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Abstract—We study the problem of performance optimiza-
tion of closed-loop control systems with unmodeled dynamics.
Bayesian optimization (BO) has been demonstrated effective
for improving closed-loop performance by automatically tuning
controller gains or reference setpoints in a model-free manner.
However, BO methods have rarely been tested on dynamical
systems with unmodeled constraints. In this paper, we propose
a violation-aware BO algorithm (VABO) that optimizes closed-
loop performance while simultaneously learning constraint-
feasible solutions. Unlike classical constrained BO methods
which allow an unlimited constraint violations, or ‘safe’ BO
algorithms that are conservative and try to operate with near-
zero violations, we allow budgeted constraint violations to
improve constraint learning and accelerate optimization. We
demonstrate the effectiveness of our proposed VABO method for
energy minimization of industrial vapor compression systems.

I. INTRODUCTION

Closed-loop systems can often be optimized after deploy-
ment by altering controller gains or reference inputs guided
by the performance observed through operational data. Man-
ually tuning these control parameters often requires care and
effort along with considerable task-specific expertise. Algo-
rithms that can automatically adjust these control parameters
to achieve optimal performance are therefore invaluable for
saving manual effort, time, and expenditure.

Optimal performance of a control system is generally
defined via domain-specific performance functions whose
arguments are outputs measured from the closed-loop system.
While the map from measurements to performance may
be clearly defined, the map from control parameters (that
can actually be tuned) to performance is often unmodeled
or unknown, since closed-form system dynamics may not
be available during tuning [1]. It is thus common to treat
the control parameters-to-performance map as a black-box,
and design a data-driven tuning algorithm, where data is
collected by experiments or simulations. However, since both
experimentation and high-fidelity software simulations are
expensive, tuning algorithms must be designed to assign a
near-optimal set of control parameters with as few experi-
ments/simulations (equivalently, performance function eval-
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uations) as possible. Therefore, existing data-driven methods
that need large amount of samples, such as genetic algo-
rithm [2], can be impractical.

It is precisely for this reason that Bayesian optimiza-
tion (BO) has received widespread attention in the context
of closed-loop performance optimization. BO is a sample-
efficient derivative-free global optimization method [3] that
utilizes probabilistic machine learning to intelligently search
through parameter spaces. [4] gives a detailed survey of
Bayesian Optimization. In recent work, BO has demonstrated
potential in controller gain tuning. For example, BO is
applied to the tuning of the PI controller of a heat pump [5]
and the tuning of PID cascade controller gains [6]. BO has
also been applied to the performance optimization of model
predictive control. For example, BO is applied to optimize
the nominal linear model of a predictive controller [7], to
tune the parameters of MPC to optimize the closed-loop
performance [8], and to generate candidate parameters for
data-driven scenario optimization [9]. BO is also proposed
to select closed loop kernel based model [10]. BO is used
in many other various real-world control applications, such
as wind energy systems parameter tuning [11], [12], engines
calibration [13] and space cooling system optimization [1].

A challenge that has garnered recent interest is that of
safe Bayesian optimization; that is, BO in the presence of
safety-critical system constraints. These constraints may also
be unmodeled (‘black-box’), as a mathematical representation
of the constraint with respect to the control parameters is
not always known or straightforward to represent. To handle
these constraints, safe BO method has been recently proposed
in [14] , improved in [15] and extended to more general
setting in [16]. These methods either operate on the principle
of not allowing any constraint violations during optimization,
or leverage partial model knowledge to ensure safety via
Lyapunov arguments [17]. In either case, safe BO learns
feasible optima without violating unmodeled constraints, or
risks their violation with predefined small probability. Often,
this conservativeness results in obtaining local minima, slow
convergence speeds, and reduced data-efficiency. Conversely,
generic constrained optimization with BO learns constraints
without paying heed to the amount of constraint violation
during the exploration phase. These methods [18], [19], are
mostly agnostic to the deleterious consequences of constraint
violation, such as long-term damage to expensive hardware
caused by large violation, rendering them impractical for
many industrial applications. Another direction of BO re-
search proposes the use of budgets on the cost of sam-



ples (e.g., neural network training time [20], wall clock
time [21], sample number [22] and system failures [23]).
However, in these existing BO settings, the budget considered
is usually related to the effort or failure risk for performance
function evaluation, and does not provide a way to manage
the magnitude of constraint violations.

