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Online Constrained Bayesian Inference and Learning of
Gaussian-Process State-Space Models

Karl Berntorp and Marcel Menner

Abstract— Recent research has shown that it is possible
to perform online learning of nonlinear dynamical systems.
Furthermore, the results suggest that combining approximate
Gaussian-process (GP) regression with model-based estimators,
such as Kalman filters and particle filters (PFs), leads to efficient
learners under the GP-state-space model (GP-SSM) framework.
Here, we analyze how learning of GP-SSMs can be done when
there are constraints on the system to be learned. Our analysis is
based on a recently developed online PF-based learning method,
where the GP-SSM is expressed as a basis-function expansion.
We show that the method by adaptation of the basis functions
can satisfy several constraints, such as symmetry, antisymmetry,
Neumann boundary conditions, and linear operator constraints.
A Monte-Carlo simulation study indicates reduced estimation
errors with more than 50%.

I. INTRODUCTION

We consider online Bayesian learning of Gaussian-process
state-space models (GP-SSMs)

xk+1 = f(xk) +wk, (1a)
yk = h(xk) + ek, (1b)

where the (latent) state xk ∈ Rnx at each time step k is
observed through the measurement yk ∈ Rny . The nonlinear
functions f : Rnx → Rnx and h : Rnx → Rny are
assumed to be realizations from GPs. The process noise wk
and measurement noise ek are Gaussian distributed with
covariance Q and R according to wk ∼ N (0,Q) and
ek ∼ N (0,R), respectively. Note that the formulation (1) by
a coordinate transformation also includes partially unknown
systems. GPs are nonparametric modeling tools for learning
models from data [1], which imply flexibility in the ability to
model general nonlinear functions without a priori enforcing
an explicit parametric structure. Originally, GPs were mostly
used for learning of systems akin to (1b). However, during
the last decade, numerous succesful methods have emerged
for offline GP-based learning of nonlinear dynamical systems
[2]–[5], where the GP-SSM (1) is an interesting subset.

Learning in GP-SSMs amounts to estimating the posterior
distributions of the state-transition function f , measurement
function h, and possibly also the associated covariance matri-
ces Q, R, and the hyperparameters associated with the GPs.
This problem is difficult to solve for several reasons. First,
the state is implicitly observed through the measurement
model (1b), and the quality of the state estimates affects
the model identification, and vice versa, which necessitates
including state inference in the learning process. Second,
since the GP-SSM (1) is nonlinear and at least partially
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unknown, the state inference problem is nonlinear and cannot
be solved with analytic methods. Offline, several iterative
procedures exist, for example, using particle Markov-chain
Monte-Carlo (PMCMC) [5], [6]. However, online, the infer-
ence and learning problem must be addressed simultaneously.

Recently, several methods for GP-based online learning
have been proposed; for example, [7] proposes a particle-
filter (PF) based method in combination with a Gaussian
kernel basis-function expansion whose weights are learned
using MCMC, based on the maximum-likelihood state es-
timate from the PF. The work [8] uses online sparse GP
regression, and [9] uses time-varying inducing points and
importance sampling akin to the PF. In [10], we developed a
PF-based method that leverages a reduced-rank formulation
[5], [11] of the GP-SSM, in which connections between GPs
and a finite basis-function expansion of the unknown system
dynamics is made by introducing certain priors on the basis-
function coefficients. The method in [10] is highly accurate
and shown to provide computation times suitable for real-
time execution of low-dimensional problems such as tire-
friction estimation for vehicle-control applications. However,
it scales unsatisfactory with the state dimensions. To remedy
this, the work in [12] combines an extended Kalman filter
(EKF) with a radial basis-function expansion to provide a
computationally efficient way to perform online learning in
SSMs, even for high-dimensional systems.

All of the abovementioned papers consider learning with-
out addressing structural properties (constraints) of the sys-
tem. However, in practice, the efficacy of, for example, the
choice of basis functions or kernel, is tightly connected
to the particular system being learned. In this paper, we
investigate the ability of our previously developed online
state inference and learning method [10] for learning of
systems with constraints, which can be motivated either
by physics (e.g., the tire–road friction is antisymmetric) or
some other prior knowledge (e.g., we only consider tire–
road friction when the vehicle is braking). For simplicity,
we focus on f in (1a), but the extension to h in (1b) is
analogous. We show that our method by construction can
incorporate constraints such as symmetry (f(x) = f(−x))
and antisymmetry (f(x) = −f(−x)). Furthermore, inspired
by [13], we can also improve estimation performance for
linearly constrained systems. Note that we refer to constraints
as limitations on the system f and not on the state x.

