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Friction-Adaptive Stochastic Predictive Control for Trajectory Tracking
of Autonomous Vehicles

Sean Vaskov1,2, Rien Quirynen1, Marcel Menner1, and Karl Berntorp1

Abstract— This paper addresses the trajectory-tracking prob-
lem under uncertain road-surface conditions for autonomous
vehicles. We develop a stochastic nonlinear model-predictive
controller (SNMPC) that learns the tire–road friction rela-
tionship online using standard automotive-grade sensors. We
learn the tire-friction function using a Bayesian approach,
where the friction curve is modeled as a Gaussian process. The
estimator outputs the estimate of the tire-friction model as well
as the uncertainty function of the estimate, which expresses
the confidence in the model for different driving regimes.
The SNMPC exploits the uncertainty estimate in its prediction
model to take proper action. We validate the approach using
the high-fidelity vehicle simulator CarSim and compare against
various nominal NMPC approaches. The results indicate more
than six times better performance for the proposed adaptive
SNMPC in closed-loop cost over the simulation time.

I. INTRODUCTION

The strong push recently in the automotive industry for
introducing new technologies related to automated driving
(AD) and advanced driving-assistance systems (ADAS), has
led to predictive information being readily available to the
vehicle controllers [1]. Model-predictive control (MPC) is
suitable for vehicle control as it naturally integrates predic-
tive information in its problem formulation [2], and MPC
has successfully been applied to vehicle trajectory tracking
and stability control [3], [4]. The key benefit of MPC is
its ability to incorporate constraint handling as well as
prediction models in its optimal control problem (OCP).
However, because MPC relies on a model, the model needs
to represent the actual vehicle behavior sufficiently well.
Specifically, since the main actuation of the vehicle is done
by altering the forces generated by the tire–road contact, it
is imperative to have a sensible guess about the road surface
the car operates on, as otherwise safe operation of the vehicle
can be endangered and performance can be limited [5], [6].

In this paper, we develop an MPC that adapts in real time
to different road-surface conditions by using sensors that are
standard in production vehicles. The interaction between tire
and road is highly nonlinear, and the function describing the
nonlinear relation varies heavily based on the road surface
and other tire properties [7]. When driving close to the
adhesion limits, which may happen in emergency maneuvers,
on unpaved roads, or on wet and icy roads, the nonlinear
part of the tire-force function may be excited, and the full
tire curve shape must be considered.
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Obtaining data for the nonlinear part of the tire-friction
function is challenging, and driving in the nonlinear region
of the tire-friction function before a reliable model of the
same is obtained possibly dangerous. Another difficulty when
learning the tire-friction function using automotive-grade
sensors is that the amount of sensors is limited, and they
are relatively low grade. Moreover, the sensors only provide
indirect measurements of the friction and the vehicle state.

To resolve these issues, in this paper, we couple an online
tire-friction estimator with a stochastic nonlinear MPC (SN-
MPC). The estimator is fully Bayesian and models the tire-
friction curve as a Gaussian process (GP) with unknown and
time-varying mean and covariance function, leading to a GP
state-space model (GP-SSM). In particular, we leverage a
recently proposed method for real-time joint state estimation
and learning of the state-transition function [8], where a com-
putationally efficient formulation of GP-SSMs is combined
with particle filtering [9] for jointly estimating online the
state and associated state-transition function. By using the
high-fidelity vehicle dynamics simulator CarSim [10], we
show that the estimator: (i), behaves in a manner suitable for
safety-critical vehicle control while only demanding standard
sensors and (ii), predicts larger uncertainty in the regions of
the function that have not been sufficiently excited. Friction-
adaptive NMPC has been explored before, for example,
in [11], [12]. However, unlike previous work, we explicitly
leverage the uncertainty estimates by coupling the estimator
with an SNMPC, which can utilize the Bayesian estimator.