For many industrial systems, small constraint violations
over a short period are acceptable if that exploration improves
the convergence rate of optimization, but large violations are
strongly discouraged. For example, in vapor compression
systems (VCSs), it is imperative that constraint violation
on variables such as compressor discharge temperature are
limited to short time periods. We aim to find a set of near-
optimal parameters within as few samples as possible since
performance evaluation is time-consuming and available tun-
ing time can be limited. Therefore, it may be desirable to
systematically trade tolerable constraint violations for faster
convergence and potentially skipping local minima. In other
words, for VCSs, the benefits of accelerated global conver-
gence outweigh the cost of short-term constraint violations.

In this paper, we propose a novel violation-aware Bayesian
optimization (VABO) that exhibits accelerated convergence
compared to safe BO, while ensuring the violation cost is
within a prescribed budget. We demonstrate that our VABO
algorithm is less conservative than ‘safe BO’ algorithms that
tend to be sample-inefficient and can get stuck in a local
minimum because they cannot allow any constraint violation.
The VABO algorithm is also more cautious than constrained
Bayesian optimization, which is agnostic to constraint vio-
lations and thus, is likely to incur large violation costs. Our
VABO algorithm is based on the principle of encouraging
performance function evaluation at combinations of control
parameters that greatly assist the optimization process, as
long as it does not incur high constraint violations likely
to result in system failure or irreversible damage.

Our contributions include:
1) we propose a variant of constrained BO methods for

control parameter tuning that improves global conver-
gence rates within a prescribed amount of constraint
violation with guaranteed high probability;

2) we propose a simple and tractable constrained auxiliary
acquisition function optimization problem for trading off
performance improvement and constraint violation; and,

3) we validate our algorithms on a set-point optimization
problem using a high-fidelity VCS that has been cali-
brated on an industrial HVAC system.

II. PRELIMINARIES

A. Problem Statement

We consider closed-loop systems of the form

ξ+ = F(ξ ,θ), (1)

where ξ ,ξ+ ∈ Rnξ denote the system state and update (re-
spectively), θ ∈ Θ ⊂ Rnθ the control parameters (e.g., set-
points) to be tuned, and F(·, ·) the closed-loop dynamics
with initial condition ξ0. We assume that the closed-loop
system (1) is designed such that it is exponentially stable to

a control parameter dependent equilibrium state ξ ∞(θ) for
every θ ∈ Θ. We further assume that ξ ∞(·) is a continuous
map on Θ.

To determine the system performance, we define a contin-
uous cost function `(θ) : Rnθ 7→R to be minimized, which is
an unknown/unmodeled function of the parameters θ . This
is not unusual: while ` may be well-defined in terms of
system outputs, it is often the case that the map from control
parameters to cost remains unmodeled; in fact, ` may not
even admit a closed-form representation on Θ, c.f. [1], [24].

We also define N unmodeled constraints on the system
outputs that require caution during tuning. The i-th such
constraint is given by gi(θ) : Rnθ 7→ R, i ∈ [N], where the
notation [N]

def
= {i ∈ N,1 ≤ i ≤ N}; we assume each gi(·) is

continuous on Θ. We assume that the cost function l(θ) and
every constraint gi(θ), i ∈ [N] can be ascertained, either by
measurement or estimation, during the hardware/simulation
experiment. We introduce the brief notation g(·)≤ 0, gi(·)≤
0, i ∈ [N] and assume that an initial feasible set of solutions
is available at design time.

