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Abstract

Reliable building simulation models are key to optimizing building performance and reducing greenhouse gas emis-
sions. Informed decision making requires simulation models to be accurate, extrapolatable, and interpretable, all of
which require calibrating model simulations to ground truth. Complicated building dynamics and highly uncertain
exogenous disturbances make the model calibration process challenging and expensive; hence, a scalable and efficient
calibration approach is needed to enable actual application. Current automatic calibration algorithms do not leverage
data collected from multiple sources: for example, data obtained from previous calibration tasks on other buildings. In
this paper, we employ probabilistic deep learning to meta-learn a distribution using multi-source data acquired during
previous calibration. Subsequently, the meta-learned Bayesian optimizer accelerates calibration of new, unseen tasks.
The few-shot (that is, requiring few model simulations) nature of the proposed algorithm is demonstrated on a Modelica
library of residential buildings validated by the United States Department of Energy (USDoE). The proposed algorithm
is compared against classical Bayesian optimization-based calibration, and it is shown that ANP significantly sped up
the calibration procedure: the optimal model parameters are identified with 40-60% less simulations compared to the
baseline.
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1. Introduction

Efforts to reduce societal energy consumption and mit-
igate drivers of climate change have continued to focus
on improving building energy efficiency because of their
significant energy consumption; in the United States, the
building sector alone covers around 40% of total national
energy consumption and almost 20% of greenhouse gas
emissions [1]. To address this growing concern, strict guide-
lines for constructing new buildings have been proposed
both at the government3 and scientific level. In fact, ASHRAE
and the United States Department of Energy (US DOE)
have identified that building energy modeling (BEM) is
a key technology for enabling energy-efficiency in build-
ings [2]. These BEMs are typically designed to predict
the energy dynamics of buildings during various modes of
operation via numerical simulations. Since numerical sim-
ulations are cheaper than performing experiments, one can
use these models to quickly ascertain how the building sys-
tem behaves under different heating/cooling equipment,
uncertainties due to weather conditions or occupants, and

1Email: chakrabarty@merl.com. Phone: (+1) 617-758-6175.
2This research was completed during S. Zhan’s internship at

MERL.
3See, for example, California guidelines on net-zero energy by

2030: https://www.cpuc.ca.gov/zne/

retrofitting; we refer to [3] for a detailed discussion on
the benefits of BEMs. Consequently, BEMs play a major
role in the design of advanced control and estimation al-
gorithms for regulating building thermal dynamics despite
load variations [4, 5], in equipping building digital twins
with monitoring capabilities [6, 7], and in self-optimization
for energy reduction [8, 9] and personal conditioning [10],
to name a few applications.

To reiterate, simulation BEMs are essential to curtail-
ing energy expenditure, but for simulation-based optimiza-
tion to be effective, one must ensure that the simulation
model accurately reflects reality. Simulation models can
range from white-box (where the models are constructed
based on a physical understanding of building dynam-
ics) to black-box (where the models are constructed us-
ing function approximators like neural networks directly
from data) and various hybridizations of these categories.
Regardless of the modeling framework, these simulation
models contain a large number of model parameters that
need to be chosen so that the simulated outputs are ac-
curate with respect to real building measurements [11].
These model parameters are typically representative of cli-
mates outside the building over multiple time and area
scales, material properties of the building envelope, and
attempts to model uncertainties such as equipment degra-
dation, power grid fluctuations, and occupant behavior. In

Preprint submitted to Energy & Buildings June 2, 2022



fact, a recent study showed that it is not uncommon for
a typical building to contain over 3000 parameters to be
tuned [12], of which hundreds may require automatic tun-
ing rather than tuning manually with expert knowledge.

Roughly, automatic calibration is a non-user-driven and
mathematical process in which an objective function is
designed to represent the discrepancy between measured
and simulated outputs from a simulation model and this
objective is optimized systematically and without manual
intervention via numerical methods. With recent avail-
ability of efficient numerical solvers and advanced com-
puting resources, automatic calibration can often drasti-
cally outperform manual calibration performance both in
terms of convergence rates and calibration frequency [13].
Automatic calibration methods have been generally clas-
sified into: deterministic or Bayesian, where deterministic
automatic calibration has been reported to result in cal-
ibrated parameters that are far-removed from their true
values, since these methods do not take uncertainty into
account [3]. Conversely, Bayesian algorithms such as Markov
chain Monte Carlo (MCMC) methods provide a suite of
tools for estimating simulation model parameters while
concurrently quantifying different uncertainty sources [14].
Concretely, Bayesian calibration attempts to fit a probabil-
ity distribution on the parameters of the simulation model
that best explains the observed data: unfortunately, con-
structing a probability distribution often requires a large
number of model simulations, although advanced Monte-
carlo methods have been proposed recently to reduce the
simulation overhead such as Hamiltonian Monte-Carlo (HMC)
and No U-Turn sampling (NUTS) [15]. Since building sim-
ulation models are often slow to simulate due to multi-scale
dynamics and noise, a widely adopted approach is to em-
ploy simplified (often, oversimplified) meta-models of the
building dynamics for quick simulation [16–18]. Rather
than using meta-models that may compromise prediction
quality, a combination of deterministic and Bayesian ap-
proaches has been proposed recently [19], wherein the idea
is to use Bayesian optimization to search for optimal pa-
rameter combinations with few simulations of the high-
quality building simulation model, and modeling the un-
certainty associated with the building directly in the cal-
ibration objective function. This completely avoids the
need to construct a meta-model from the building param-
eters to the building dynamics, replacing it with a much
simpler map from the building parameters to the building
calibration cost.

Despite these advances in building model calibration,
an open research question is how to extract high-quality
information from multi-source building data, that is, data
collected on sensors from multiple buildings over the coun-
try, and indeed, globally. This is an imminent opportunity
made possible due to the advancement of sensor technology
and the emergence of connected sensing in buildings, often
referred to as the building internet-of-things (IoT) [20]. In
this paper, we take a step towards answering the question
of how to systematically parse these big multi-source build-

ing datasets and extract information for fast and efficient
model calibration. The value of multi-source (buildings
with different geometries, constructions, locations, etc.)
data for developing black-box energy prediction or fore-
casting models has been recognized. Transfer learning was
integrated with neural networks to leverage the knowledge
gained from similar buildings for energy prediction [21, 22].
Meta learning was used to recommend the most suitable
machine learning model [23, 24]. However, current cali-
bration methodologies only used data obtained from the
target building considering its uniqueness [25]. Meanwhile,
each optimization-based or sampling-based building cali-
bration task produces a dataset of building parameter to
objective function values. These multi-source datasets are
often archived but not used to calibrate simulation models
for a new building. Ignoring these highly-relevant, often
abundant, archived datasets and performing calibration
‘from scratch’ for each new building presents a missed op-
portunity. Meta-learning attempts to mimic a human’s
‘learning to learn’ process by training deep learners to es-
timate distributions of calibration-relevant quantities from
previously seen calibration tasks to improve the calibration
performance of new tasks [26]. It has been applied in many
scenarios where it is extremely slow to estimate parame-
ters from scratch, such as hyper-parameter optimization
of deep networks [27]. In the case of calibrating build-
ing simulation models, a meta-learning based method has
the potential to distill the knowledge of general building
physics from the dataset generated from multiple unique
buildings.