The SNMPC formulation considers individual chance con-
straints approximated using online linearization-based co-
variance propagation [13], given the uncertainty information
from the estimator. The resulting approximate stochastic
nonlinear OCP is solved using an efficient block-sparse
quadratic programming (QP) solver [14] and a tailored
Jacobian approximation within the adjoint-based sequential
QP (SQP) method [15]. We have reported on methods for
friction-adaptive MPC [4], [16]. This work differs in that [4]
chooses from a fixed library of pre-determined tire-friction
functions and does not utilize SNMPC. While [16] uses
SNMPC, it employs a friction estimator targeting the linear
region of the tire-friction curve [17].
Notation: The notation R(a) means the 2D rotation matrix
of an angle a. Vectors are shown in bold, x, we denote
the stacking of two vectors a, b by [a, b], and constraints
between vectors are intended componentwise. Throughout,
x ∼ N (x̂,Σ) indicates that x ∈ Rnx is Gaussian distributed
with mean x̂ and covariance cov(x) = Σ. Matrices are
indicated in capital bold font as X . With p(x0:k|y0:k), we



mean the posterior density function of the state trajectory
x0:k from time step 0 to time step k given the measurement
sequence y0:k := {y0, . . . ,yk}, and xi0:k is the ith realization
of x0:k. The notation f(x) ∼ GP(f̂(x),Σ(x)) means that
the function f(x) is a realization from a GP with a mean
function f̂(·) and covariance Σ(·). For a continuous-time
signal x(t) sampled with period Ts, xk denotes the kth

sample, that is, xk = x(kTs). The norm of the quadratic
form of a vector x and matrix Q is given by ‖x‖2Q = x>Qx.

II. MODELING AND PROBLEM FORMULATION

We consider the single-track vehicle model, where the left
and right track of the car are lumped into a single centered
track. Roll and pitch dynamics are ignored, resulting in two
translational and one rotational degrees of freedom. The
single-track model is sufficient in most evasive maneuvers,
because the focus of such maneuvers is on preserving safety
rather than achieving optimality [5], [6]. Additionally, the
single-track model results in a reduced computational load,
which is desirable in automotive applications [2]. With the
longitudinal and lateral velocities in the vehicle frame, vX ,
vY , and the yaw rate, ψ̇, as states, the single-track model is

v̇X − vY ψ̇ =
1

m
(F xf cos(δf ) + F xr − F

y
f sin(δf )), (1a)

v̇Y + vX ψ̇ =
1

m
(F yf cos(δf ) + F yr + F xf sin(δf )), (1b)

Izzψ̈ = lfF
y
f cos(δf )− lrF yr + lfF

x
f sin(δf ), (1c)

where F xi = F zi µ
x
i (σi), F yi = F zi µ

y
i (αi) are the total

longitudinal/lateral forces in the tire frame for the lumped
left and right tires where the friction functions µxi (·), µyi (·)
are provided by the estimator, σi is the longitudinal wheel
slip, αi is the slip angle, and subscripts i ∈ {f, r} denote
front and rear, respectively. The normal forces resting on the
lumped front/rear wheels F zi , i ∈ {f, r}, are F zf = mg lr/l,
F zr = mg lf/l, where g is the gravity acceleration, lf , lr
are the distances of front and rear axles from the center of
gravity, and l = lf + lr is the vehicle wheel base. Also, m is
the vehicle mass, Izz is the vehicle inertia about the vertical
axis, and δf is the front wheel (road) steering angle. The
global vehicle position p = (pX, pY) is obtained from[

ṗX ṗY
]>

= R(ψ)
[
vX vY

]>
. (2)

The slip angles αi and slip ratios σi are defined as in [18],

αi = − arctan (vyi /v
x
i ) , σi =

rwωi − vxi
max(rwωi, vxi )

, (3)

where rw is the wheel radius, and vxi and vyi are the
longitudinal and lateral wheel velocities for wheel i.

A. Problem Formulation

The objective is to design a friction-adaptive control strat-
egy that makes the vehicle motion follow a time-dependent
reference trajectory (pX

ref(·), pY
ref(·), ψref(·), vXref(·)), possibly

generated in real time with an adequate preview, while op-
erating over different surfaces and environmental conditions.
The control strategy needs to estimate the vehicle state

and the tire-friction model with the controller activated. In
addition, since the estimation uncertainty may vary over time
and it may vary in different regions of the tire-friction curve,
the proposed SNMPC directly takes into account this time-
and state-dependent uncertainty information in real time.

