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Abstract

The variational autoencoder (VAE) has been used in a myriad of applications, e.g., dimension-
ality reduction and generative modeling. VAE uses a specific model for stochastic sampling
in latent space. The normal distribution is the most commonly used one because it allows
a straightforward sampling, a reparameterization trick, and a differentiable expression of the
Kullback—Leibler divergence. Although various other distributions such as Laplace were stud-
ied in literature, the effect of heterogeneous use of different distributions for posterior-prior
pair is less known to date. In this paper, we investigate numerous possibilities of such a
mismatched VAE, e.g., where the uniform distribution is used as a posterior belief at the
encoder while the Cauchy distribution is used as a prior belief at the decoder. To design
the mismatched VAE, the total number of potential combinations to explore grows rapidly
with the number of latent nodes when allowing different distributions across latent nodes. We
propose a novel framework called AutoVAE, which searches for better pairing set of posterior-
prior beliefs in the context of automated machine learning for hyperparameter optimization.
We demonstrate that the proposed irregular pairing offers a potential gain in the variational
Renyi bound. In addition, we analyze a variety of likelihood beliefs and divergence order.
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Abstract—The variational autoencoder (VAE) has been used
in a myriad of applications, e.g., dimensionality reduction and
generative modeling. VAE uses a specific model for stochastic
sampling in latent space. The normal distribution is the most
commonly used one because it allows a straightforward sampling,
a reparameterization trick, and a differentiable expression of the
Kullback-Leibler divergence. Although various other distribu-
tions such as Laplace were studied in literature, the effect of
heterogeneous use of different distributions for posterior-prior
pair is less known to date. In this paper, we investigate numerous
possibilities of such a mismatched VAE, e.g., where the uniform
distribution is used as a posterior belief at the encoder while
the Cauchy distribution is used as a prior belief at the decoder.
To design the mismatched VAE, the total number of potential
combinations to explore grows rapidly with the number of latent
nodes when allowing different distributions across latent nodes.
We propose a novel framework called AutoVAE, which searches
for better pairing set of posterior-prior beliefs in the context of
automated machine learning for hyperparameter optimization.
We demonstrate that the proposed irregular pairing offers a
potential gain in the variational Rényi bound. In addition, we
analyze a variety of likelihood beliefs and divergence order.

Index Terms—Deep learning, variational Bayes, autoencoder

I. INTRODUCTION

The variational autoencoder (VAE) [1, 2] is configured with
a parametric encoder and decoder, as shown in Fig. 1(a), to
learn a latent variable model underlying the data within a
variational inference (VI) framework. There are many variants
of VAE, e.g., as listed in Table 1. For example, 5-VAE [3]
uses an emphasized Kullback—Leibler divergence (KLD) to
regularize the latent distribution more strongly. The continu-
ous Bernoulli and beta distributions are studied as alternative
likelihood models in [4]. Laplace and Cauchy distributions are
considered as an alternative prior belief for sparse latent in [5].
The normal posterior belief is adjusted by inverse autoregres-
sive flow (IAF) [6], importance weighted autoencoder (IWAE)
[7,8], and Gibbs sampling [9]. The IWAE is further extended
to the variational Rényi (VR) [10] based on the Rényi’s a-
divergence. The generalized VI (GVI) [11] then discusses any
arbitrary loss, divergence, and posterior selections.

While the generalized VAE offers great degrees of freedom,
it in turn makes it difficult to design those selections in
addition to other architecture hyperparameters. In this pa-
per, we propose a concept called ‘AutoVAE’ depicted in
Fig. 1(b), which facilitates finding a proper choice of posterior,
prior, likelihood, and divergence with an automated machine
learning (AutoML) framework [12]. Although the normal
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Fig. 1. VAE pipeline: (a) Standard VAE; (b) Mismatched VAE.