Notation: For a vector x, x ∼ N (µ,Σ) indicates that
x ∈ Rnx is Gaussian distributed with mean µ and covariance
Σ and xn denotes the nth component of x. Matrices are indi-
cated in capital bold font as X . The determinant of X is |X|



and the trace of X is Tr(X). With p(x0:k|y0:k), we mean
the posterior density function of the state trajectory x0:k from
time step 0 to time step k given the measurement sequence
y0:k := {y0, . . . ,yk}, and xi0:k is the ith realization of x0:k.
The notation f ∼ GP(0, κ(x, x′)) means that the function
f(x) is a realization from a GP prior with a given covariance
function κ(x, x′) subject to some hyperparameters ϑ, and
IW(ν,Λ) is the inverse-Wishart distribution with degree of
freedom ν and scale matrix Λ. We writeMN (M ,Q,V ) to
denote the Matrix-Normal distribution with mean M , right
covariance (scale) Q, and left covariance (scale) V . Finally,
the compund distribution MNIW(A,Q|M ,V ,Λ, ν) =
MN (A|M ,Q,V )IW(Q|ν,Λ).

II. ONLINE BAYESIAN INFERENCE AND LEARNING

We give a brief description of the online PF-based infer-
ence and learning method for GP-SSMs in [10].

A. Approximate Formulation of a GP

The learning method in [10] expresses f = [f1 · · · fnx
]>

by a basis-function expansion according to

f̂i(x) =

M∑
j=1

γijφj(x) (2)

for each i = 1, 2, . . . , nx, where the weights γij are to be
determined. To enable tractability in the learning problem
and not introduce too much flexibility, the order nx of f is
known and the number of basis functions M is set a priori.
The basis-function expansion (2) leads to a joint inference
and learning approach that is linear in the weights γij .

To make connections to GPs, we choose the eigenfunctions
with associated eigenvalues λj to the Laplace operator, which
for the domain [−L1, L1]× · · · × [−Lnx

, Lnx
] ∈ Rnx are

φj1,...,jnx
=

nx∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (3a)

λj1,...,jnx
=

nx∑
n=1

(
πjn
2Ln

)2

. (3b)

From (3a), it is clear that the number of weights to learn
nominally increases exponentially with the state dimension
as M = mnx , where m is the number of weights for nx = 1.
This is unwanted for many basis-function expansions, but
possible to alleviate. In [5], two possibilities are pointed
out. First, to assume independence between the different
dimensions. Second, to choose another set of basis function.

For covariance functions that are a function of r = |x−x′|,
[11] provides a connection between GPs and a basis-function
expansion of a function f with (3). The connection between
the basis-function expansion (2) with basis functions (3a) is

f(x) ∼ GP(0,κ(x,x′))⇔ f(x) ≈
M∑
j=1

γjφj(x), (4)

with γj = [γ1j · · · γnxj ]
> and

γij ∼ N (0,S(λj)). (5)

We use the squared exponential covariance function,

κ(r) = σ2 exp

(
− r2

2`2

)
, (6)

with hyperparameters ϑ = {σ, `}, where for simplicity we
assume the same hyperparameters for each dimension. The
covariance (6) has the spectral density

S(ω) = σ2
√

2π`2 exp

(
−π

2`2ω2

2

)
. (7)

With the connection (4), (7) can be used to assign suitable
priors on the weights. With the basis-function expansion (2)
and basis functions (3), a reduced-rank GP-SSM (1a) is

xk+1 =

 γ11 · · · γ1m
...

...
γnx1 · · · γnxm


︸ ︷︷ ︸

A

 φ1(xk)
...