III. STOCHASTIC MODEL-PREDICTIVE CONTROL FOR
REAL-TIME VEHICLE CONTROL

Based on (1)–(3) and using a time discretization with
sampling period Ts, the complete vehicle model is

xk+1 = f(xk,uk,µk), (4)

where xk ∈ Rnx is the state, uk ∈ Rnu the control input,
and µk(x,u) is the unknown tire-friction function. The tire-
friction function is modeled as a GP with time-varying mean
function µ̂k(x,u) and covariance function Σk(x,u) ac-
cording to µk(x,u) ∼ GP(µ̂k(x,u),Σk(x,u)), where the
mean and covariance are provided online by the estimator.
The state and control vector in the SNMPC formulation are

x :=
[
pX, pY, ψ, vX , vY , ψ̇, δf

]>
,

u :=
[
δ̇f , ωf , ωr

]>
.

(5)

At each sampling time, based on the state estimate x̂t and
covariance Pt at the current time step t, the SNMPC solves

min
xk,uk,Pk

N−1∑
k=0

lk(xk,uk) + lN (xN ) (6a)

s.t. x0 = x̂t, P0 = Pt, (6b)
∀k ∈ {0, . . . , N − 1} :

xk+1 = f(xk,uk, µ̂t(xk,uk)), (6c)

Pk+1 = FkPkF
>
k +GkΣt(xk,uk)G>k , (6d)

Pr (c(xk,uk) ≤ 0) ≥ 1− ε, (6e)

where the overall control action is in the feedforward-
feedback form uk = uref,k +K(xk −xref,k) + ∆uk due to
a prestabilizing controller, and Fk, Gk are the Jacobian ma-
trices of (4) linearized with respect to x and µ, respectively.
The state covariance propagation in (6d) corresponds to the
extended Kalman filter (EKF).

In linearization-based SNMPC, the model disturbance is
Gaussian-assumed and state-independent [13], [15], whereas
the tire-friction function is a GP and state-dependent. Hence,
we need to adapt the covariance propagation (6d) to account
for this state dependence by integrating the estimated tire-
friction function with the SNMPC problem (6). This amounts
to modifying the calculation of the Jacobian matrices Fk and
Gk, as described further in Section V.

A. Objective Function and Inequality Constraints

In our OCP, we consider the stage cost and terminal cost
in (6a) to be the least-squares functions

lk(·) =
1

2
‖xk − xref,k‖2Q +

1

2
‖uk − uref,k‖2R + rssk,

lN (·) =
1

2
‖xN − xref,N‖2QN

,
(7)



which includes a term for both state and control reference
tracking, and an L1 term for penalizing the slack variable
sk ≥ 0. The constraints c(xk,uk) ≤ 0 in the OCP (6)
consist of geometric and physical limitations on the system.
In practice, it is important to reformulate these requirements
as soft constraints, based on the slack variable sk, since oth-
erwise the problem may become infeasible due to unknown
disturbances and modeling errors. The constraints in (6e)
therefore include soft bounds on

pY
min − sk ≤ pY

k ≤ pY
max + sk, (8a)

−δf,max − sk ≤ δf,k ≤ δf,max + sk, (8b)

−δ̇f,max − sk ≤ δ̇f,k ≤ δ̇f,max + sk, (8c)
ωmin − sk ≤ ωi,k ≤ ωmax + sk, i ∈ {f, r}, (8d)
−αmax − sk ≤ αi,k ≤ αmax + sk, i ∈ {f, r}. (8e)

B. Probabilistic Chance Constraints

To enforce the probabilistic chance constraints in (6e),
we approximate them as deterministic constraints as in [13],
where the jth constraint is written as

cj(xk,uk) + ν

√
∂cj
∂xk

Pk
∂cj
∂xk

T

≤ 0, (9)

where ν is referred to as the back-off coefficient and depends
on the desired probability threshold ε and assumptions about
the resulting state distribution. The back-off coefficient for
Cantelli’s inequality, ν =

√
1−ε
ε , holds regardless of the

underlying distribution but is conservative. In this work, we
assume normal-distributed state trajectories and set

ν =
√

2 erf−1(1− 2ε), (10)

where erf−1(·) is the inverse error function.