We demonstrate, for the first time, that data obtained
during calibration of related, albeit non-identical, build-
ings contains useful information about general building
dynamics that can significantly accelerate the model cali-
bration of new, unseen target buildings by the use of meta-
learning via a class of deep probabilistic neural networks
called attentive neural processes [28]. Our major con-
tributions in this work include: (i) we propose an auto-
mated calibration framework that integrates probabilistic
meta-learning to enable Bayesian optimization-based cal-
ibration with very few model simulations; (ii) we propose
the use of deep probabilistic networks to efficiently learn
from large, multi-source calibration datasets; (iii) we con-
struct a Modelica-based high-fidelity multi-source building
dataset with operational equipment, internal heat loads,
and realistic weather variations; and, (iv) we illustrate the
effectiveness of meta-learning in speeding up calibration
against conventional BO-based calibration by over 40%.

The rest of the paper is organized as follows. Section 2
recaps the basic concept and formulations of digital twin
calibration for buildings and the use of Bayesian Optimiza-
tion. Section 3 introduces the meta-learning calibration
framework using attentive neural processes (ANPs), which
are a class of probabilistic deep learning architectures. Sec-
tion 4 describes the experiment configured to manifest the
superiority of the proposed framework. The experiment
results are presented in Section 5. Lastly, in Section 6, we



discuss the practical issues and points out the opportuni-
ties for future development.

2. Preliminaries

2.1. Data-driven optimization for model calibration
We denote by

y0:T = MT (θ) (1)

a forward simulation model of the building and HVAC dy-
namics. The model is parameterized by the parameter
vector θ ∈ Θ ⊂ Rnθ , and the admissible search space of
parameters Θ is assumed to be known. For instance, Θ
could denote a set of upper and lower bounds on parame-
ters, obtained from physics or domain expertise. The out-
put vector y0:T ∈ Rny×T contains all measured quantities
available from the building system over a time interval of
interest, say [0, T ].

The reason we consider the abstract model MT (θ)
rather than choosing a model with a specific structure is
because our approach is agnostic to selection of the model
structure. We assume that MT (θ) is any simulation model
that can be simulated on the time interval [0, T ], where the
model is defined by a set of parameters θ. The forward sim-
ulation using MT (θ) generates a time-series of simulated
outputs that we denote

y0:T :=
[
y0 y1 · · · yt · · · yT

]
,

where at each time t ∈ [0, T ], the output yt is a column
vector of size ny.

Since MT (θ) has no specific structure, it follows that
our proposed calibration method is applicable for param-
eter estimation on a wide range of dynamical models. For
example, consider the well-known building simulation model
studied in [13, 29], which is given by

yt = χ1(xt, θ1) + χ2(xt, θ2) + χ3(xt, θ3), (2)

where χ1 denotes the energy prediction, χ2 is the model
discrepancy, χ3 is the observation error, and θ1, θ2, θ3
are the parameters defining each model component. One
can recursively simulate this model from t = 0 to t = T
and obtain y0:T . Therefore, the recursive update using (2)
from t = 0 to t = T can be written abstractly as the model
MT (θ), parameterized by θ = [θ1, θ2, θ3].

For simulation-based model calibration (equivalently,
estimation of model parameters using model simulations
in a data-driven manner), we assume that we have avail-
able to us some ground-truth measured data y⋆0:T from the
building under consideration that can be used to estimate
the best parameters for the model MT (θ). Concretely,
our objective is to obtain the optimal set of parameters θ⋆
such that the modeling error y⋆0:T −MT (θ

⋆) is minimized,
according to a user-defined model fit metric. Accordingly,
we define the optimization problem to find the optimal
parameters

θ⋆ = argmin
θ∈Θ

J(y⋆0:T ,MT (θ)). (3)

While the designer is free to select any modeling error
function J in (3), we select

J := MSE(y⋆0:T ,MT (θ)) =

T∑
t=0

(y⋆t − yt)
⊤W (y⋆t − yt), (4)

where W is a ny ×ny positive-definite matrix that is used
to assign importance or scale the output errors. Since the
cost function is likely to be non-convex, high-dimensional,
and analytical gradients are unavailable due to the un-
modeled nature of the map from θ to J , gradient-based
methods are unreliable as they frequently yield poor qual-
ity locally optimal solutions. Conversely, population-based
methods like genetic algorithms or intelligent swarms ex-
hibit extremely slow convergence because each model sim-
ulation is slow for large buildings, especially if also simu-
lating HVAC dynamics. Thus, performing a large number
of model simulations while searching for parameters be-
comes impractical, so we resort to a Bayesian optimization
framework for calibration that has recently been demon-
strated to be sample-efficient even for complex building
energy models [19].

2.2. Classical Bayesian optimization
In high-dimensional parameter search spaces, the num-

ber of samples required to obtain near-optimal solutions
to (3) can be large unless the sampling is done intelligently.
The classical Bayesian optimization (BO) algorithm pro-
vides a sample-efficient way to search for optima in Θ by
iterating through three steps that balance exploration and
exploitation [30]:

1. Probabilistic regression methods are used to approx-
imate the mapping from the parameter space to the
calibration-cost function J . By learning a probabilis-
tic surrogate model of the calibration cost, one can
quantify the uncertainty associated with the calibra-
tion cost on Θ.

2. The statistics associated with the probabilistic surro-
gate cost can be used to generate subsequent search
directions towards sub-regions of Θ which are most
likely to contain the global solution that minimizes
the cost.

3. After a new sample is acquired in the promising sub-
region, the probabilistic model is retrained through
Bayes rule, thus incorporating new information and
refining its predictions.

Gaussian processes (GP) are the prevailing probabilis-
tic surrogate model of choice in BO due to the existence of
a closed-form model update expression as well as a closed-
form objective to tune it. GP functions are characterized
by a mean function µ(θ) and a kernelized covariance func-
tion K(θ, θ′). The accuracy of the predicted mean and
variance are strongly linked to the choice of kernel, along
with the kernel parameter values, such as length-scales
and variances. While many kernel functions are available,



the Matérn 3/2 function is (empirically) found to provide
a good approximation of calibration-cost functions [19].
Among a variety of methods to optimize these kernel pa-
rameters, the most common one involves maximizing the
log-marginal likelihood [31, Chapter 2].