TABLE I
TYPICAL SETTING FOR VARIATIONAL INFERENCE METHODS

Method Likelihood  Discrepancy  Posterior Prior
Standard VAE [1,2] B, N KLD N N
B-VAE [3] B, N BxKLD N N
CB-VAE [4] C KLD N N
Sparse-VAE [5] B, N KLD La, C La, C
IAF-VI [6] B, N KLD IAF-N N
IWAE [7] B, N KLD IW-NV [8] N
Rényi-VAE [10] B, N Dq IW-\V N
Gibbs VI [9] Any KLD Gibbs N
Generalized VI [11]  Any Any Any Any
Mismatched VAE P Dy Q#1I I
AutoVAE P D Q I

distribution often works well for latent sampling, the effect of
mismatched posterior-prior pairing is less known in literature.
We show some interesting behaviors when exploring diverse
settings — the VR bound can be improved by heterogeneous
pairing, e.g., when the logistic distribution is used as a
posterior belief at the VAE encoder despite that the VAE
decoder assumes the normal distribution as a prior belief.

II. MISMATCHED VAE

Table II lists our notations of various random distributions
under consideration and its probability density function (PDF).

A. Variational Inference (VI)

Let « € RY be an N-dimensional data input to the
VAE encoder. The encoder generates an L-dimensional latent
variable z € R”. The latent variable is then input to the VAE
decoder to generate a reconstructed data & € RY. The encoder
and decoder are configured with parameterized deep neural
networks (DNNs) mapping as ¢4 : © — z and py : 2 = &,
respectively, with ¢ and 1 being DNN parameters (weights,



TABLE II
PROBABILITY DISTRIBUTION NOTATION AND PDF

Distribution Notation ~ PDF f(z)

Normal N(p, o) \/2;7 exp ( — (952;’;)2)

Laplace La(p,0) 5 exp(— ‘I%‘“l)

Cauchy C(p,0) % UQH;LMP

Logistic Lo(p, o) %<oxp (I;g”) +oxp(“2;m)>_2
Uniform U(p, o) ﬁ, pn—oc<z<pu+o
Gumbel G(p,0) % exp ( — =8 —exp (- z;“))
Exponential E(o) % exp ( — %), x>0

Bernoulli B(X\) A% (1=t z € {0,1}
Cont. Bernoulli [4]  CB(X) CON(1-N= 0<z<1
Beta Be(N,7) FIE(A/\)It?«),)x/\_l(l —z)7 1

biases, etc.). The DNN tries to minimize a reconstruction loss,
which would be typically negative log-likelihood (NLL).

For a given choice of parameters ¢ and v, the VAE encoder
and decoder models imply a conditional distribution (a.k.a.,
posterior) ¢,(z|x) and a conditional distribution (a.k.a., like-
lihood) py(x|z), respectively. Letting 7(2) be a prior dis-
tribution for the latent variable z, we wish to maximize the
marginal distribution Pr(x), given by

Pr(z) = / pol(@|z)m(z)dz, 0

which is generally intractable to compute exactly. While it
could be possible to approximate the integration with sam-
pling of z, the crux of the VAE approach is to utilize a
variational lower-bound of the posterior g4 (z|x) implied by
the generative model py (x|z). With ¢, (z|x) representing the
variational approximation of the posterior, the evidence lower-
bound (ELBO) is given by

) o pu(alz)n(z)
log Pr(z) =1 gz~q¢E(z|m) [ e } 2)
Z zwqf(z\m) {1 & Q¢(Z|ZE) } (3)
= E [logpy(lz)] - Dxu(as(zl2)|m(2)), @)

z~qg(2]T)

where Dkr,(Q||IT) denotes the KLD, measuring discrepancy
between the posterior and prior distributions, defined as

pa@im= g lo(93)].

The VAE encoder and decoder are jointly trained such that the
ELBO is maximized under the variational Bayes framework.