C. Online SNMPC and Software Implementation

We solve the OCP in (6) at each time step of control
by a novel variant of the real-time iteration (RTI) algo-
rithm [19], using the adjoint-based SQP method that was
proposed in [15]. The algorithm uses a tailored Jacobian
approximation that allows for the numerical elimination of
the covariance matrices from the SQP subproblem, which
reduces the computation time considerably and allows for
real-time feasible implementations of stochastic nonlinear
MPC as illustrated in [15]. The real-time algorithm performs
one adjoint-based SQP iteration per time step of control,
and uses a continuation-based warm starting of the state and
control trajectories from one time step to the next.

The resulting SNMPC implementation uses the embedded
QP solver PRESAS [14], which applies block-structured fac-
torization techniques with low-rank updates to precondition-
ing of an iterative solver within a primal active-set algorithm
for MPC applications. The nonlinear function and derivative
evaluations, for the preparation of each SQP subproblem,
are performed using algorithmic differentiation (AD) and
C code generation in CasADi [20]. In addition, a standard
line search method is used [21] to improve the closed-loop
convergence of the SQP-based SNMPC controller.

IV. BAYESIAN TIRE-FRICTION LEARNING BY
GAUSSIAN-PROCESS STATE-SPACE MODELS

The estimator is targeted for embedded automotive-grade
hardware and sensors. We use a recently developed method
for jointly estimating the tire-friction function µ and the ve-
hicle state x only using sensors available in production cars,
namely wheel-speed sensors and inexpensive accelerometers
and gyroscopes. We briefly outline the formulation of the
method and refer to [8], [22] for a more complete description.

Remark 1: We focus on the estimation of the lateral tire
friction (nµ = 2). The extension to the longitudinal case is
analogous. We focus on the lateral vehicle dynamics, because
usually these are the most critical for vehicle control.

A. Estimation Model

The method uses the single-track model (1) and models
the tire-friction components as static functions of the slip
quantities, which in the lateral case results in

µyi = fyi (αi(x
e,ue)), i ∈ {f, r}, (11)

where the state and input vector for the estimator are xe =
[vY , ψ̇]>, ue = [δ, vX ]>. We let α = [αf , αr]

> and model
the friction vector as a realization from a GP with mean
function µ̂ and covariance function Σ,

µy(α(xe,ue)) ∼ GP(µ̂(α(xe,ue)),Σ(α(xe,ue))). (12)

The resulting vehicle SSM is a GP-SSM where the tire fric-
tion is a GP. A bottleneck in some of the proposed GP-SSM
methods is the computational load. In this paper, we use a
computationally efficient reduced-rank GP-SSM framework,
where the GP is approximated by a basis-function expansion
using the Laplace operator eigenvalues and eigenfunctions

φj(α) =
1√
L

sin

(
πj(α+ L)

2L

)
, λj =

(
πj

2L

)2

, (13)

defined on the interval [−L,L], such that

µyi ≈
∑
j

γji φ
j(αi), (14)

where the weights γji are Gaussian random variables with
unknown mean and covariance, whose prior depends on the
spectral density that is a function of the eigenvalues in (13).
We express the prior on the coefficients γji at time step k = 0
as a zero-mean matrix-normal (MN ) distribution over A,

A ∼MN (0,Q,V ), (15)

with right covariance Q and left covariance V . We write the
basis-function expansion on matrix form as

µ =

[
γ1f · · · γmf 0 · · · 0

0 · · · 0 γ1r · · · γmr

]
︸ ︷︷ ︸

A=

Af 0
0 Ar





φ1(αf )
...

φm(αf )
φ1(αr)

...
φm(αr)


︸ ︷︷ ︸

ϕ(α)

, (16)



where γji are the weights to be learned and m is the total
number of basis functions.