The exploration-exploitation trade-off in BO methods
is performed via an acquisition function A(·). The acqui-
sition function uses the predictive distribution given by
the GP to compute the expected utility of performing an
evaluation of the objective at each θ sampled from the pa-
rameter space. The next point at which the objective has
to be evaluated is given by

θNθ+1 = argmaxA(θ).

A commonly used acquisition function is the expected im-
provement (EI) function [30], given by

AEI(θ) = (J(θ+)− µ(θ)− ϵ)Φ(Z) + σ(θ)ϕ(Z), (5)

where

Z =
(J(θ+)− µ(θ)− ϵ)

σ(θ)

and Φ(·) denotes the cumulative distribution function of
a zero-mean unit-variance normal distribution, ϕ(·) de-
notes the probability density function of a zero-mean unit-
variance normal distribution, µ(θ) and σ(θ) are the pre-
dicted mean and standard deviation at θ based on the GP
surrogate cost, and J(θ+) is the best cost encountered so
far. Additionally, the parameter ϵ = 0.01 is used to en-
courage exploration. It is common practice to maximize
this acquisition function by extracting random samples on
Θ, evaluating A at every sample, and selecting the sample
that maximizes A.

After a suitable number of iterations Nθ, the GP re-
gressor is expected to learn the underlying function J and
the best solution obtained thus far by the acquisition func-
tion is denoted the best set of parameters for the model.
The selection of Nθ is a design decision: it is usually in-
formed by practical considerations such as the total num-
ber of simulations achievable within a practical time bud-
get. Note that Nθ is the number of model simulations,
and has no relation to the size of the measured data ob-
tained from the building. Thus, even if Nθ is large for BO
convergence, this indicates that a large number of model
simulations were required for calibration, not that a lot of
measured data was needed for calibration.

3. Meta-Learning for Data-Efficient Calibration

3.1. Calibration from multi-source data
In the previous section, we have considered the scenario

when the calibration task is performed using data from a
single source. That is, the calibration cost is learned us-
ing optimization trajectory data obtained from only the
building that is to be calibrated: herein, we will refer to
the building to be calibrated as the query building. In this

section, we will consider the ‘multi-source’ calibration set-
ting, where the calibration cost function of the query build-
ing is learned using a combination of: (i) a very limited
set of optimization trajectory data from the query build-
ing, and (ii) a significantly larger set of optimization data
from related, but not necessarily identical, source build-
ings. This scenario emulates a practical scenario where
calibration has been performed on a large number of build-
ing models in the past and that data has been archived,
and therefore, can contribute to the calibration of a new,
unseen (query) building model, with very few simulations
of the new building model. Since very few simulations are
needed from the query building model, this is referred to
as a ‘few-shot’ calibration method.

Concretely, suppose that NS is the number of source
buildings whose simulation models have been calibrated in
the past. Let s ∈ {1, 2, · · · , NS}. For the s-th source build-
ing, suppose the measured outputs are denoted by y⋆,s0:T

and the corresponding source building simulation model is
given by Ms

T (θ). We assume that for all source building
models, the set of parameters θ being calibrated and the
admissible set of parameters Θ are the same. Note, how-
ever, that the best parameters found during calibration,
θ⋆,s, could be different for each source building model, in-
dicating that the source buildings can all exhibit different
dynamics. We assume that each source calibration task
has been completed in the past; this involved searching
over Θ using any calibration algorithm of choice to ob-
tain optimization trajectories Ss := {(θsk, Js

k)}
Ns

BO

k=0 , where
Ns

BO is the number of model simulations performed using
Ms

T during calibration. The intuition is that if the cali-
bration procedure on the source building models was done
properly, then the space Θ for each source building model
has been well-explored, and a solution close to the true
parameters has been found. Consequently, while calibrat-
ing the query building, we can avoid wasting resources
exploring large portions of Θ and focus in on promising
sub-regions of Θ that are likely to possess good parameter
candidates for the query building, and therefore, reduce
the number of model simulations required from the query
building, thereby making our calibration mechanism effi-
cient. Note that few-shot optimization will make the cal-
ibration procedure sample-efficient, and is not related to
data-efficiency: that is, we do not assume we can con-
trol how much measured data we have available from each
source building. In fact, this method can be implemented
without requiring access to any measurements from the
source buildings. We only require optimization trajecto-
ries, i.e., parameters and cost values, from every source
calibration task. This collection of multi-source optimiza-
tion trajectory data forms the training set S :=

⋃NS

s=1 Ss

for a learning algorithm that will learn trends from a family
of calibration cost functions. These learned trends, along
with a few model simulations, will enable the learner to
quickly adapt and estimate the true calibration cost of
new, unseen query building models.



We provide a simple example to illustrate our termi-
nology and provide some further intuition:

Example 1. An example of source buildings are build-
ings that have similar geometries (e.g. townhouses) but
are located at different geographical areas (such as New
York and Boston). As discussed in the previous paragraph,
the parameters θ to be calibrated are the same across all
buildings, e.g., the emissivity coefficient of the roof. The
bounds on these parameters are also the same for all build-
ings, which implies Θ is identical for all source tasks. The
source tasks are assumed to have been completed in the
past, and optimization trajectories are available for them,
say with N1

θ = 2000 model simulations for the New York
townhouse, and N2

θ = 1000 for the Boston townhouse.
However, the materials used for constructing the houses
are different, so the two roof emissivity coefficients are not
equal. Thus, the source dataset comprise different opti-
mization trajectories S1 and S2 where different parts of Θ
have likely been explored during calibration. Now, suppose
the query task is a townhouse in Chicago, for which we
have only a few initial model simulations, say Nq

BO = 10.
A learning algorithm can be designed to learn from the
2000 + 1000 = 3000 data points obtained from the multi-
source dataset (New York and Boston), and use the in-
formation gleaned from those buildings, along with the 10
model simulations of the query building model, to gener-
ate a good estimate of the calibration cost function of the
Chicago query building. If an initial estimate of the cost
function is good over Θ, then sample-efficient methods like
Bayesian optimization are expected to converge in a few-
shot manner i.e., with very few additional model simula-
tions.

3.2. Attentive neural processes (ANPs) for few-shot Bayesian
optimization

In this paper, we employ attentive neural processes
(ANPs) for learning from multi-source building optimiza-
tion trajectories. ANPs are probabilistic deep neural net-
works [28] that possess some properties beneficial to this
multi-source calibration problem. First, ANP training is
performed using mini-batches, where the batches can con-
tain data obtained from different sources. This enables
the ANP to learn underlying trends about calibration cost
functions from the multi-source dataset that are likely to
remain relevant for the unseen query calibration task. Sec-
ond, the ANP leverages context and latent encodings that
can be used to easily adapt its encoded knowledge from
the multi-source dataset to estimate a calibration cost for
the query task with very limited data from the query task
itself. Specifically, even with a very limited number of
model simulations of the query building, one can form a
context set

Sq
C := (θqC , J

q
C) := {(θqk, J

q
k)}

Nq
BO

k=1 , (6)

with which the ANP can provide a good estimate of the
overall calibration cost landscape for the query building.