B. Generalized VAE

In the ELBO (4), there are four important factors to specify:
i) likelihood belief P = py(x|2); ii) posterior belief @ =
¢4 (z|x); iii) prior belief II = 7(z); and iv) discrepancy mea-
sure D = Dki,(.]|.). As shown in Fig. 1(a), a standard VAE
often uses the normal distribution (or Bernoulli distribution
for nearly binary image reconstruction) for likelihood belief
P = N()\,7), and a specific KLD Dky,(Q||IT) to regularize
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Fig. 2. PDF of standard location-scale family LSF(0, 1).

latent variables considering normal posterior @ = N(u, o)
and normal prior IT = N(0,1). The GVI [11] discusses any
arbitrary loss (due to generalized likelihood), divergence (non-
KLD), and posterior selections. It was proven that the standard
VAE is asymptotically optimal for infinite dimension, while
it is no longer justified when likelihood/posterior/prior beliefs
are misspecified as opposed to the real data distribution.

Although an exponential-family prior belief will result
into the same exponential-family posterior belief under some
condition [13], the GVI motivates us to consider mismatched
pairing for posterior-prior beliefs — e.g., logistic posterior and
Laplace prior. Moreover, the generalized VAE can allow an
irregular inhomogeneous pairing — e.g., 30% latent nodes use
Laplace-normal pairs and 70% nodes uniform-Cauchy pairs as
in Fig. 1(b). Although non-Gaussian prior has been considered
in literature [5], irregular mismatched pairing has not been
investigated thoroughly to the best of our knowledge. To de-
sign such irregular VAESs, this paper provides a convenient set
of pairings that have closed-form differentiable expressions of
KLD and straighforward reparameterization, without requiring
high complexity like IAF [6] and Gibbs sampling [9].

C. Reparameterization Trick: Location-Scale Family

As mentioned, the normal distribution is the most widely
used model for stochastic DNNs, allowing simple sampling,
a reparameterization trick, and a closed-form expression of
KLD. In this paper, we consider diverse alternatives using
a location-scale family LSF(u, o), which holds the same
distribution within a transform with a location of y € R and
a scale of o € R,. For instance, given a random variable
¢ drawn as ¢ ~ LSF(0,1), its translated random variable
Z = u+ o - ¢ follows the same family as Z ~ LSF(u,0).
This transform is known as reparameterization trick — one
of key enabling methods of stochastic DNN training to back-
propagate a gradient for 4 and o while keeping a desired
distribution in forward sampling, as depicted in Fig. 1.

We consider seven LSF distributions (denoted in Table II):
normal A; Laplace L,; Cauchy C; logistic L,; uniform U/;
Gumbel G; and exponential £ (which is not LSF but a scale
family). The PDF of its standard form LSF(0, 1) is plotted in
Fig. 2. These distributions are useful as a choice of potential
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Fig. 3. KLD landscape Dk, (Q||IT) for matched posterior-prior pairs.

posterior beliefs () for the VAE encoder because of the simple
reparameterization trick. For example, sampling the logistic
distribution can be done as Z = pu + o ~ Ly(p,0) for
e =log(V/W) ~ L5(0,1) with V;W ~ £(1). The locations
vector p € R and scales vector o € R” are produced from
data = by the parametric VAE encoder, while the latent 2z is
stochastically sampled by the transformed standard random
variables € ~ LSF(0,1)%.

D. Discrepancy Measure: a-Divergence

For the choice of prior beliefs /I = 7(z) used in generative
models (i.e., VAE decoder), we typically use the standard
normal distribution A/(0,1), or a matched standard prior
II = LSF(0,1) for a particular choice of posterior belief
@@ = LSF(u,o0). Fig. 3 shows the KLD landscape for
matched normal, Laplace and Cauchy beliefs, where we can
see Laplace and Cauchy have non-isotropic distribution which
promotes sparse regularization [5]. While we can select any
arbitrary distribution for the prior belief regardless of the
posterior belief, it is desirable to have a closed-form simple
expression of KLD to measure the discrepancy between pos-
terior () and prior II. In this paper, we consider sixteen such
pairs of posterior and prior beliefs, whose KLD is listed in
Table III.