Assumption 1. The designer has access to a non-empty safe
set Θ0 such that for any θ ∈ Θ0, no constraint is violated;
that is, g(θ)≤ 0 for every θ ∈Θ0.

While such an initial set Θ0 can be derived using domain
expertise, it is likely that Θ0 contains only a few feasible θ ,
and at worst could even be a singleton set.

We cast the control parameter tuning problem as a black-
box constrained optimization problem, formally described by

min
θ∈Θ

`(θ), (2a)

subject to: gi(θ)≤ 0, ∀i ∈ [N]. (2b)

Our objective is to solve the constrained optimization prob-
lem (2) with limited constraint violations during the opti-
mization process. Since the constraints are assumed to be
unmodeled and a limited set of feasible solutions is known at
design time, we do not expect a guarantee of zero constraint
violations. The tolerable amount and duration of constraint
violations are problem-dependent. In some applications, such
as vapor compression systems, small constraint violations
over a short-term are acceptable, while large constraint viola-
tions are strongly discouraged. In such cases, instead of being
overly cautious and ending up with suboptimal solutions,
we allow small constraint violations as long as the resulting
knowledge gathered by evaluating an infeasible (in terms of
constraint violation) θ accelerates the optimization process
or helps avoid local minima.

Remark 1. Our formulation (2) can also optimize batch pro-
cesses over finite time-horizons, say Th. This would involve
defining the objective and constraints over a batch trajectory
with stage loss `(θ) := 1

Th

∫ Th
0 l(τ,θ)dτ .

B. Proposed Solution

We propose a modified Bayesian optimization framework
to solve the problem (2) that is violation-aware: the algorithm



automatically updates the degree of risk-taking in the current
iteration based on the severity of constraint violations in
prior iterations. Concretely, for an infeasible θ , the constraint
violation cost is given by

c̄i(θ), ci
(
[gi(θ)]

+
)
, i ∈ [N] (3)

where [gi(·)]+ := max{gi(·),0} and ci : R≥0 7→ R≥0. Note
that gi corresponds to physically meaningful system outputs
that we can measure, e.g., temperature. This violation cost
function ci is user-defined as a means to explicitly weight the
severity of ‘small’ versus ‘large’ constraint violations. While
the function ci is at the discretion of the designer, it needs
to satisfy the following mild assumptions in order to achieve
desirable theoretical properties; see §3.

Assumption 2. The violation function ci satisfies:
(A1) ci(0) = 0,
(A2) ci(s1)≥ci(s2), if s1 > s2 ≥ 0,
(A3) ci is left continuous on R≥0.

Assumption 2 captures some intuitive properties required
of the violation function. According to (A1), there is no cost
associated with no violation. From (A2), we ensure that the
violation cost is monotonically non-decreasing with increased
violations. Finally (A3) ensures that this monotonic increase
is smooth and does not exhibit discontinuous jumps.

To adapt the degree of risk-taking based on prior data
obtained, we define a violation budget over a horizon of
T ∈N optimization iterations. Our proposed VABO algorithm
is designed to sequentially search over T iterations {θt}T

t=1
while using a prescribed budget of constraint violations in
order to obtain a constraint-optimal set of parameters

θ ?
T := argmin t∈[T ];

g(θt )≤0
`(θt) subject to: ∑

T
t=1 c̄i(θt)≤ Bi,

where Bi denotes a budget allowed for the i-th violation cost.
Note that this formulation is a generalization of well-

known constrained/safe Bayesian optimization formulations
proposed in the literature. If we set all Bi ≡ 0, then our
formulation is closedly related to safe BO [14], [15]. Alter-
natively, setting Bi ≡ ∞ reduces our problem to constrained
BO agnostic to violation cost [18], [19].