With (16), the vehicle dynamics estimation model is

xe
k+1 = fe(xe

k,u
e
k) + ge(xe

k,u
e
k)Aϕ(α(xe

k,u
e
k)). (17)

Hence, the original problem of learning the infinite-
dimensional friction function µ has been transformed to
learning the matrix A in (17), which is substantially easier
to do in an online setting. The lateral velocity and yaw rate
are estimated as part of the state according to (1). The lon-
gitudinal velocity can be determined from the wheel speeds
{ωi}i=f,r and the longitudinal acceleration measurement aX .

Our measurement model is based on a setup commonly
available in production cars, namely the acceleration aY , and
yaw-rate ψ̇, forming the measurement vector y = [aY , ψ̇]>.
To relate yk to the estimator state xe

k at each time step k, note
that aY can be extracted from the right-hand side of (1b), and
the yaw rate is a state. The measurement noise ek is zero-
mean Gaussian distributed with covariance R according to
ek ∼ N (0,R). This results in the measurement model

yk = h(xe
k,u

e
k) +D(xe

k,u
e
k)µ(αk(xe

k,u
e
k)) + ek. (18)

The measurement covariance R is assumed known a priori.
This is reasonable, since the measurement noise can often-
times be determined from prior experiments and data sheets.

Remark 2: According to well-established tire models
(e.g., [23]), the tire-friction function is antisymmetric. The
basis-function expansion (14) is a weighted sum of sinusoids,
and we can trivially enforce antisymmetry by restricting the
sum in (14) to even values for j (i.e., j = 2, 4, . . . ,m). This
reduces the number of parameters to estimate and ensures
that the estimate (11) passes through the origin.

B. Joint State and Friction-Function Learning

The vehicle state needs to be estimated concurrently with
the friction function. To properly account for the inherent
uncertainty and to be able to integrate properly with SNMPC,
we approach the estimation problem in a Bayesian frame-
work. Due to the nonlinearities of the tire-friction function
and the vehicle model, the estimation problem is highly
non-Gaussian. We therefore leverage a particle-filter (PF)
based estimator that estimates the vehicle state xe and basis-
function weights A [22]. The PF approximates the joint
posterior density at each time step k as

p(Ak,x
e
0:k|y0:k) = p(Ak|xe

0:k,y0:k) p(xe
0:k|y0:k). (19)

The two densities on the right-hand side of (19) can be
estimated recursively. We estimate the state trajectory density
p(xe

0:k|y0:k) by a set of N weighted state trajectories as

p(xe
0:k|y0:k) ≈

N∑
i=1

qik δxe,i
0:k

(xe
0:k), (20)

where qik is the weight of the ith state trajectory xe,i
0:k and

δ(·) is the Dirac delta mass. Given the state trajectory, we
can compute the sufficient statistics necessary to approximate
p(Ak|xe,i

0:k,y0:k) for each particle. Because we determine the

state trajectory from the PF, the computations leading up to
the estimation of p(Ak|xe,i

0:k,y0:k) are analytic.
To determine the covariance and mean function, we

marginalize out the state trajectory from p(Ak|xe,i
0:k,y0:k),

p(Ak|y0:k) =

∫
p(Ak|xe

0:k,y0:k)p(xe
0:k|y0:k) dxe

0:k

≈
N∑
i=1

qik p(Ak|xe,i
0:k,y0:k), (21)

from where the mean function Âkϕ(αk(xe
k,u

e
k)) and co-

variance function Σk(αk(xe
k,u

e
k)) needed in the SNMPC

problem (6) can be extracted, as discussed next.

V. ONLINE ADAPTATION OF SNMPC TO TIRE-FRICTION
LEARNING

In determining the mean and covariance of the tire-friction,
we use that each particle retains its own estimateAi

k together
with the weight qik. This results in

µ̂k=

N∑
i=1

qik

[
Âi
fϕ(αf,k), Âi

rϕ(αr,k)
]>

,

Σk=

N∑
i=1

qik

[
ϕ(αf,k)>V i

f,kϕ(αf,k)Qf 0

0 ϕ(αr,k)>V i
r,kϕ(αr,k)Qr

]
,

(22)
where V i

f,k, V i
r,k are the posterior left covariances [8].