Fig. 4 shows the KLD Dxr,(Q||IT) for various pairs of pos-
terior @ = LSF(u, o) and prior IT = LSF(0, 1) as a function
of location p for a certain scale o such that the KLD is min-
imal. While it is generally true that a matched posterior-prior
pairing has smaller KLD, mismatched pairs such as logistic-
Laplace has slightly smaller KLD than Laplace-Laplace at a
moderate location value. More importantly, those mismatched
cases have sufficiently small KLD values for a wide range of
location . Because KLD cannot be exactly zero unless p = 0
and o = 1 even for matched pairs, minimizing the KLD term
is not necessarily important. It implies that there is a chance
that irregular pairing may offer better ELBO eventually.

Note that the KLD is the most commonly used discrepancy
measure to assess the ‘difference’ between the posterior )
and prior Il for VAE. However, besides KLD, the GVI
[11] discussed various other discrepancy measures, including
the Fisher, Jeffrey, a-, 8-, and v-divergences. In particular,
the Rényi’s a-divergence is attractive since it covers many
variants such as IWAE [7] and the standard VAE as a special
case [10] as shown in Table I'V. For example, the a-divergence

TABLE III
KLD FOR VARIOUS POSTERIOR-PRIOR PAIRS

Posterior Q  Prior IT KLD Dk, (Q|IT)
N(p, o) N(0,1) L7+ 07 —1—1log(c?))
La(m,o)  N(0,1)  1p®+02—1- Llog(22)
Lo(po)  N(O01)  su®+ 0 —2- Llog(g2)
Ulp, o) N(0,1)  3p° + §o® = 3log (357)
2
G(n,0)  N(01) log(¥ZE) 4 =gt 4 (henol o
E(o) N(0,1) 02717%10g(§)
2
N(o)  La(01)  p-erf—fs 4 222 oxp (— £
2

- = g (82)
La(u,o)  La(0,1)  |ul+oexp (= 2) —1—1log(o)
Lo(p,0) L£a(0,1)  20log (2cosh (£)) —2 —log (%)
E(o) L,(0,1) o —log(o) — 1+ log(2)
C(u, o) c(0,1) log(p® + (1 + 0)?) — log(40)
U(p, o) C(0,1) itan_l(afu)+étan_1(a+u)72

—log (22) + 2t log (1 + (0 — p)?)

+ %t log (1 + (o + p)?) )
N(uo)  G(0,1)  —log(o) + p+exp(—p + %) — HogEm
U(p, o) G(0,1)  p+ % exp(—p)sinh(o) — log(20)
G(p, o) G(0,1) pw—log(o) + I'(c +1)e™" —14(0 — 1)
E(o) G(0,1) o+ (1 +0)"t—1—log(o)
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Fig. 4. KLD Dk, (Q|/II) as a function of location y for various posteriors
Q = LSF(u, o) against priors IT = LSF(0, 1).

D, (Q|/IT) is reduced to the KLD Dy, (Q||Z) when o — 1.
The Rényi divergence of order o > 0 is expressed as

Da(@IIT) = ——log € [(Q@)M} ©)

a—1 "2 [\ II(2)
More importantly, it was shown that the VR bound [10] based
on the Rényi divergence has a tighter bound for ELBO than
KLD case (o« — 1) in (4). Specifically, the VR bound is
approximated with K-times latent samples zy ~ py(z|x) as:

K l—a
b= T 3 (B

l—a " K& q4(zr|T)

The IWAE [7] is a special case of this VR framework with
a = 0, and it converges to the marginal probability in (2)
when K — oo. As a-divergence is closely related to KLD
[14], the aforementioned pairs in Table III have also closed-
form expressions [15]. Accordingly, we use the Rényi’s a-
divergence as a generalized discrepancy measure in this paper.




TABLE IV
RENYI DIVERGENCE D¢, (Q||IT) SPECIAL CASES [10]

Order @ Definition Correspondence

a—0 —log fQ(z)>O I1(z)dz Overlap (i.e., IWAE [7])
a=0.5 —2log(1— Hel?[Q||II]) Square Hellinger distance
a—1  [Q(z)log IQY((?) dz KLD (i.e., standard VAE [1])
a=2 —log(1 — x2[Q||IT]) x2-divergence

a—oo logmax % é) Worst-case regret

TABLE V
GENERALIZED NLL FOR VARIOUS LIKELIHOOD BELIEFS P

Likelihood P Generalized NLL Loss ¢

B(\) BCE(z; ) = —zlog(A) — (1 — x)log(1 — X)