Finally, the ANP generates probabilistic estimates, which
can subsequently be leveraged to construct acquisition func-
tions (such as those used in classical BO) to execute few-
shot Bayesian optimization.

3.2.1. Training and inference
The ANP is a probabilistic deep neural network that

estimates a conditional distribution on the calibration cost
function, given by

pANP(JT |θT , θC , JC), (7)

where the conditioning input arguments are a set of con-
text parameters θC , a set of context cost values JC , and
a set of target parameters θT . The target points θT ∈ Θ
are the locations where we wish to evaluate the conditional
distribution (7). The role of the context points is to gener-
ate distributions of the cost function conditioned upon the
information contained in the parameter-cost pairs (θC , JC).
For example, if the context points were from the s-th
source building, the ANP would generate a distribution
close to the true calibration cost of the s-th source build-
ing at the target points in Θ. Similarly, if the context
points are the limited parameter-cost pairs from the query
building, then the ANP would generate a conditional dis-
tribution likely to emulate the query building’s true cost
function. Clearly, the more context points we provide, the
more accurate the ANP estimates will be.

Figure 1 shows an overview of the data required for
training and inference for an ANP. For training (see up-
per subplot), we denote Ss

C and Ss
T as context and target

sets drawn from the s-th source task and nC , nT as the
number of context and target points, respectively. These
are formed by partitioning a given source task Ss ⊂ S into
randomly selected context and target sets, Ss

C and Ss
T , re-

spectively. These sets may not necessarily be disjoint. The
parameters of the target set θsT along with the context set
(θsC , J

s
C) can be used to infer a conditional distribution by

the ANP. Under the assumption that this distribution is
approximable by a Gaussian distribution, the output of
the ANP is described by N (µs

T , σ
s
T ). Since the training

is supervised, labels of the true cost values Js
T at the tar-

get locations are known, and therefore, a loss function to
be optimized such as an evidence lower-bound (ELBO),
can be computed. For training, stochastic gradient de-
scent variants are used with batching of context and target
sets. By computing gradients based on random selections
of context and target sets across all tasks in the multi-
source dataset, we enforce that the ANP learns a family
of distributions conditioned by context sets over the entire
multi-source training set S.

The inference procedure is shown in the lower sub-
plot of Figure 1. Here, the context set consists of the
limited set of optimization trajectory data obtained from
the query building described in (6). The target parame-
ters are a dense grid on Θ where we wish to evaluate the
query building calibration cost. The ANP at inference has



Figure 1: Schematic diagram of ANP training and inference.

been trained, so it contains embedded information from
the multi-source dataset S. Using a combination of the
context points Sq

C and the target parameters for the query
building θqT , the trained ANP can infer a conditional dis-
tribution N (µq

T , σ
q
T ) that is likely to contain the true cal-

ibration cost function of the query building.

3.2.2. Implementation specifics
Figure 2 displays the ANP architecture used in this

work. Internally, we factorize the conditional distribu-
tion (7) as

pANP(JT |θT ,Sq
C) :=

∫
pANP(JT |θT ,Rq,det, z) pproxy(z|Sq

C) dz.

(8)
where z is a global latent variable z with a proxy prior
distribution pproxy(z|Sq

C) that generates different stochastic
process realizations thereby incorporating uncertainty into
the predictions of target function values Jq

T despite being
provided a fixed context set.

Here,
Rq,det = [Rq,det

1 , · · · ,Rq,det
Nq

BO
],

and each
Rq,det

k := Encdet([θqk, J
q
k ])

is the output from the deterministic encoder Encdet. In
the deterministic path, the ANP aggregates using a cross-
attention mechanism, where each target query attends to
the context points θq to generate the representation R×.
In particular, to generate an encoding R×

ℓ for a single

target point θT ,ℓ ∈ θT , we use the multi-head attention
(MHA) function [32] for the cross-attention mechanism,
given by

R×
ℓ = MHA(θT ,ℓ, θ

q
C ,R

q,det) = ω0[head1, . . . , headNh
],

(9a)
where

headi = dotProductAttention(η1, η2, η3), (9b)

dotProductAttention(η1, η2, η3) = softmax
(
η1η

⊤
2√
nθ

)
η3,

(9c)

and

η1 := ω1θT ,ℓ, η2 := ω2θ
q
C , η3 := ω3Rq,det. (9d)

Here, ω0:3 in (9d) are attention weight matrices that are
part of the trainable set of parameters for the ANP, and Nh

is the number of attention heads in the multihead attention
function MHA described in (9a). Each attention head (9b)
is defined by the scaled dot product attention function,
denoted dotProductAttention described in (9c). Recall that
nθ is the dimension of θ. Note that R× is a matrix whose
columns are R×

ℓ .
Intuitively, the cross-attention operation generates a

representation of the entire context set unique to each tar-
get point, such that the context points that are most rele-
vant to the target point are given more importance in the
representation. The dotProductAttention function consists



Figure 2: Architecture of the ANP. This figure shows a typical ANP pipeline for inference, with inputs and outputs kept outside the dotted
rectangle. The context set parameters and costs are described by the subscript C and the target set parameters and costs by the subscript T
for the query building. The total number of points in the context and targets sets are denoted nC and nT , respectively. The deterministic
path of the ANP is shown using dash-dot arrows, and the latent path with dotted arrows. The outputs of the ANP consist of a collection of
means (µq

T ) and standard deviations (σq
T ) for each target parameter θqT . We use [:, k] and [k] to represent the k-th column or element of the

corresponding quantity, respectively.

of (i) a softmax function which computes weights based on
the importance of each context point, where importance is
measured by the similarity of the context point to the tar-
get point, and (ii) a weighted combination of the outputs
of the deterministic encoder based on these assigned sim-
ilarity weights. Each such weighted encoding contributes
to a single head, which typically learns to attend to a sub-
region in Θ. The multihead operation combines the indi-
vidual heads in order to attend to multiple subregions of
Θ concurrently.

Along with the deterministic path, the ANP has a la-
tent path. The latent path has a latent encoder Enclat

which transforms the context points to

Rq,lat
k := Enclat([θqk, J

q
k ])

similar to the deterministic encoder, from which we get

Rq,lat = [Rq,lat
1 , · · · ,Rq,lat

Nq
BO

].