φM (xk)


︸ ︷︷ ︸

ϕ(xk)

+wk. (8)

In the limit, (8) converges to (1) [11].
The method considers approximate joint state inference

and learning of the GP-SSM (1a) with known measurement
equation (1b). Instead of targeting (1a), the method learns
(8). This implies estimating the posterior distributions of x,
A, and Q, at each time step k. Since the method is aimed at
online applications, it approximates the marginal (filtering)
distributions. The involved distributions cannot be resolved
analytically, and the estimation of x, A, and Q is therefore
based on a tailored PF for approximating p(xk|y0:k) and
p(θk|y0:k), where θ = {A,Q}. Specifically, the method
approximates the joint posterior density p(x0:k+1,θk|y0:k),
from which marginal densities p(xk|y0:k) and p(θk|y0:k)
can be computed. We decompose the joint posterior as

p(x0:k+1,θk|y0:k) = p(θk|x0:k+1,y0:k)p(x0:k+1|y0:k).
(9)

The two densities on the right-hand side of (9) are esti-
mated recursively. Given the state trajectory, we update the
sufficient statistics of the unknown parameters. The second
distribution on the right-hand side of (9) is approximated
with the PF, while the first distribution on the right-hand
side is updated analytically, for each particle.

B. Estimating the Parameter Posterior

The distribution of θk is computed conditioned on the
realization of the state and measurement trajectories for
each particle. For a specific realization x0:k+1, the posterior
density of θk can be written according to

p(θk|x0:k+1,y0:k) = p(θk|x0:k+1), (10)

since (1b) is not dependent on θk. Using Bayes’ rule, (10)
can be decomposed into a likelihood and prior as

p(θk|x0:k+1) ∝ p(xk+1|θk,x0:k)p(θk|x0:k). (11)

The first term on the right-hand side of (11) is the transition
density of the reduced-rank model (8),

p(xk+1|θk,xk) = N (xk+1|Akϕ(xk),Qk). (12)



To get a recursive expression for updating (11), the method
expresses the prior on the coefficients γij in (5) at time step
k = 0 as a zero-mean MN distribution [14] over A,

A ∼MN (0,Q,V ), (13)

with right covariance Q and left covariance V with diagonal
elements S(λj), which incorporates the prior (5). Assuming
the covariance prior to be IW distributed is common in
covariance estimation due to its beneficial properties [5],
[15], [16]. Using the MNIW as a prior distribution, [10]
formulates a recursive expression for analytically updating
the sufficient statistics.

C. Particle Filtering for State Inference

PFs approximate the posterior density p(x0:k|y0:k) by a
set of N weighted trajectories,

p(x0:k|y0:k) ≈
N∑
i=1

qikδxi
0:k

(x0:k), (14)

where qik is the importance weight of the ith state trajectory
xi0:k and δ(·) is the Dirac delta mass. The PF algorithm
iterates between prediction and weight update, combined
with a resampling step that removes particles with low
weights and replaces them with more likely particles. The
particle weights are typically updated as

qik ∝ qik−1p(yk|xik). (15)

III. LEARNING WITH CONSTRAINTS

The efficiency of GP-based models is tightly connected to
how prior knowledge about the system is incorporated into
the GP modeling. Perhaps the most obvious way to enforce
system constraints in learning with GPs is to add artifical
measurements that obey the constraints at given points in
the state space. However, this leads to an increased problem
dimension, and the constraints are only guaranteed to be
satisfied at the points in the state space corresponding to the
artifical measurements. We focus on satisfying the constraints
by construction of the basis functions.

A. Boundary Conditions

Boundary-condition constraints arise in a number of ap-
plications, for example, in simultaneous localization and
mapping and spatial data analysis. The eigenfunctions and
corresponding eigenvalues in (3) are given by the solution to
the Laplace operator with Dirichlet boundary conditions [11]
on a rectangular grid. As such, the basis-function expansion
(2) with eigenfunctions and eigenvalues in (3) directly satisfy
boundary conditions of the form f(x) = 0, x ∈ Ωx, where
Ωx is the boundary of the domain of x.

