highly 
coupled relations, with each layer being 128 neurons. Its last 
hidden feature representation is concatenated with the last 
hidden representation from GCN and fed as the input of the 
last fully connected layer for outputting the approximation of 
the RL value function.  

 

Fig. 2. RL agent interaction with high fidelity simulator (ADS).  

D. Domain Knowledge Fusion 
 

Domain knowledge of design principles fusion is proved 
to be able to accelerate RL convergences, by reducing 
inefficient state space exploration. In the case of NDPA, the 
left-most transistor should be the biggest size, contributing the 
most power. Therefore, the first constraint is setting the lower 
bound and upper bound of transistor width properly (note that 
transistor size decreases from left to right). Second, 
considering the current density of the drain line, as the power 
is flowing from left to right, the width of TL should be 
increased. Therefore, the width (W_DTL1) of the left most TL 
is set as the reference value, and its neighbor’s width is set by 
an increment, i.e., W_DTL2 = W_DTL1 + ∆W. Additionally, 
we force all cells to have the same resistance and width of gain 
TL. All the constraint detailed information is listed in Table Ⅰ. 

TABLE I.  DEVICE PARAMETERS RANGES FOR 3-CELL NDPA 

 

No Transistor 
(μm) 

Resistor 
(ohm) 

Capacitor 
(fF) 

TL-drain 
(μm) 

TL-gate 
(μm) 

1 [120, 200] [5,500] [50, 4000] W=[5,50] 
L=[50, 2000] 

W=[5,50] 
L=[50, 1000] 

2 [80, 120] [5,500] [50, 4000] ∆W=[5, 50] 
L=[50, 2000] 

W=[5,50] 
L=[50, 2000] 

3 [40, 80] [5,500] [50, 4000] ∆W=[5, 50] 
L=[50, 2000] 

W=[5,50] 
L=[50, 2000] 

 

E. RL Algorithm Descriptions  
The training procedure of the proposed RL agent is 

depicted in Fig. 2. The agent is equipped with the latest 
learned policy based on the embeddings illustrated in section 
C and designed to output action to update the circuit 
parameters. Thus, a new schematic is generated and sent to 



ADS for simulation, and the simulation performance results 
along with the new parameter state form the next state for 
another policy iteration.  

We select the proximal policy optimization (PPO) [11], 
one on-policy gradient based RL algorithm, due to its 
advantage of higher data sampling efficiency than off-policy 
learning, like DDPG [12]. In PPO, there are two 
approximators: the “actor” is to make decision under learned 
policy. The “critic” is the state value function, estimating the 
expectation of return, after visiting the current state, indicating 
where to go for finding better states. Correspondingly, two 
objective functions are used to learn the actor-critic pair. The 
first objective function is formulated as follows, 

	 Lcllip(θ) = Et[min(bt(θ), clip(bt(θ), 1- ϵ, 1+ϵ)At] (2) 

Where b(θ) = π(a|s;θ)/πold(a|s) is the ratio of new policy 
and old policy in terms of action probability distribution, and 
At is the advantage function, calculated as At = Vθ(st)-Gt, Gt = 
∑γt∗R(s,a), is discounted return in one episode.  The clipping 
technique is constraint for avoiding aggressive policy 
updating, with a small ϵ = 0.2. The estimation of Vθ(s) is 
learned by minimizing mean squared error of the two 
quantities, as formulated in the second loss function: 

 LVF(θ) = Et[Vθ(st) - Gt]2 (3) 

The two loss functions are added up for joint 
minimization, Loss  =  -Lclip(θ) + LVF(θ). 

IV. TRAINING DETAILS  
We verify our RL agent performance in the case 3-cell 

NDPA design with GaN HEMT technology.  

A. Experiment Setup   
The interface of data stream is constructed between ADS 

and Python for the agent’s interaction with environment. The 
targeted S-parameter specifications are listed in the second 
row of Table Ⅱ, with a range for each specification to 
generalize for broad design goals. Thus, with a well-trained 
RL agent, one does not have to retrain from scratch for a 
different design goal. All the other hyper parameters related to 
RL algorithm are set the same as in the original PPO version, 
and the learning rate is chosen as a decaying function of time.  

One critical setting is the start state initialization, which 
determines the policy exploitation and exploration, and a 
proper initialization manner can accelerate learning without 
loss of policy generalization. A “good” initial state defined as 
near to optimal solution should make the solution search 
faster, but this is found less effective for broad specifications 
coverage. The main reason is the lack of explosion of diverse 
states value. Considering the characteristics of our problem, 
we propose a dual-level weighted initialization method. At the 
high level, the probability that whether the initial state is 
initialized randomly or not, is drawn from a Bernoulli 
distribution, with probability p of random initialization and 1-
p non-random initialization, where p decays in the exponential 
form: p=exp(-4*t/T), and t and T are the current episode index 
and the total number of episodes, respectively. 

