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Abstract—Commercial Wi-Fi devices can be used for inte-
grated sensing and communications (ISAC) to jointly exchange
data and monitor indoor environment. In this paper, we inves-
tigate a proof-of-concept approach using automated quantum
machine learning (AutoQML) framework called AutoAnsatz to
recognize human gesture. We address how to efficiently design
quantum circuits to configure quantum neural networks (QNN).
The effectiveness of AutoQML is validated by an in-house
experiment for human pose recognition, achieving state-of-the-
art performance greater than 80% accuracy for a limited data
size with a significantly small number of trainable parameters.

Index Terms—Integrated sensing and communication (ISAC),
Wi-Fi sensing, human monitoring, quantum machine learning.

I. INTRODUCTION

A new paradigm called “integrated sensing and communi-
cations (ISAC)” has emerged as a key technology for future
wireless systems [1]. In fact, many scenarios in the fifth
generation and beyond (B5G), such as autonomous vehicles
and extended reality, requires both high-performance sensing
and data access. In addition, millimeter wave (mmWave) and
massive multiple-input multiple-output (MIMO) technologies
used in B5G can achieve high resolution in both time and
angular domain, bringing ISAC a viable concept. In particular,
Wi-Fi-based human monitoring has received much attention
due to the decreasing cost and less privacy concerns compared
with camera-based approaches. Modern deep neural networks
(DNNs) have made Wi-Fi-band signals useful for user identi-
fication, emotion sensing, and skeleton tracking [2]-[25].

In our recent work [26], we introduced an emerging frame-
work “quantum machine learning (QML)” [27]-[40] into
ISAC applications for the first time in literature, envisioning
future era of quantum supremacy [41,42]. QML is considered
as a key driver in the sixth generation (6G) applications [43],
while there are few research yet to tackle practical problems.
Quantum computers have the potential to realize computation-
ally efficient signal processing compared to traditional digital
computers by exploiting quantum mechanism, e.g., superpo-
sition and entanglement, in terms of not only execution time
but also energy consumption. In the past few years, several
vendors have successfully manufactured commercial quantum
processing units (QPUs). For instance, IBM released 127-
qubit QPUs in 2021, and plans to produce 1121-qubit QPUs
by 2023. It is no longer far future when noisy intermediate-
scale quantum (NISQ) devices [44] will be widely used for
various real applications. Recently, hybrid quantum-classical
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Fig. 1. Wi-Fi sensing for human pose recognition empowered by QML.

algorithms based on the variational principle [45]-[48] were
proposed to deal with quantum noise for NISQ devices.

In this paper, we further extend our previous work towards
automated QML (AutoQML) [35,36], which we refer to as
AutoAnsatz, to facilitate quantum neural network (QNN) archi-
tecture design. Most QNN models [40] are based on particular
quantum circuit templates known as ansatz, which still re-
quires careful tuning of hyperparameters such as the number of
qubits, the number of entangling layers, etc. Finding suitable
ansatz and hyperparameters generally involves a considerable
amount of manual trial-and-error. The AutoQML [35,36]
employs automated machine learning (AutoML) framework
such as Bayesian optimization [49] to automate QML design.
We experimentally validate the benefit of AutoQML in human
pose recognition task using commercial-off-the-shelf (COTS)
Wi-Fi devices. The contributions of this paper are four-fold as
described below.

o This paper is the very first proof-of-concept study intro-
ducing AutoQML for Wi-Fi ISAC applications.

o We verify its feasibility for the human pose recognition
application with COTS Wi-Fi devices.

o We consider a diverse variety of ansatz to design QNN.

o We validate that the optimized QNN via AutoAnsatz
achieves high accuracy comparable to state-of-the-art
DNN while the QNN is configured with a significantly
smaller number of trainable parameters.

II. QUANTUM-EMPOWERED WI-FI ISAC SYSTEMS

Fig. 1 shows the Wi-Fi human monitoring systems em-
powered by QML. During data communications, we collect



beam scanning measurements associated with a class of human
gestures as a fingerprinting data to learn QNN models.

A. Human Pose Recognition Experiments

Our experimental configuration uses two Wi-Fi stations:
one station in front of a subject and another station behind
the subject. Both stations are placed on a stand of a height
of 1.2 meters with a distance of approximately 2 meters.
The subject is asked to perform a total of 8 poses including
distinct gestures like ‘sit’, ‘stand with left arm lifted’, etc. For
each pose, we recorded 7 independent measurement sessions
with different time duration and with sufficient time separation
between consecutive two sessions. We use the measurements
in the first four sessions as a training data and those in the
last three sessions as a testing data. The total number of
measurement samples is 42,915 and 1,040 in the training and
testing, respectively.