CB(X) NLL(z; ) = BCE(x; A) — log C(X)

N (A, ) MSE(z; \) = (x — \)? (omitting unspecified variance)
La(X, *) MAE(z; \) = |z — A| (omitting unspecified variance)
N 7Y) NLL(z; A, ) = 27%MSE(QU; A) + 1 log(2my?)
La(A7) NLL(x; X, 7) = > MAE(z; ) + log(27)

Be(Ay)  NLL(z;A,7) = (1— ) log(z) + (1 — 7)log(1 — z)

+log I'(A\) + log I'(y) — log I'(A + )

E. Reconstruction Measure: Likelihood Belief

For VAE, any differentiable loss measure can be used as a
reconstruction loss in practice; e.g., mean-square error (MSE),
mean-absolute error (MAE), and binary cross-entropy (BCE)
besides NLL. Nevertheless, most loss functions are closely
related to generalized NLL under a specific likelihood belief
P = py(x|2) to represent the generative model of the data.

We consider various likelihood beliefs P for VAE as listed
in Table V, where we present the generalized NLL loss. For
example, BCE is often used for nearly binary images such
as MNIST. The BCE is equivalent to the NLL under the
likelihood belief based on Bernoulli distribution B(X). In [4],
a beta distribution 3, was compared as a proper likelihood
and a modified belief called continuous Bernoulli distribu-
tion CB was proposed to improve the VAE for not-strictly
binary images. MSE corresponds to NLL under the normal
distribution likelihood N (&, *) when omitting an unspecified
variance. MAE corresponds to NLL under Laplace distribution
likelihood £, (&, *) when omitting an unspecified scale.

The VAE decoder may require multiple variational outputs
to generate & given likelihood belief P. For example, the nor-
mal distribution likelihood P = N'(A, ~) provides the mean as
the reconstructed data & = A and its standard deviation of ~
as a confidence. Likewise, we can use & = A for the Laplace
distribution in the sense of maximum likelihood. However,
in general, given the decoder variational outputs (X, -, etc.),
the data reconstruction should be done by its mode (peak of
PDF). Although for Bernoulli likelihood B(\), the mode is
binary as £ = 0 or 1 depending on A, we use a mean as the
reconstruction & = A, following most papers [4].

F. AutoVAE: Automated Posterior-Prior Pairing

As we discussed above, the VAE needs to specify four
factors: posterior @; prior IT; likelihood P; and divergence
D. To design those factors, we often need manual efforts in
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searching for the best combinations of different likelihood
beliefs as in Table V, different posterior-prior pairs in Ta-
ble III, and different divergence order « > 0 in (7). The
searching space will be rapidly exploded when we consider
irregular inhomogeneous pairing at each latent node. We use
an AutoML framework [12] to explore those factors for VAE
design in an automated fashion — we refer to this concept as
AutoVAE.

III. EXPERIMENTS
A. Dataset and Architecture

We use benchmark datasets of MNIST, KMNIST, FMNIST,
Omniglot, CIFAR10, CIFAR100, SVHN, and STL10 for VAE
experiments. We use a simple VAE architecture based on a
multi-layer perceptron (MLP) for encoder and decoder, where
MLP is composed of two fully-connected linear layers with
400 hidden nodes having rectified linear unit activation. The
number of latent nodes is chosen to be L = 20, which was
found to work well for most cases. We use the adaptive
momentum gradient optimization with a learning rate of
1 x 1073 over 100 epochs at a mini-batch size of 1000.
Although AutoML can also design those hyperparameters, we
leave them simple as the optimization of DNN architecture
and optimization strategy is outside of our main scope.

B. Inception Scores

Once the VAE is trained, the decoder can be used as a
generative model to reproduce fake data by feeding random
samples drawn from the prior belief /1. The generated images
are evaluated by Fréchet inception distance (FID) [16] and
kernel inception distance (KID) [17] to assess its natural
distribution from the original image dataset. To evaluate the
inception scores, we generate 50,000 images by sampling
random latent variables z from prior beliefs 7.