With a different choice of eigenvalues, other boundary
conditions can be accommodated; for instance, Neumann
boundary conditions, that is,

∂f

∂n
(x) = 0, x ∈ Ωx, (16)
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Fig. 1. Illustration of Neumann boundary conditions at x = ±2. The red
dashed line is the true function, weighted mean estimate of our approach is
in black solid, and the gray area indicates the 2σ confidence bounds.

where n is the tangent of the boundary, can be satisfied by
the eigenfunctions and eigenvalues

φj1,...,jnx
=

nx∏
n=1

1√
Ln

cos

(
πjn(xn + Ln)

2Ln

)
, (17a)

λj1,...,jnx
=

nx∑
n=1

(
πjn
2Ln

)2

. (17b)

1) Illustrative Example: To illustrate the Neumann con-
ditions (16), consider the system

xk+1 = tanh(2xk) + wk, wk ∼ N (0, 0.1), (18a)
yk = xk + ek, ek ∼ N (0, 0.1), (18b)

where the objective is to learn f(xk) = tanh(2xk) and
Qw = 0.1, as well as estimating xk. The function f in (18a)
has the property that df

dx → 0 as |x| grows large. We enforce
the boundary condition at L = 2 in (17), where df

dx ≈ 0, and
use M = 16 basis functions.

Fig. 1 shows an illustration of Neumann boundary con-
ditions, where the boundaries are at x = ±2. With the
choice of basis functions (17a), the estimated function has
zero gradient for all time steps at x = ±2. Since boundary
conditions are inherently enforced in the approach, we do
not elaborate further here but refer to [5], [10], [11] for some
illustrations of boundary conditions.

B. Symmetry

Symmetry constraints is another set of constraints that can
be easily incorporated. Examples of systems that include
symmetry constraints are double integrators, a pendulum
when controlling the torque at the base, and vehicle lane-
change control. For the method in Sec. II, symmetry can
be enforced by a simple reindexing of the basis-function
expansion (3a). By only choosing odd indices j = 1, 3, . . .,
the method satisifies symmetry constraints.

1) Illustrative Example: Consider

xk+1 = 10sinc
(xk

7

)
+ wk, wk ∼ N (0, 4), (19a)

yk = xk + ek, ek ∼ N (0, 4), (19b)

where the objective is to learn f = 10sinc
(
xk

7

)
when the

noise variance is known. We use L = 30 and M = 35, with
sf = 50 and l = 3, and the number of particles is N = 50.
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Fig. 2. Illustration of the impact on learning performance for the system
(19) when explicitly enforcing symmetry (left column) and when using the
standard basis functions (right column). Same notation as in Fig. 1.

Fig. 2 compares the estimation results when enforcing
symmetry according to

f̂(x) =

35∑
j=1,3,5,...

γj
1√
L

sin

(
πj(x+ L)

2L

)
(20)

and for the original basis-function expansion (3), j =
1, . . . , 36, for k = 10, 20, 30. By enforcing symmetry, the
estimation becomes more reliable in the sense that sensible
estimates are achieved much faster and the uncertainty of the
estimates, indicated by the gray area, is reduced.

C. Antisymmetry

Antisymmetry can be handled by choosing even indices of
the basis functions (3a), that is, j = 2, 4, . . ., which ensures
that antisymmetry is enforced.

1) Application to Tire-Friction Estimation: The friction
dependence between tire and road is highly nonlinear and
varies heavily between different surfaces. The friction esti-
mation problem is highly relevant for vehicle-control applica-
tions [16], [17]. The vehicle model relating the vehicle state
to the tire friction is the single-track model, which depends
on the lateral friction function µy and the subscripts f, r
stand for front and rear wheel axle. In the estimation model,
the tire-friction components µyi , i ∈ {f, r} are modeled as
static functions of the slip quantities,

µyi = fyi (αi(x)), i ∈ {f, r}, (21)

αi is the slip angle, αi = − arctan(vy,i/vx,i), where vx,i
and vy,i are the longitudinal and lateral wheel velocities for
wheel i with respect to an inertial system. The simulation
uses the Pacejka tire model [18]

µi = µ̄i sin(Ci arctan(Bi(1−Ei)αi +Ei arctan(Biαi))), (22)

where µ̄, B, C, and E are the peak, stiffness, shape, and cur-
vature factor, respectively. For brevity, we define the vector
α = [αf αr]

T and write (21) as µ = [fyf fyr ]>, and model
the friction vector as a realization from GP(0, κ(α,α′)).
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Fig. 3. Antisymmetry-enforced tire-friction estimates (black solid) and es-
timated 2σ confidence (gray area) at different time steps for one realization.
The true tire-friction function as modeled by (22) is in red dashed.

The resulting estimation model can be written in the form
(1a). The measurement model is based on a setup commonly
available in production cars, namely the lateral acceleration
aYm and the yaw rate ψ̇m, forming the measurement vector
y = [aYm ψ̇m]>. We model the measurement noise ek as
zero-mean Gaussian distributed noise with known covariance
R according to ek ∼ N (0,R), and the resulting measure-
ment model is on the form (1b).