B. COTS Wi-Fi Testbed: mmWave Beam SNR

As super-grained mmWave channel state information is not
generally accessible from COTS devices without additional
overhead, we use mid-grained Wi-Fi measurements in the
beam angle domain—beam signal-to-noise ratios (SNRs)—
generated from the beam training (a.k.a. beam alignment)
phase. For each probing beampattern (a.k.a. beam sectors),
beam SNR is collected by 802.11ad devices as a measure of
beam quality. Such beam training is periodically carried out
to adapt beam sectors to environmental changes. Accessing
raw mmWave beam SNR measurements from COTS devices
is enabled via an open-source software [50].

We use 802.11ad-compliant TP-Link Talon AD7200 routers
to collect beam SNRs at 60 GHz. This router supports a
single stream communication using analog beamforming over
a 32-element planar array. From one beam training, one Wi-Fi
station can collect 36 beam SNRs across discrete transmitting
beampatterns. The measured beam SNRs are sent to a work-
station via Ethernet cables to train a machine learning (ML)
model over a cloud or on premise. The experimental system
is deployed in a standard indoor room setting. Further details
of the experiments can be found in our previous work [25].

C. Quantum Machine Learning (QOML)

In [26], we introduced QML framework to the Wi-Fi sensing
systems, considering the rapid growth of quantum technology.
A number of modern DNN methods have been already mi-
grated into quantum domain, e.g., convolutional layer [27],
autoencoder [28], graph neural network [32], and generative
adversarial network [30, 31]. Interestingly, the number of QML
articles has been exponentially increasing at the same rate of
DNN articles, doubling every year but just 6 years behind.
It suggests that QML will be potentially used in numerous
communities in a couple of years. More importantly, QML is
more suited for Wi-Fi sensing because a cloud quantum server
such as IBM QX and Amazon braket is readily accessible.

In analogy with DNN, it was proved that QNN holds the
universal approximation property [51]. Accordingly, increas-
ing the number of qubits may enjoy state-of-the-art DNN

Softmax
Cross
Entropy |_

/0 A

Quantum Processor

{m tanh(z)} {6}
Qubits

|

i

o]
1]
£
3
=
a2
=

Output Linear

DDII

Embedding

Entangler Layer Measurement

Beam SNRs

4

Variational Quantum Circuit Pose

Fig. 2. Variational QNN for pose recognition.

performance. In addition, quantum circuits are analytically
differentiable [52], enabling stochastic gradient optimization
of QNN. Nevertheless, QNN often suffers from a vanishing
gradient issue called the barren plateau [53]. To mitigate the
issue, a simplified 2-design (S2D) ansatz [34] was proposed to
realize shallow entanglers for arbitrary unitary approximation.
It is highly expected that quantum computers would offer
breakthroughs in a wide range of fields. As classical deep
learning has become extremely energy intensive [54], it is of
importance to explore diverse computing modalities such as
quantum computers for a future sustainable society.

D. Quantum Neural Network (ONN) for Wi-Fi Sensing

Fig. 2 depicts the QNN model used for Wi-Fi sensing in
our previous paper [26], employing S2D ansatz [34], which
consists of Pauli-Y rotations and staggered controlled-Z entan-
glers. This ansatz is a simplified variant of a 2-design whose
statistical properties are identical to ensemble random unitaries
with respect to the Haar measure up to the first 2 moments.
For an n-qubit variational quantum circuit, there are 2(n—1)L
variational parameters {6} over an L-layer S2D ansatz.

To feed 36-dimensional beam SNRs, an input linear layer is
used to initialize the quantum state for rotation angles of Pauli-
Y gates. The 8-class pose estimation is provided by quantum
measurements in the Hamiltonian observable of Pauli-Z op-
erations, followed by an output layer to align the dimension.
The variational parameters as well as input/output layers are
optimized by the adaptive momentum gradient method to
minimize the softmax cross entropy loss. While QNN is not
necessarily better than DNN in prediction accuracy, it can be
computationally efficient by manipulating 2" quantum states
in parallel with a small number of quantum gates.

E. Automated QML for Ansatz/Hyperparameter Tuning

The best QNN hyperparameters (e.g., the qubit size n and
layer size L) highly depend on datasets, and thus a consid-
erable amount of manual effort is required to tune them in
general. In addition, there are various types of quantum ansatz
in literature to explore besides S2D. Fig. 3 illustrates some
potential ansatz [40]: angle embedding; instantaneous quantum
polynomial time (IQP) embedding [37]; quantum approximate
optimization algorithm (QAOA) [45]; tensor network [33]
including tree tensor network (TTN) and matrix product state
(MPS); basic entangler; strongly entangling layers; random



(a) Angle Embed (b) IQP Embed (c) Simple 2-Design

—

=
-

! | -
o $
(g) Strong Entangle (h) Basic Entangle (i) Random
Fig. 3. Quantum ansatz variety for QNN architecture.
2
15
1
0.5
0
0 20 40 60 80 100

Fig. 4. Validation loss vs. learning epoch while AutoQML exploration with
hyperband pruning (0.3% training data).

layers. In this paper, we propose AutoAnsatz in the context of
AutoQML to optimize the QNN ansatz and hyperparameters.
Specifically, we use Bayesian optimization based on tree-
Parzen estimator and hyperband pruning [49]. It automatically
explores the diverse set of quantum ansatz, qubit size, and
layer size as well as learning rate, without the need of human
effort in ansatz/hyperparameter tuning.