C. ELBO Performance

Table VI shows results of mismatched VAEs under various
combinations of likelihood, posterior, and prior beliefs. For



TABLE VI
ELBO, NLL, INCEPTION SCORES FOR VARIOUS POSTERIOR-PRIOR PAIRS (Q||IT) WITH DIFFERENT LIKELIHOOD BELIEF P

NIN __ LaN  LofIN  UIN  GIN &N NlLa  LallLa  LollLa  E[La clic ujc gllg Auto
(a) Likelihood Belief P = N (X, *): Unspecified Normal Distribution, i.e., MSE Loss
LA1,1 -19.74 -20.35 -19.23 -2247 -20.60 -39.76 -19.74 -19.42 -19.39 -34.06 -26.56 -26.33 -19.49 -19.01
MSE 12.71 12.76 12.59 12.84 1291 20.0 12.61 13.00 12.72 16.76 26.44 12.84 13.14 12.74
FID 119.0 119.4 113.2 142.6 139.2 126.0 119.4 126.9 120.7 223.5 348.4 147.2 134.7 126.1
KID 0.125 0.127 0.118 0.138 0.154 0.164 0.145 0.133 0.126 0.246 0.528 0.142 0.149 0.135
(b) Likelihood Belief P = B(\): Bernoulli Distribution, i.e., BCE Loss
LA1,1 -102.5 -103.9 -102.9 -105.9 -103.5 -163.6 -102.7 -103.9 -103.2 -148.1 -203.4 -108.6 -103.4 -101.6
BCE 77.15 77.01 76.62 76.66 76.20 124.4 76.81 78.26 77.35 121.6 202.5 76.67 76.90 76.30
FID 4291 43.50 44.01 42.76 41.82 113.27 40.80 41.59 42.13 152.6 389.3 42.42 40.88 40.19
KID 0.0369 0.0370 0.0378 0.0359 0.0349 0.1236 0.0347 0.0348 0.0360 0.1908 0.6302 0.0338 0.0344 0.0337
(c) Likelihood Belief P = L, (A, *): Unspecified Laplace Distribution, i.e., MAE Loss
L1 1 -65.34 -62.34 -61.83 -64.64 -66.26 -98.29 -62.18 -62.54 -62.27 -88.07 -98.73 -76.29 -65.47 -61.08
MAE 49.86 46.71 46.86 46.54 50.86 74.10 46.75 48.32 48.17 69.11 98.54 44.80 51.39 46.54
FID 46.02 46.91 48.85 46.41 52.19 159.8 50.48 48.00 48.55 174.2 219.9 102.7 54.58 44.02
KID 0.0343 0.0357 0.0375 0.0340 0.0428 159.8 0.0388 0.0342 0.0348 0.1767 0.2233 0.0845 0.0456 0.0313
(d) Likelihood Belief P = A(X, 2): Normal Distribution
CAlyl 1888.6 1899.2 1774.5 1819.8 -8000.1 658.6 2079.9 1521.5 2122.6 -30000 177.6 1969.7 2399.1 2490.4
NLL -1954.8  -1976.0  -18394  -1886.3 552.1 -705.1 21144 -1584.2 -2195.1 -748.3 -193.4 -2042.6  -2469.9  -2575.0
FID 170.2 167.9 161.5 162.3 294.3 267.7 182.0 167.9 177.2 321.1 4234 283.4 87.67 98.19
KID 0.1982 0.1968 0.1840 0.1932 0.3624 0.3431 0.2195 0.2176 0.2057 0.7301 0.6555 0.3733 0.0816 0.0976
(e) Likelihood Belief P = CB(\): Continuous Bernoulli Distribution
EAlyl 1838.0 1835.4 1837.2 1833.2 1838.2 1656.3 1840.8 1837.4 1838.4 1656.3 1355.2 1834.8 1838.2 1840.8
NLL -1882.1 -1880.9  -1881.4  -1881.2  -1883.3 -1678.3  -18854 -1883.5 -1883.1 -1696.0  -1356.9  -1885.7  -1882.4  -1883.9
FID 61.25 63.05 62.21 64.17 57.27 116.13 62.28 60.06 59.21 132.9 318.1 66.85 52.85 55.86
KID 0.0576 0.0589 0.0586 0.0609 0.0514 0.1223 0.0597 0.0565 0.0546 0.1467 0.7745 0.0611 0.0471 0.0501
(f) Likelihood Belief P = B (), v): Beta Distribution
EAlyl 6970.2 6062.9 4136.2 4916.3 5362.9 — 5450.7 4301.3 6258.4 7214.3 — 5510.9 5866.2 8044.7
NLL -7053.0  -6158.5  -42239  -5002.0 -5430.4 — -5501.7 -4381.6 -6353.5 -7275.0 — -5588.8  -5946.9  -8122.7
FID 136.44 134.61 135.23 141.30 103.69 — 127.74 134.68 133.45 204.28 — 119.23 98.15 98.64
KID 0.1540 0.1525 0.1533 0.1591 0.1119 — 0.1423 0.1514 0.1516 0.2134 — 0.1036 0.1050 0.1070
(g) Likelihood Belief P = B(\): Bernoulli Distribution, i.e., BCE Loss; Rényi order o = 0, i.e., INAE
ljg,g.o -94.08 -93.63 -93.67 -98.54 -94.44 -132.6 -94.35 -93.87 -94.04 -119.6 -98.06 -100.34 -94.28 -93.44
BCE 77.04 76.56 76.70 77.73 76.55 103.9 77.50 77.01 77.45 97.02 78.12 79.16 77.10 76.81
FID 38.18 37.01 37.24 42.76 38.13 80.30 41.35 38.09 40.29 111.99 35.71 36.82 36.99 36.43
KID 0.0310 0.0299 0.0304 0.0359 0.0321 0.0803 0.0354 0.0316 0.0342 0.1180 0.0256 0.0268 0.0312 0.0293