We use 10 basis functions each for the front and rear tire.
From expert knowledge (i) the friction between the front
and rear wheel can be estimated independently, (ii) the tire
friction is antisymmetric. This gives M = 10 basis functions
in total if we enforce antisymmetry and M = 20 if we do not,
whereas without using the expert knowledge M = 102 =
100 basis functions would have been needed. The number
of particles is N = 100. In (7), sf = 50, which allows
the initial uncertainty to cover the range of possible friction
values. We set L = 30π/180, since α usually is restricted to
−15 / α / 15 deg, and ` = 2π/180.

Fig. 3 shows the estimation results at different timesteps
when enforcing antisymmetry, and Fig. 4 shows the same
when we do not enforce antisymmetry. In the simulation,
there is a surface change from asphalt to snow at t =
14.5s, simulated by an instant change of the tire parameters
in (22). By visual inspection, it is clear that the results
when enforcing antisymmetry are more accurate, and the
uncertainty is reduced. Also, convergence is reached faster
when enforcing antisymmetry, since excitation of the system
for αj > 0 also gives information for αj < 0, and vice versa.

D. Linear Operator Constraints

In this section we consider learning of (1) when f is
subject to linear operator constraints, which means that

Fx(f) = 0 (23)

for an operator Fx fulfilling

Fx(λ1f1 + λ2f2) = λ1Fx(f1) + λ2Fx(f2), (24)
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Fig. 4. Tire-friction estimates (black solid) and estimated 2σ confidence
(gray area) at different time steps for one realization, without enforcing
antisymmetry. The true tire-friction function as modeled by (22) is in red
dashed.

for two functions f1,f2, where λ1, λ2 ∈ R. Some examples
of constraints are Af = 0; ∇f = 0;

∫
f(x)dx; and

differentiation.
The work [13] presents a method to transform a given

GP into a new GP that satisfies linear operator constraints
(23), by choosing a GP mean and covariance function by
construction satisfying the constraints. Unlike [13], since we
use the reduced-rank formulation of a GP, we can design the
basis functions such that they satisfy the constraints.

The approach in [13] uses that GPs are closed under
linear operators. It guarantees that a sample drawn from the
resulting GP obeys the constraints. To do this, [13] relates
f with a function g via some other linear operator Gx,

f = Gx(g). (25)

With a matrix-multiplication interpretation, the constraint
(23) can from (25) be written as a constraint on Gx,

FxGx = 0. (26)

The approach in [13] uses (26) to find a GP mean and
covariance function prior for f that fulfills the constraints
(23). One strength with this approach is that the prior for g
can be designed independent from the constraint satisfaction,
which means that other desired properties (e.g., smoothness)
can be handled by the choice of g. Our approach is based on
[13]. However, by virtue of our basis-function expansion, we
can instead proceed as in Algorithm 1 for generating a basis-
function approximation of a GP satisfying the constraints
(23). Line 1 in Algorithm 1 is a standard design step. The

Algorithm 1 f fulfilling linear operator constraints
1: Choose a basis-function expansion for g.
2: Find an operator Gx that fulfills (26).
3: Find f̂ according to (25).

work [13] includes an ansatz-based algorithm for finding the
operator Gx that can be applied also to our setting.

1) Divergence-Free Example: To illustrate, we use the
artifical example of a divergence-free field from [13],

xk+1 =

[
e−ax1x2 (ax1 sin(x1x2)− x1 cos(x1x2))
e−ax1x2 (x2 cos(x1x2)− ax2 sin(x1x2))

]
︸ ︷︷ ︸

f

+wk,

yk = xk + ek,

where a = 0.01, wk ∼ N (0, 0.1I), ek ∼ N (0, 0.01I). In
this example, f is a divergence-free vector field, that is, f
satisfies ∇f = 0. The constraint can be written in the form
(23) with Fx =

[
∂
∂x1

∂
∂x2

]
. Using Algorithm 1, we first

choose a basis-function expansion g with weight prior (5),

g(x) =

M∑
j=1

γjφj(x), (27)

with
φj(x) =

2∏
n=1

1√
Ln

sin

(
πj(xn + Ln)

2Ln

)
. (28)

Next, we choose Gx =
[
∂
∂x2

− ∂
∂x1

]>
, which satisfies (26).