III. PERFORMANCE EVALUATION
A. AutoAnsatz Exploration Results

AutoQML explores 2,000 trials of hyperparameter tun-
ing, where each model is trained with adaptive momentum
(AdamW) gradient method over a maximum of 100 epochs.
The Bayesian optimization uses categorical sampling of seven
different ansatz and two different embedding methods as
shown in Fig. 3. The number of qubits n and the number of
entangler layers L are also sampled from a range of [5, ..., 15]
and [1,..., 5], respectively. In addition, the initial learning rate
is optimized from a range of (1072,1071), while the learning
rate is adaptively decreased on plateau of training loss by a
factor of 0.5 over a patience of 10 epochs.

Fig. 4 shows learning trajectories over training epoch, illus-
trating that some trials are efficiently pruned by the hyperband
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Fig. 5. Test accuracy vs. number of trainable parameters for various ansatz.

strategy due to hopeless or diverging trends. The pruning
mechanism is important to accelerate automated ansatz search
by early stopping useless trials. One can see that there are
many trials having extremely slow convergence. The number
of such pruned trials was about 89% of total trials.

After AutoQML exploration, the best ansatz was chosen
with 3-layer MPS for 10-qubit and angle embedding, having
54 variational parameters. Fig. 5 shows the test accuracy
as a function of the total number of variational parameters
for various models explored during the AutoQML. It shows
the tradeoff between performance and complexity. The MPS
ansatz tends to have better performance with more parameters,
while most ansatz do not follow obvious trends. It is partly
because we constrained the number of learning epoch up to
100, leading to poor underfitting performance for large-size
QNN. The best MPS model outperforms the state-of-the-art
DNN model which has 650-fold more trainable parameters
(i.e., 35,000). We can also observe that S2D and random layers
ansatz offer a good tradeoff between accuracy and complexity,
achieving DNN performance at 2,000-fold fewer parameters.

B. AutoAnsatz Analysis

Fig. 6 shows the relation between training loss and indi-
vidual hyperparameter. For ansatz search, we can see that
strongly entangling and basic entangler layers perform poorly.
For embedding, IQP was not optimized well, partly because of
complicated high-order ansatz for differentiation. For learning
rate, there is an obviously good choice at around 0.02. For
the number of entangler layers, shallower QNNs tend to work
better. The number of qubits above 8 (i.e., the number of pose
classes) works equally well.

The loss contour is plotted in Fig. 7 showing a non-
trivial landscape for the combination of two hyperparameters,
indicating difficulty for manual tuning. Fig. 8 presents the
functional analysis of variance (FANOVA) score [49] to assess
the importance of hyperparameters. It is found that the choice
of ansatz is the most influential hyperparameter, while the
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learning rate (which is usually most important for DNN
design) is the lowest important one.

C. Comparison of Machine Learning (ML) Models

Finally, we compare different ML models including support
vector machine (SVM), decision tree (DT), k-nearest neighbor
(ENN), Gaussian naive Bayes (GNB), random forest (RF), and
extra tree ensemble methods (10 base models). For baseline
DNN, we consider residual 4 hidden layers with 100 hidden
nodes using Mish activation, with approximately 35k trainable
parameters. For baseline QNN, we use 10-qubit 1-layer S2D
ansatz [26], having 18 quantum variational parameters. We
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Fig. 9. Test accuracy vs. training samples for various ML methods.

use AdamW optimizer for a mini batch size of 100 over 100
epochs with a learning rate of 0.02 and weight decay of 10~%.

Fig. 9 shows the test accuracy as a function of the number of
labeled training samples. One can notice that the performance
can exceed an accuracy of 90% for DNN, QNN, and SVM
when a sufficient amount of labeled data is available. It is
confirmed that a small-scale QNN designed by AutoQML can
improve the baseline QNN model, achieving state-of-the-art
performance comparable to a large-scale DNN.

IV. CONCLUSION

We investigated AutoQML to design ansatz of QNN for
Wi-Fi sensing tasks. We demonstrated the benefit of Auto-
QML/AutoAnsatz through real-world experiments with an in-
house Wi-Fi testbed. It was shown that a small-scale QNN can
achieve state-of-the-art performance comparable to a large-
scale DNN, in human pose recognition. Validation on real
quantum processors will be provided in a future work. This is
a very initial proof-of-concept study for quantum-ready Wi-Fi
sensing and there remain many fascinating open issues.
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