 

 Next, a “non-random” initialization mode is used at the 
low level, where the initial state is sampled from one 
“successful” episode, in which the problem has been solved, 
and the chance of each state being sampled is associated with 
the weight with regard to reward: α*(Rt- Rt-1) + (1-α)* Rt, the 
probability distribution is formed with softmax function. The 
parameter α decays from 1: max(t/T, 0.2), where the t and T 
are used to denote the current step and the final step in one 
training episode. The intuition is that the state visitation 
demonstrating positive progress (increased Rt-Rt-1) should be 
more likely to be used for initialization at the early stage of 
training. While as the policy improves, the state with high 
reward is more likely to be used for fast policy convergence. 

B. Training Procedure 
The agent implements the latest policy, outputs the actions 

for all parameters, then the corresponding experience is stored 
into a temporary buffer for policy updating.  The buffer size is 
the multiplication of the episode maximum length 30 and the 
maximum number of policy updates 30, namely, 900. The 
training takes roughly 12 hours for 2000 episodes with 8 CPU 
cores. 

In Fig 3, we compare the effectiveness of two state 
initialization approaches: random initialization and the 
proposed advanced initialization. The average episodic 
reward about 9 is achieved at peak point with the proposed 
initialization, near 90% of full score 10. The average length 
is a measurement of how many steps are needed within one 
episode on average, this number drops after episode of 500, 
but it basically does not change in the random initialization 
method. 

 

Fig. 3. RL agent learning curve: average reward and  average length. Green: 
with the proposed state initialization; Orange: with random initial states. 

C. Deployment Method 
In deployment, given any specification, the agent with 

optimal policy is expected to iterate up to 200 steps to output 
the desirable optimal parameters. The initial state is sampled 
from the data set where good initializations states have been 
stored during the training phase. We deploy the agent up to 
50 times given random design goals. The obtained 
deployment accuracy is reported in Fig. 4-(a). The agent can 
accomplish this design task with the rate of 78% at best (at 
episode=1500). For the 22% failures, we found that the 
specifications in these cases are very close to targets and can 
meet the goals with minor tuning. For instance, if the “failed” 
parameters are set as the initial sate for another round of 
deployment, they will be fine-tuned to satisfy all the desired 
performances. Fig. 5 demonstrates how broad specifications 
the RL agent can cover. Compared to the training goal, it 
shows that the mean values are basically satisfied, and the 
variance indicates that the RL agent can cover more desired 
specifications. 



 

         
   (a)   (b) 

Fig. 4. (a): deployment evaluation and (b): one design case comparison.

 

Fig. 5. Comaprison: statistics of specifications reached by RL agent at 
episodoe = 1500 vs. predefined design goals. 

 

 

Fig. 6. The succesful deployment given desired sepcification from a human 
expert: horizontal dashline marks the given specificaiton. 

D. Results and Analysis  
For fair evaluation, we compare our automated design 

results with human expert design in one specific successful 
design case. Given the specification a human expert can reach 
(after weeks of tedious tunings) in Table Ⅱ, a well-trained 
agent takes only 26 steps of trials to mostly achieve the same 
goal shown in Fig. 6. The HB simulation comparison is 

depicted in Fig. 4-(b). It demonstrates that the RL agent is 
competitive to a human expert but with much shortened 
design cycle. 

TABLE II.  ONE EXAMPLE SP SIMULATION RESULTS COMPARISON 

 S21mean 
(dB) 

S21min 
(dB) 

S21var 
(dB) 

S11mean 
(dB) 

S22mean 
(dB) 

flatness 
(dB) 

Training [6,8] [5,7] [2,4] [-9, -5] [-9, -5] [4, 6] 
RL agent 8.4 6.7 1.3 -10.4 -5.8 4.0 
Manual 8.2 5.9 2.0 -10 -6.5 4.2 

 

V. CONCLUSIONS 

 We demonstrated a novel RL-based method for NDPA 
automation design coving 2-18GHz with GaN, which shows 
the effectiveness of RL agent learning ability in optimal 
device parameters’ tuning, with only minor domain 
knowledge. Compared to a human expert, a well-trained RL 
agent displays fast problem-solving capability with high 
accuracy in achieving the design goals. This method can be 
applied to radio frequency amplifier development to reduce 
design cost and shorten development time. 
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