MSE loss with unspecified normal likelihood P = N(), *) in
(a), it was found that the ELBO ﬁm of regular normal-normal
pair can be improved by using logistic-normal, Laplace-
Laplace, and logistic-Laplace pairs. MSE and inception scores
are also improved, e.g., by the logistic-normal pair. When
exploring different likelihood beliefs in (a) through (f), we can
observe benefits of mismatched pairing. Moreover, an irregular
inhomogeneous use of posterior-prior pairs at individual latent
nodes (denoted as ‘Auto’) may further improve the perfor-
mance via automatic exploration of mixed pairs in some cases.
In addition, exploring the Rényi order «, the VR bound ﬁa’ K
in (7) can be further improved as shown in (g) compared to
(b). Note that some combinations (when involving Cauchy
or exponential distributions) had numerical instability causing
overflow/underflow failure during the training as denoted
as ‘—’. This may be due to the unbounded variance of
the Cauchy distribution and the unbalanced support with no
location adaptability of exponential distributions.

Fig. 5 shows the impact of the divergence order c. One can
see that uncommon pairing such as logistic-normal or Laplace-
normal can outperform common choice of normal-normal
pair, when exploring the best divergence order «. It is also
confirmed that irregular pairing explored in AutoVAE achieves
the best performance. The best posterior-prior mixture was
Lo||N, L,||N, and L,|| L, pairs, respectively, for 50%, 30%
and 20% of L = 20 latent nodes at a = 0.5. Fig. 6 shows
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Fig. 6. Image snapshot generated by VAE decoder given z ~ ITI after trained
with various posterior-prior pairs Q||/I and likelihood P = B with a = 0.

snapshots of randomly generated images.

IV. CONCLUSION

We investigated mismatched and irregular posterior-prior
pairing for generalized VAE design. It was demonstrated
that the mismatched VAE can outperform standard VAE. In
addition, we explored the impact of different likelihood and
divergence order. We also proposed the concept of AutoVAE
to facilitate searching for proper combinations of those fac-
tors. We note that the mismatched pairing technique is also
applicable to other stochastic DNNs besides VAEs.
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