A. Integrating the Tire-Friction Function into SNMPC

Using the single-track model and the basis-function ex-
pansion of the friction, µ ≈ Aϕ(α(x)), we can write the
vehicle model (4) used in the SNMPC similar to (17),

xk+1 = f(xk,uk) + g(xk,uk)µ̂k(α(xk)). (23)

In linearization-based SNMPC [15], the parametric un-
certainty is typically modeled according to a Gaussian
random variable, µ ∼ N (µ̂,Σ), where the uncertainty
µ is state-independent. This leads to Jacobian matrices
Fk = ∂f

∂x (xk,uk, µ̂k) and Gk = ∂f
∂w (xk,uk, µ̂k) in (6d).

However, we have that the friction uncertainty is a func-
tion modeled according to a GP at each time step k,
µ(α(x)) ∼ GP (µ̂k(α(x)),Σ(α(x))). Hence, we want to
determine the equivalent to (6d) for the state-dependent
uncertainty µ(α(x)), by finding expressions for the involved
Jacobians Fk, Gk. From (23), by using the chain rule,

Fk =
∂f

∂x
(xk,uk) +

∂g

∂x
(xk,uk)µ̂t(α(xk))

+ g(xk,uk)
∂µ̂t(α(xk))

∂x

=
∂f

∂x
(xk,uk) +

∂g

∂x
(xk,uk)Âtϕ(α(xk))

+ g(xk,uk)Ât
∂ϕ

∂α
(α(xk))

∂α

∂x
(xk). (24)



Fig. 1. CarSim simulation setup. Inputs to CarSim are the throttle position,
the brake pedal position, as well as the steering angle command for the left
and right front wheels. Outputs from CarSim are the longitudinal and lateral
position, the yaw angle, the vehicle velocity, as well as the steering angle
for left and right wheels. The controller block uses the vehicle state and the
reference trajectory in order to compute a steering rate command as well
as a torque command.

We momentarily define gk := g(xk,uk), ϕk := ϕ(α(xk))
and approximate the covariance propagation as

E[xk+1x
>
k+1] ≈ E[(Fkxk + gkÂtϕk)(Fkxk + gkÂtϕk)>]

= FkPkF
>
k + E(gkÂtϕkϕ

>
k Â
>
t g
>
k )

= FkPkF
>
k + gk︸︷︷︸

Gk

cov(Âtϕk)︸ ︷︷ ︸
Σk

g>k . (25)

Eq. (25) leads to the SNMPC formulation, where the in-
tegration of the tire-friction estimates is done by using the
estimated mean in the state prediction (6c) and the estimated
covariance function through the Jacobians in the covariance
propagation (6d). Algorithm 1 summarizes our proposed
friction-adaptive stochastic predictive control strategy.

Algorithm 1 Proposed SNMPC with Friction Adaptation
1: for each time step k do
2: Estimate current state vector x̂k, tire-friction es-

timate Âkϕ(α(xek,u
e
k)) and covariance function

Σk(α(xek,u
e
k)), using (22) (see [22]).

3: Perform SQP iteration(s) to approximately solve
SNMPC problem (6), using current state estimate
in (6b), mean friction function in (6c), Jaco-
bian (24) and covariance propagation (25) in (6d).

VI. CARSIM SIMULATION RESULTS

We validate the proposed friction-adaptive SNMPC in
simulation using CarSim [10]. CarSim is a high-fidelity
vehicle dynamics simulator, which we utilize to study the
method’s performance and applicability to a complex dynam-
ical system—with a simplified model for controller design.
Fig. 1 shows a block diagram of a vehicle in CarSim being
controlled in a Simulink interface. Fig. 2 shows a screenshot
of the CarSim environment, in which a vehicle performs
lane changes while adapting its control parameters. For
reproducibility, we use modules that are standard in CarSim
for all components such as suspension, springs, tires, and so
on, and the vehicle parameters are from a mid-size SUV.

Fig. 2. Illustration of a vehicle performing lane-change maneuvers in
CarSim, while friction parameters and uncertainty are adapted online for
SNMPC. The purple arrows show the lateral forces acting onto the wheels.