A mean aggregation operator is employed in the latent
path to form an aggregated variable R̄q,lat from Rq,lat,
which is invariant to the ordering of the context points.
Subsequently, the aggregated variable R̄q,lat is used for la-
tent sampling as in a variational autoencoder (VAE) [33]
to obtain a realization of the global latent z. The decoder
arm of the ANP combines the outputs of the deterministic
and latent paths to generate the conditional distribution
pANP(JT |θT ,R×, z). This distribution is parameterized by
a mean and variance, which constitute the outputs of the
ANP.

To make the implementation tractable, we enforce that
each point in the target set is derived from conditionally
independent Gaussian distributions, and that the proxy
distribution pproxy is a multivariate Gaussian with a di-
agonal covariance matrix. This enables the use of the
reparametrization trick [33] and we train the ANP to max-
imize the evidence-lower bound (ELBO)

E
[
log pANP(JT |θT ,R×, z)

]
− KL [pproxy(z|Ss

T )||pproxy(z|Ss
C)]

for randomly selected Ss
C and Ss

T within S. Maximizing
the expectation term E(·) ensures good fitting properties of
the ANP to the given data, while minimizing (maximizing
the negative of) the KL divergence embeds the intuition
that the targets and contexts arise from the same family
of stochastic processes. The original ANP formulation [28]
uses self-attention in both the latent and deterministic en-
coders, however, the complexity of the ANP with both
self-attention and cross-attention is O (nC(nC + nT )). Em-
pirically, we observed that only using cross-attention does
not deteriorate performance while resulting in a reduced
complexity of approximately O (nCnT ), which is beneficial
because nT is fixed, but nC grows with BO iterations.

3.2.3. Few-shot Bayesian optimization with ANP
Since the output of the ANP is a Gaussian distribution

by design, we can use an ANP instead of using GP as in
classical BO (see §2.2). We refer to ANP-based Bayesian
optimization as ANP-BO. ANP-BO has a few distinct ad-
vantages over GP-BO: first, it can scale well to large multi-
source datasets, which GP cannot; it can generate more



varied inference distributions than a GP; and finally, it
can enable BO to be performed in high-dimensional pa-
rameter spaces.

Having learned from S, ANP infers the target objec-
tive function with a few context points in Θ. Instead of
retraining the traditional surrogate model every iteration,
the ANP-BO procedure is:

1. A large number of target points θqT are randomly
sampled from the parameter space Θ. ANP is used to
estimate the corresponding distribution of objective
values given context points (θqC , J

q
C).

2. The predicted distribution is used to evaluate a given
acquisition function A(θ) and identify the sub-regions
of Θ where the global solution θ⋆ most likely exist.

3. A new sample is acquired in the promising sub-region
and evaluated in the simulation. The obtained (θ, J)
pair is appended to the context set in the next iter-
ation. ANP need not be retrained.

These steps are repeated until a stopping criterion is
met. Leveraging the information from the relevant source
tasks, ANP-BO is expected to converge faster than a GP-
BO where the GP is trained from scratch.

4. Experimental Setup for Multi-Source Calibra-
tion

4.1. Building simulation model library for multi-source cal-
ibration

In this section, we describe how we design a testbed
for multi-source calibration. Figure 3 illustrates both the
testbed and the calibration process, including the overall
multi-source dataset generation, meta learning via ANP,
and calibration via ANP-BO. In the dataset generation
and ANP training stage, we constructed 60 multi-source
building simulation models, of which 48 were used to gen-
erate optimization trajectories for training the ANP. In the
calibration performance validation stage, we then used the
remaining 12 models to test the performance of the ANP-
BO calibration method and to compare the ANP-BO with
a classical GP-BO calibration method to demonstrate the
data efficiency of ANP-BO during the calibration proce-
dure. The library of simulation models was constructed
using the Modelica4 language because the models can be
used for multiple purposes: for example, they can be used
in a standalone configuration to study the hygrothermal
dynamics of the building envelope, or they can be inter-
connected with dynamic models of HVAC and renewable
energy sources to simulate and analyze the overall behavior
of the coupled system. An additional benefit of the Mod-
elica models is that they can be compiled into standalone
executable binaries for running simulations and seamlessly

4Modelica (CITE) is an open-source component-oriented,
equation-based language for modeling multiphysical systems.

integrated into Python machine learning tool chains via
the Functional Mockup Interface (FMI)5.

The Modelica building envelope models are based on
the well-studied US DOE Residential Prototype Buildings
Library (RPBL) [34]. The RPBL comprises a group of
EnergyPlus6 building simulation models for similar single-
family houses located across different climate zones in the
US, and correspond to standards described in the latest In-
ternational Energy Conservation Code (2018 IECC). The
building models all have similar dimensions, consisting of
a conditioned two-story living unit and an unconditioned
attic with inclined roofs (see Figure 4a). The floor of the
living unit is exposed to one of the four foundation types:
slab, crawl space, heated basement, and unheated base-
ment. Each of these four types of building geometries is
located in the 15 typical climate zones in the US, and many
of the building parameters are adjusted according to the
climate zone. Parameter variations include changes in the
thickness of the insulation layers, the conductivity of the
windows, and the effective leakage area. As a result, there
are a total of 4 × 15 = 60 simulation models with myriad
thermal behavior. Figure 4b displays the large variation
reflected in 5-day trajectories of the living unit tempera-
ture of the 60 models with the HVAC systems deactivated
during the first week of January, where up to 40◦C of dif-
ference can be observed. The differences visible in this
plot can largely be attributed to the variation in ambient
conditions, as the climate zones include data that ranges
from Hawaii to Alaska.

Several measures were applied to both the Modelica
and EnergyPlus models to ensure consistency between them.
First, the default Surface Convection Algorithm DOE-2
in EnergyPlus was replaced with the more precise TARP
(Thermal Analysis Research Program) that calculates the
convective heat transfer coefficient with temperature dif-
ference and wind speed. Next, year-long simulations were
conducted for the EnergyPlus models to generate signals
of internal heat gains, which were fed into the Modelica
models as boundary conditions. Lastly, the thermostats
were disabled to enable the prediction of the free-floating
temperatures and thereby validate the building-side model
dynamics. Figure 5 illustrates the model outputs of both
the EnergyPlus and Modelica models for a simulation of
a residential house with a crawlspace located in Memphis,
TN (climate zone 3A) for January 1-5 for the purposes
of comparison. The minor discrepancies between the two
models are caused by the use of different solvers and un-
derlying calculation methods, such as steady state approx-
imations used in the EnergyPlus models.

5The Functional Mock-up Interface (FMI) (CITE) is an open
standard that defines a container and an interface to exchange dy-
namic models between simulation environments.

6EnergyPlus is a console-based whole building energy simulation
program that engineers, architects, and researchers use to model en-
ergy consumption and the indoor environment in buildings.



Figure 3: Experimental setup for multi-source calibration via ANP-BO.

(a) Geometry of the building model rendered by SketchUp.

(b) Median, IQR, and extrema of temperatures of the 60 buildings.