III. VIOLATION-AWARE BAYESIAN OPTIMIZATION

A. Bayesian Optimization Preliminary

For Bayesian optimization, one models `(x) and g(x)
as functions sampled from independent Gaussian processes.
At iteration t, conditioned on previous function evaluation
data D := {θ1:t , `(θ1:t)}, the posterior mean and standard
deviation of ` is given by µ`(θ |D) = k>` (θ ,θD )K−1

` ∆y` +
µ`,0(θ) and σ2

` (θ |D) = k`(θ ,θ)− k>` (x,θD )K−1
` k`(θD ,θ),

where θD = θ1:t is the set of control parameters with which
previous experiments/simulations have been performed. Here,

k`(θ ,θD ), [k`(θ ,θi)]θi∈θD
, k`(θD ,θ), [k`(θi,θ)]θi∈θD

,

K` , (k`(θi,θ j))θi,θ j∈θD
, ∆y` , [`(θi)−µ`,0(θi)]θi∈θD

,

and k`(·, ·) is a user-defined kernel function and µ`,0 is
the prior mean function, both associated with `; see [4]

for more details on kernel and prior mean selection. The
above quantities are all column vectors, except K`, which
is a positive-definite matrix. For the constraint functions g,
similar expressions for the posterior mean µgi(θ |D) and
standard deviation σgi(θ |D) can be obtained.

The kernelized functions above provide tractable approxi-
mations of the performance cost of the closed-loop system,
along with the constraint functions, both of which were
hitherto unmodeled/unknown. Classical BO methods use the
statistical information embedded within these approximations
to intelligently explore the search space Θ via acquisition
functions. A specific instance of an acquisition function com-
monly used in constrained BO is the constrained expected
improved (CEI) function [18], given by

CEI(θ |D) = E

(
∏

i∈[N]

1gi(θ)≤0 I(θ)|D
)
. (4)

where 1 denotes the indicator function, E denotes the ex-
pectation operator, and I(θ) = max{0, `(θ min

t )− `(θ)} is
the improvement of θ over the incumbent solution over t
iterations. Here, the incumbent best solution is given by

θ
min
t = argmin

{θτ |τ∈[t−1],gi(θτ )≤0,∀i∈[N]}∪Θ0

`(θ), (5)

with Θ0 being the initial safe set of feasible points.
As gi(θ),∀i ∈ [N] and `(θ) are independent, we deduce

CEI(θ |D) = ∏
i∈[N]

P(gi(θ)≤ 0|D)E(I(θ)|D) . (6)

We have P(gi(θ) ≤ 0|D) = Φ

(−µgi (θ |D)

σgi (θ |D)

)
, and the closed-

form expression of expected improvement [3],

E(I(θ)|D) =
(
`(θ min

t )−µ`(θ |D)
)

Φ(z)+σ`(θ |D)φ (z) , (7)

where z = `(θ min
t )−µ`(θ |D)

σ`(θ |D) , Φ(·) and φ(·) are the standard nor-
mal cumulative distribution and probability density functions,
respectively.

B. VABO Algorithm

Our VABO algorithm proposes an auxiliary optimization
problem that leverages the constrained expected improvement
acquisition function to select feasible good points to evaluate
while ensuring (with high probability) that the violation cost
will remain within a prescribed budget.

Let the remaining budget at the t-th VABO iteration
be Bi,t , Bi −∑

t−1
τ=1 c̄i(θτ). At this iteration, we solve the

following auxiliary problem

θ
?
t := argmax

θ∈Θ

CEI(θ |D), (8a)

subject to: ∏
i∈[N]

P(c̄i(θ)≤ βi,tBi,t)≥ 1− εt , (8b)

to compute the next control parameter candidate θ ?
t , where

βi,t ∈ [0,1] is a user-defined weighting scalar that determines
how much of the remaining budget can be used up, and
0 < εt � 1 determines the probability of large constraint
violation. Note that (8a) involves maximizing the constrained



expected improvement objective, which is common to cBO
algorithms; c.f. [18]. Our modification using the budget, as
written in (8b), enforces that the next sampled point will not
use up more than a βi,t fraction of the remaining violation
cost budget Bi,t for all constraints with a probability of at least
1−εt , conditioned on the data seen so far. This modification
allows us to trade a prescribed level of violation risk for more
aggresive exploration, leading to faster convergence. Al-
though we use constrained expected improvement acquisition
function here, we can easily generalize to other acquisition
functions by simply replacing CEI in the objective (8a).