Finally, we determine f from (25),

f̂ =

M∑
j=1

γj

[
∂φj(x)
∂x2

−∂φj(x)
∂x1

]>
, (29)

where
∂φj(x)

∂x2
=

πj

2L2

√
L1

sin

(
πj(x1 + L1)

2L1

)
· cos

(
πj(x2 + L2)

2L2

)
(30)

and similarly for −∂φj(x)
∂x1

. The function (29) satisfies the
constraint ∇f̂ = 0 by construction. Note that the resulting
basis-function expansion (29) is vector-valued although the
prior (27) is not. We have a set of scalar weights γj but the
constraint function (23) is two-dimensional and the GP-SSM
formulation becomes

xk+1 =

([
γ1 · · · γM

]
⊗
[

0 1
−1 0

])


∂φ1(xk)
∂x1

∂φ1(xk)
∂x2

...
∂φM(xk)

∂x1
∂φM (xk)
∂x2


+wk.

(31)
To get (31) in the form (8), we subtract the second equation
in (31) from the first, that is,

x1,k+1−x2,k+1 =

M∑
j=1

γj

(
∂φj(xk)

∂x1
+
∂φj(xk)

∂x2

)
+w̃k, (32)

which reduces the GP-SSM to a one-dimensional system,
from which the standard method in Sec. II can be used.

For the results, we set L1 = L2 = 8, we use the squared
exponential kernel with σ = 50, ` = 0.1, choose M = 15
implying 225 basis functions, and we use N = 300 particles.
We use the root mean-square error (RMSE) of the state x
and function f , respectively, as the performance metrics. The
results are based on K = 200 Monte-Carlo runs, where the
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Fig. 5. Reconstructed fields subtracted from the true field for a time step
using the basis-function expansion (29) satisfying the constraints (top) and
the regular basis-function expansion (3) (bottom). The length of the lines
indicate the magnitude of the error. The true state at the current time step
is indicated by the red circle.

TABLE I
TME-AVERAGED RMSE FOR 200 MONTE-CARLO RUNS FOR THE

DIVERGENCE-FREE EXAMPLE IN SEC. III-D.1.

ALG. 1 NOMINAL

RMSE(x1) 0.98 1.77
RMSE(x2) 0.81 1.72
RMSE(f1) 0.81 1.87
RMSE(f2) 0.80 1.86

initial state is randomized over the domain [−4, 4]× [−4, 4]
and each run is T = 50 time steps long.

Fig. 5 shows the reconstructed error field ∆fk = f̂k−fk
at time step k = 45 for one realization of the learning method
using constrained basis functions in (29) (upper plot) and
the standard basis-function expansion (3) (lower plot). The
results indicate that the reconstructed error is significantly re-
duced when using the constrained basis-function formulation.
Fig. 5 is for a particular time step of a particular realization
and does not necessarily mean that constraint satisfaction
improves estimation performance at multiple time steps. To
verify the impact the constrained basis-function expansion
has on estimation, Table I displays the time-averaged RMSE
for the state and function estimates, respectively. The results
show about 50% reductions in estimation error when using
Algorithm 1 for constructing a function approximation that
obeys the constraints.

IV. CONCLUSION

In this paper we analyzed our recently developed recur-
sive Bayesian inference and learning method (see [10]) in
terms of its ability to learn systems with a priori known
constraints. The method is based on PFs and a reduced-
rank formulation of GPs. In the formulation, a finite basis-
function expansion of the GP is used. We showed that thanks

to the basis-function interpretation of a GP, the method can
by construction satisfy various constraints on the unknown
part of the system. In particular, we exemplified with symme-
try, antisymmetry, boundary conditions, and linear operator
constraints.

In terms of learning and subsequent estimation accuracy,
the ability to incorporate constraint satisfaction into the GP
formulation leads to a much improved learning performance
and also heavily improved state-estimation performance. For
the divergence-free linear operator constraint in Sec. III-D.1,
both the state-estimation error and the function error showed
a decreased in RMSE with about, and sometimes more than,
50%, In addition, such intrinsic constraint satisfaction means
that the method needs fewer particles and/or basis functions,
thus reducing computational complexity.
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