Figure 4: Simulation models built for the calibration experiment
have similar geometry but myriad thermal behavior.

Figure 5: Free-floating temperature predictions (living unit, attic,
and crawlspace) of a pair of Modelica and Energyplus models.

4.2. Configurations of the calibration tasks
The calibration task for each source building model is

to identify the true IECC parameters of the model. Each
source building model is assumed available during calibra-
tion, and ranges on the parameters Θ is known, although
the true parameter values are unknown. The measure-
ments available from each source building is considered to
be a combination of 6 outputs, acquired hourly for 4 days,
resulting in 96 time samples. Therefore, y0:T ∈ R6×96.
The 6 measurements are: room and attic temperatures
(◦C), room relative humidity (%), and HVAC consump-
tion (fan, heating, and cooling, kW). Five parameters θ ∈
Θ ⊂ R5 chosen to be sensitive to these outputs are cal-
ibrated for each source building. These parameters are
specifically selected to be varying to (different degrees)



amongst the source and query buildings, and include: (i)
external roof solar emissivity (small variation), (ii) room
effective infiltration leakage area (medium variation), (iii)
fan efficiency (medium variation), (iv) nominal COP (co-
efficient of performance, high variation), and (v) window
thermal conductivity (high variation). Table 1 summarizes
the admissible parameter space Θ that covers all the true
values, and this admissible parameter space is constant for
all calibration tasks.

Table 1: Admissible parameter space applied across all tasks.

Parameter lower bound upper bound
Roof emissivity 0.6 0.9
Leakage area 150 750
Fan efficiency 0.3 0.7
Nominal COP 3 5

Window conductivity 0.1 0.3

Calibrating multiple parameters simultaneously may
cause identifiability issues, where different combinations
of parameters could achieve similar magnitudes of predic-
tion errors. To eliminate this issue, the four-day simula-
tion comprises two days of unconditioned free-floating and
two days with HVAC activated. The first two days help
identify the building parameters with decoupled dynam-
ics, and the latter two account for coupled dynamics and
contribute to HVAC calibration. The BO objective func-
tion was the exponential of negative MSE, which has a
theoretical optimal value of 1 when y⋆0:T = MT (θ

⋆) and
MSE is zero. While the exponential objective function is
applied in this study, the algorithm can incorporate other
forms such as the logarithm function. HVAC power out-
puts were weighted by 10 to compensate for the smaller
absolute values. Formally, the calibration task involves
solving the optimization problem

θ⋆ = argmax
θ∈Θ

exp(−MSE(y⋆0:T ,MT (θ))) (10)

Since the cost converges to 1 as MSE → 0, we consider
that the building model has successfully been calibrated
when the cost (10) exceeds 0.95.

4.3. Source dataset generation and ANP training
We randomly selected 48 out of the 60 houses and ap-

plied classical GP-based BO (GP-BO) for calibration to
generate source task data. For each of these 48 tasks, GP-
BO included 300 random samples for initialization and
100 optimization iterations. Over the iterations, the ac-
quisition function A(θ) was evaluated by the EI acquisi-
tion function, defined earlier in (5) The resulting training
dataset is described by

S := ∪48
k=1{(θkt , Jk

t )}400t=1

where θkt denotes the calibrated parameters and Jk
t is the

corresponding objective function value.

In Figure 6, we attempt to visualize a subset of 15 ran-
domly selected calibration cost functions from the multi-
source dataset S. In order to visualize the 5-dimensional
parameter space, we used kernel principal components anal-
ysis (PCA) to obtain a reduced 2-dimensional space of
principal components; we visualize by regressing over this
projected 2-D space. Noticeable variations across tasks
can be observed, reflected in the positions of global optima,
the number of local optima, function steepness, and etc.
These variations can be attributed to three factors: 1) the
true parameter values according to IECC; 2) the exoge-
nous disturbances (outdoor weather) of different climate
zones; 3) the boundary conditions varied by the founda-
tion types.

We use S to train the ANP. To emulate situations
of different levels of source data abundancy, two mod-
els were trained respectively with the entire training set
S (ANP100) and 50% of randomly-selected sources tasks
(ANP50). We use Adam [35] for training the ANP over
20000 iterations with a batch size of 32, and four source
tasks were randomly selected for the ANP validation set.
In each mini-batch, context points and target points were
randomly sampled from the source tasks to maximize the
ELBO loss. The deterministic encoder, latent encoder,
and decoder were all configured to have three hidden lay-
ers and 256 neurons in each layer, while the cross atten-
tion has 16 heads. GP and ANP were implemented using
GPyTorch7 and PyTorch8, interacting with the FMUs us-
ing FMPy9.

4.4. Calibration and performance test
The 12 buildings not included in the training dataset

generation were used to test the calibration performance
of ANP-BO and benchmark against GP-BO. The cali-
bration configurations (parameters to be calibrated, and
measured outputs of the building simulation models) were
the same as those considered in the source tasks. Since
the ANP infers the query building cost function based on
limited context points, the initial samples are desired to
be sparse for better contextualization, especially in high-
dimensional parameter space. Hence, Latin hypercube
sampling (LHS) [36] was adopted instead of uniform ran-
dom sampling to improve coverage of the samples over Θ,
and to avoid clustering of points in small subregions.

The same random samples were then used to initialize
ANP-BO and GP-BO (see Figure 3). For the query build-
ing, both ANP-BO and GP-BO were allowed 100 iterations
for calibration and the algorithms were prematurely ter-
minated if the cost exceeded 0.95. The calibration results,
convergence rate, and the total number of simulations were
compared. To evaluate robustness, the calibration experi-
ments were conducted multiple times with the number of
initial samples set to 30, 50, and 100.

7https://gpytorch.ai/
8https://pytorch.org/
9https://github.com/CATIA-Systems/FMPy



Figure 6: Visualization of 2 principal components of calibration cost functions obtained from multi-source training set.

5. Experiment results

5.1. Data efficiency in calibration
Figure 7 summarizes the distributions of total num-

ber of simulations Ntotal consumed by alternative mod-
els for the calibration to converge. Most test cases (over
95%) converged within dozens of optimization iterations
using the three surrogate models (ANP100, ANP50, and
GP). However, several did not reach the 0.95 threshold be-
fore the preset limit (150 iterations), which are counted as
Ninitial + 150 in the box plots.

Figure 7: Number of simulations consumed to meet the convergence
criterion with different surrogate models in BO.

For the classical GP-BO, 30 initial samples are usually
insufficient to guarantee convergence, and Ninitial of 50
and 100 performed similarly, requiring about 50 iterations
on average. It is conspicuous that ANP100 and ANP50
found the solutions much faster than the baseline with all
three Ninitial. The average Ntotal using these two models
were close, while the variance of ANP100 was smaller for
Ninitial = 30/100 but larger for 50. On one hand, this indi-
cates that 50% of source tasks were sufficient to effectively
facilitate the calibration of unseen query tasks and the ad-
ditional 50% caused only marginal improvement. On the
other hand, this reveals the importance of initial context
points, which is further investigated in the next subsection.