We consider a sequence of double lane-change maneuvers
similar to the standardized IS0 3888-2 [24] double lane-
change maneuver, starting on asphalt, switching to snow,
and then back to asphalt. The reference is generated with
Bezier polynomials and the position, heading, longitudinal
velocity, and yaw rate are given to the controllers to track.
For simplicity, we set the longitudinal velocity reference to
be constant, vXref = 18m/s. The different tuning parameters in
the estimator are fairly generic, and the same as in [22]. We
initialize the tire-friction estimates to correspond to the snow
tire parameters in [25]. We evaluate the following controllers:
• PROPOSED: adaptive SNMPC method (Algorithm 1).
• SNOW: nominal NMPC that is based on fixed snow tire

parameters using a Pacejka tire model [23].
• ASPHALT: nominal NMPC that is based on fixed asphalt

tire parameters using a Pacejka tire model [23].
For the nominal NMPC using snow and asphalt parameters,
we use the tire parameters from [25], which correspond to
tire parameters originating from experimental validations.
The metric to evaluate the controllers is the closed-loop cost
Cost =

∑
k lk(xk,uk), over each time step, where lk(·) is

defined by (7).
A. Simulation Results

The performance of the estimator has been validated in
several papers [8], [22]. Here, we focus on the closed-
loop control performance. Fig. 3 shows a comparison of
the lateral tracking performance between the three different
controllers. The controller denoted by ASPHALT shows sig-
nificant overshoot and poor tracking performance once the
surface switches to snow (indicated by the gray area). The
results demonstrate that the reference trajectory is tracked
well by the PROPOSED and SNOW controllers, and that there
are some transients in PROPOSED due to the convergence
time of the tire-friction estimator. The SNOW controller
performs conservatively as expected, and also has difficulty
in quickly reacting to the reference change.

Fig. 4 displays the wheel steering angle and closed-loop
cost for the three controllers. Note that the MPC cost function
consists of more terms than the lateral tracking error, and
focusing solely on the lateral position can lead to wrong
conclusions about performance. Fig. 4 shows that the surface
change at about 21s destabilizes the vehicle when using
ASPHALT NMPC. Also, we can see that the PROPOSED
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Fig. 4. Front wheel steering angle commands and closed-loop cost for the
simulation results of the vehicle maneuver in Fig. 3.

adaptive SNMPC improves performance compared to the
SNOW NMPC throughout the maneuver, reducing the closed-
loop cost from over 0.6 to about 0.1.

VII. CONCLUSIONS

The presented approach integrates a recently developed
Bayesian tire-friction estimator with an SNMPC formulation
that includes uncertainty propagation, where the uncertainty
is dependent on the estimated tire-friction distribution. The
Bayesian formulation of the tire-friction estimation problem
makes it possible to reason about uncertainty in the learning
process. Hence, lack of knowledge about the road surface
in certain regions is reflected in an increased uncertainty of
the estimates in such regions. The results demonstrate that
including uncertainty prediction indeed improves robustness
compared to a nominal integration.
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“Nominal stability of the real-time iteration scheme for nonlinear
model predictive control,” IEE Proc.-Control Theory Appl., vol. 152,
no. 3, pp. 296–308, 2005.

[20] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl.,
“Casadi–a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, 2018.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., ser.
Operations Research and Financial Engineering. Springer, 2006.

[22] K. Berntorp, “Online Bayesian tire-friction learning by Gaussian-
process state-space models,” in IFAC World Congress, Berlin, Ger-
many, Jul. 2020.

[23] H. B. Pacejka, Tire and Vehicle Dynamics, 2nd ed. Oxford, United
Kingdom: Butterworth-Heinemann, 2006.

[24] ISO 3888-2: 2002, “Passenger cars–test track for a severe lane change
manoeuvre–part 2: Obstacle avoidance,” 2002.

[25] K. Berntorp, “Particle filtering and optimal control for vehicles and
robots,” Ph.D. dissertation, Dept. Automatic Control, Lund University,
Sweden, May 2014.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-065.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