Figure 8 illustrates the optimization process with ANP50-
BO and GP-BO by plotting the highest score achieved so
far over BO iterations across all test cases. The plots of
ANP100 were omitted for better legibility as they mostly
overlaps ANP50. It can be seen that the convergence rate
of ANP-BO drastically increased once random exploration
stopped and optimization iterations started. The effect
was more significant with 30 initial points. In contrast,
GP-BO progressed only slightly faster than the random
initialization stage in all cases.

5.2. ANP prediction results
To explain the calibration results, we compared the in-

ference quality of the ANP variants and the GP with a



Figure 8: Highest objective value so far over iterations of info-
medium ANP-BO and GP-BO (solid lines for means and shadings
for interquartile ranges).

varying number of context points. Figure 9 compares the
calibration cost function predictions for an unseen query
building. In the figure, each row corresponds to one learn-
ing algorithm and each column shows the prediction results
at 40 target points T , given the same context points (train-
ing data for GP). The first 20 target points are randomly
sampled from the entire parameter space Θ in order to
provide insight into how well the ANP/GP fits the query
calibration cost over all of Θ. The final 20 target points are
deliberately chosen to be in a small neighborhood of the
true parameters for this query building. Note that this is
only for comparing the prediction quality of the learners,
and we do not assume knowledge of the true parameters
during calibration. The goodness of fit is evaluated us-
ing L2 distance as well as the predictive interval coverage
probability (PICP), where

L2 =

√∑
θ∈T (µ(θ)− J(θ))

2

nq
T

and
PICP =

#{θ ∈ T | J(θ) ∈ 99%CI}
nq
T

.

Here, µ(θ) is the predicted mean, J(θ) is the actual reward
evaluated by simulation, 99%CI = µ(θ) ± 2.58σ(θ) is the
99% confidence interval predicted by the models with the
standard deviation σ(θ), and nq

T is the total number of
tested target points.

The predictive performance of surrogate models aligns
with the calibration results. From the figure, we observe
that the ANP100 consistently outperforms the GP over 30,
50, and 100 context points, based on the PICP score. How-
ever, the GP, owing to its non-parametric nature, exhibits
a lower L2 cost with increasing number of context points.
However, this did not help the calibration procedure as
we have seen in the previous subsection, because the true

underlying cost function is not contained within its 99%
confidence interval. Since the ANP does contain the true
calibration cost within its confidence interval, the acqui-
sition function in a BO-based method can exploit this for
more efficient calibration. Additionally, few-shot calibra-
tion is expected to perform well on limited data settings,
so the efficacy of ANP with 30 context points is more im-
portant than with larger context points.

The higher PICP values for the ANP100 compared with
the GP are due to ANP having been trained on a multi-
source dataset: unlike the GP, the ANP learns that the
true calibration cost function distribution is not necessarily
tight around the predictive mean. Therefore, it generates
wider uncertainty bounds around this mean function based
on the uncertainty learned from the training set. This
trend of high PICP is also observed on the other 11 query
buildings.

As expected, reducing the training dataset resulted in a
decrease in predictive quality of the ANP50. However, its
calibration performance did not deteriorate significantly,
and this is because the trends of objective function were
well-captured, which the BO can utilize and locate the
optimal θ. The fact that, even with limited data, ANP
outperforms GP during calibration, is evident from Fig-
ure 7.

It is also observed that the predictive performance de-
creased and then increased as more context points were
taken. This corresponds to the calibration results and is
due to the sparsity of context points in high-dimensional
parameter space. Due to the curse of dimensionality and
the fact that objective functions are usually steep in a
small region around the global optimum, the ratio of points
outside of this region keeps increasing when the total num-
ber of LHS points increases but remains sparse. Conse-
quently, less attention is applied to the points close to the
optimum. Most of the outside points come with small J
and tend to flatten the inferred objective function. This
explains the ANP’s slightly worse performance with 50
initial context points. The phenomenon ceases when num-
ber of context points keeps increasing and becomes dense
enough, after which more points provide better context
for function inference. The better performance with 100
context points serves as an illustration, and the improving
trend was continued with even more context points.

5.3. Calibrated models
As the parameter values are different across test cases,

the calibrations are summarized in figure 10 as the re-
sulting ratios R = θ∗/θtrue (calibrated parameters over
the ground truth). Using alternative surrogate models ob-
served no significant difference in this comparison. All the
five parameters were well calibrated in most cases, indi-
cated by the ratios being close to 1. However, a number of
points fall beyond [0.9, 1.1], especially for the two HVAC
system parameters. Most of these undesirable points are
from climate zone 5A and 8 as marked by star. Houses



Figure 9: Target point prediction results of ANPs and GP with 30, 50, and 100 LHS context points for one test case.

in these two climate zones had smaller HVAC load dur-
ing the simulation period. The energy consumption was
therefore overwhelmed by other outputs, and the low part
load ratio made the parameters insensitive. Consequently,
the optimizations could not identify the true parameter
values.

Models with calibrated parameters close to the ground
truth are nearly identical to the true model, and there-
fore extrapolated almost perfectly outside of the calibra-
tion period as expected. As a worst case scenario, fig-
ure 11 validates a calibrated model from climate zone 5A,
where R = [1.00, 0.96, 1.05, 1.12, 1.24]. For better robust-
ness, the testing period was two month away from the cal-
ibration period, and the operation scheme was changed to
3-day conditioning followed by 1-day unconditioned free-
floating. Because of the accurate building thermal param-
eters, the indoor condition outputs in the first subplot per-
fectly matches the ground truth. Some deviations can be
noticed in the HVAC power outputs, especially in the fan
power. Yet, the resulting CVRMSE are 22.2% (cooling),
14.9% (heating), and 24.4% (fan), kept lower than the 30%
requirement on hourly predictions as per the ASHRAE
guideline 14 [37].

6. Discussion

The virtual testbed in the experiment involves houses
with similar geometries but various boundary conditions,
yielding relevant but diversified objective functions. Thus,
the promising results demonstrate the meta-learner’s ca-
pability of effectively learning a vast family of objective
functions and fastening model calibrations. Given a few
context points from a query task, the distribution of ob-
jective functions can be narrowed to the related region and

accordingly forward the optimization.
Meanwhile, it is recognized that a quick and success-

ful calibration relies on the query task being similar to
some of the source tasks. If too few tasks are included
in the training data, the probability of an unseen query
task being similar is lowered, and the calibration perfor-
mance could be deteriorated. Therefore, it is beneficial to
incorporate more heterogeneous source tasks in practice.
Calibration history of any newly-encountered building, not
restricted to BO-based, can be appended to the training
dataset as source tasks. ANP can be regularly retrained
and thereby become more powerful.

Apart from the similarity to source tasks, another im-
portant factor is to configure a well-posed calibration prob-
lem that has one unique solution. There are many inter-
related parameters in building simulation models to be
calibrated. It is almost destined to have different combi-
nations of parameters that can produce close results for
one output, especially when HVAC systems and building
geometries are calibrated together. For example, the error
in HVAC power can be eliminated by adjusting either the
building load or the system efficiency. Therefore, it is nec-
essary to deal with the parameter identifiability carefully
[38]. To this end, we accounted for multiple outputs and
combined different operation schemes when defining the
calibration problem.

A well-posed calibration problem also require the mul-
tiple outputs to be of similar importance in the objective
function. Therefore, proper weights should be applied for
outputs at different scales. We weighted the HVAC power
outputs by 10 as their absolute values are smaller than the
temperature and humidity measurements. This weighting
strategy helped find the unique solution for most buildings,
but not for buildings in climate zone 5A and 8 as elucidated



Figure 10: Ratios of calibrated parameters over corresponding true values (R = θ∗/θtrue) for all test cases. Note that climate zones 5A and
8 are significantly different from the source data.

Figure 11: Simulation output comparison of the house with condi-
tioned basement located in climate zone 5A.

in figure 10 and 11. The solution would be to further adjust
the weights for these target tasks. Increased weights of 30
were tested for three times in the same test case in figure
11 and observed significant improvement. With 30 initial
context points, the optimization still converged within 10
iterations in all three test runs. The mean of calibrated pa-
rameters present R = [0.98, 0.99, 0.97, 1.08, 0.99], and the
average testing CVRMSE are 13.8% (cooling), 5.6% (heat-
ing), and 2.5% (fan). Thus, slightly changed objective
functions can be handled by ANP-BO without retraining.

6.1. Opportunities for future research
Calibrating simulation models for actual buildings in-

stead of the virtual testbed involves more uncertainties,
leading to two issues for further research. First, the ef-
ficacy of the proposed algorithm is to be tested on more
heterogeneous buildings. Also, while the admissible pa-

rameter space Θ is consistent across all tasks in the ex-
periments, larger variability is expected in practice. The
difference can be reflected in the user-defined parameter
ranges and the types of parameters. Theoretically, ANP
can naturally incorporate various parameter ranges from
different source tasks. Yet, the applicability across dif-
ferent parameter spaces is to be investigated. A larger
number of source tasks may be needed.

In addition to building model calibration, the idea of
meta-learning from multi-source data may be applied for
other purposes in buildings. Since the core is to learn
the distribution of objective functions from related tasks,
the potential lies in many optimization-based applications
such as design and operation.

7. Conclusions

Building simulation model calibration is critical for im-
proving building energy efficiency. Current approaches are
typically computational expensive and therefore lacks scal-
ability. This paper address this challenge by proposing a
meta-learned Bayesian Optimization framework for build-
ing digital twin calibration based on ANP. The concept is
demonstrated using an open-source US DOE-validated li-
brary of residential building models across different climate
zones and with different construction types. The bench-
marking results show that ANP outperformed the baseline
GP in inferring the objective functions with limited data
and thereby improve the data efficiency of BO-based cal-
ibration. Key factors for success are pinpointed through
the comprehensive evaluation of calibration results. This
research provides a promising approach of obtaining re-



liable building simulation models, which promotes many
scalable applications for building energy conservation.
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Symbol Meaning

Building Modeling
R Set of real numbers
N Set of natural numbers
T Total simulation time
θ Parameters to be calibrated
θ⋆ Optimal parameter vector
Θ Search space of admissible parameters
nθ Number of calibrated parameters
ny Number of measurable outputs
y0:T Simulated output vector on time interval [0, T ]
y⋆0:T True measured outputs on time interval [0, T ]
MT (θ) Forward model for simulation parameterized by θ
MT (θ⋆) Optimally parameterized forward model for simulation
J Calibration cost function
W Weight matrix for calibration cost function
MSE Mean squared error function for calibration
#{A} Cardinality of a set A

Bayesian Optimization
K Kernel function used in Gaussian process (GP) regression
µ Mean function used in GP regression
σ Standard deviation function used in GP regression
A Acquisition function for Bayesian optimization
AEI Expected improvement acquisition function
Nθ Number of Bayesian optimization iterations

Meta Learning from Multi-Source Data
s Index of source tasks
Ms

T Simulation model of s-th source building
θs,⋆ Best parameter found for s-th source task
Ns

BO Number of model simulations for s-th source task
Ss Optimization trajectory collected from s-th source task
S Dataset from all source tasks for training ANP
Sq Limited optimization trajectory from query task
Nq

BO Limited number of model simulations on query task
Mq

T Simulation model of query building
θq,⋆ Best parameter found for query task

Attentive Neural Processes
pANP Conditional distribution induced by ANP
pproxy Proxy distribution for training ANP by variational methods
z ANP global latent variable
N (µ, σ) Gaussian density function with mean µ and variance σ2

Ss
C / Ss

T General context/target sets drawn from Ss during ANP training
nC / nT Number of context/target points
θqC Context set of parameters from query building
Jq
C Context set of calibration cost values from query building

θT Target set of parameters where ANP will estimate cost
JT Target set of calibration cost to be inferred by ANP
Encdet Deterministic encoder
Enclat Latent encoder
Rq,det

k k-th output of deterministic encoder
Rq,lat

k k-th output of latent encoder
R̄q,lat Aggregated latent encoder output
R× Output matrix of cross-attention in deterministic path
E Expectation operator
KL Kullback-Liebler divergence operator

Table 2: List of mathematical symbols.



Acronym Full Form

ANP attentive neural process
ANP-BO attentive neural process-based Bayesian optimization
BO Bayesian optimization
CI confidence interval
CoP coefficient of performance
CVRMSE coefficient of variation root-mean-squared error
E+/EPlus Energy Plus
ELBO evidence-based lower bound
FMU/FMI functional mockup unit/interface
GP Gaussian process
GP-BO Gaussian process-based Bayesian optimization
HVAC Heating, ventilation, and cooling
IECC International Energy Conservation Code
IQR interquartile range
KL Kullback-Liebler
LHS Latin hypercube sampling
MAE mean absolute error
MCMC Markov-chain Monte-Carlo
MHA multi-head attention
MSE Mean-squared error
PCA principal components analysis
PICP predictive interval coverage probability
RMSE root-mean-squared error
RPBL Residential Prototype Buildings Library
SGD stochastic gradient descent
TARP Thermal Analysis Research Program
US DOE United States Department of Energy
VAE variational autoencoder

Table 3: List of acronyms in alphabetical order.
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