We now discuss how to efficiently solve the auxiliary prob-
lem (8). Recall from Assumption 2 that ci is non-decreasing
on R≥0 for every i∈ [N]. Therefore, we can define an inverse
violation function c−1

i (s) = sup{r ∈ R≥0 | ci(r)≤ s} for any
s ∈ R≥0. Therefore, we can write P(c̄i(θ) ≤ βi,tBi,t |D) =

P([gi(θ)]
+ ≤ c−1

i (βi,tBi,t)|D) = P(gi(θ) ≤ c−1
i (βi,tBi,t)|D).

Since gi(θ) follows a Gaussian distribution with mean
µgi(θ |D) and variance σ2

gi
(θ |D), we get

P(c̄i(θ)≤ βi,tBi,t |D) = Φ

(
c−1

i (βi,tBi,t)−µgi(θ |D)

σgi(θ |D)

)
.

When the number of control parameters nθ is small (< 6), we
can place a grid on Θ and evaluate the cost and constraints
of (8) at all the grid nodes. The maximum feasible solution
can then be used as the solution to the auxiliary problem.
When nθ > 6, we can use gradient-based methods with
multiple starting points to solve problem (8), since evaluating
the learned GPs approximating ` and g require very little
computational time or effort when T is not large (empirically,
< 2000). The VABO algorithm is terminated either when
T iterations of the algorithm have been reached, or the
cumulative violation cost for constraint i exceeds Bi for any
i∈ [N]. We provide pseudocode for implementation in Alg. 1.

The following proposition provides a probabilistic guaran-
tee of using up the given number of samples while keeping
the violation cost below the given budget. It highlights the
“violation-awareness” property exhibited by VABO.

Proposition 1. Fix δ ∈ (0,1) and T ∈N. For any βi,t ∈ (0,1],
if εt , t ∈ [T ] are chosen such that δ = 1−∏

T
t=1(1− εt), then

the VABO algorithm satisfies the probability that

{T iters are used}∩
{

T

∑
t=1

c̄i(θt)≤ Bi,∀i ∈ [N]

}
is at least 1−δ .

Proof. Let Et := {t iters are used} ∩
{∑t

τ=1 c̄i(θτ)≤ Bi, ∀i ∈ [N]} , where t ∈ [T ]. We have

P(ET ) = P(ET−1)P(ET | ET−1)

= P(ET−1)P(c̄i(θT ))≤ Bi,T ,∀i ∈ [N] | ET−1)

≥ P(ET−1)P(c̄i(θT )≤ βi,T Bi,T ,∀i ∈ [N] | ET−1)

≥ P(ET−1)(1− εT ).

By recursion, we have P(ET ) ≥ P(E1)∏
T
t=2(1− εt) ≥

∏
T
t=1(1− εt) = 1−δ , which concludes the proof.

Algorithm 1 Violation-Aware Bayesian Optimization
1: Require: Max VABO iterations T , violation budget

Bi,∀i ∈ [N] and an initial safe set of points Θ0
2: Evaluate `(θ), gi(θ),∀i ∈ [N] for θ ∈Θ0 by performing

experiments or simulation
3: Initialize dataset D = {θt , `(θt),g(θt)} ∀θt ∈Θ0
4: for t ∈ [T ] do
5: Θt =

{
∏i∈[N]P(c̄i(θ)≤ βi,tBi,t |D)≥ 1− εt |θ ∈Θ

}
6: θ ?

t = argmaxθ∈Θt
CEI(θ |D) . Solving (8)

7: `(θ ?
t ),g(θ

?
t )← perform experiment with θ ?

t
8: Bi,t+1 = Bi,t − c̄i(θt),∀i ∈ [N]
9: if ∃ i ∈ [N], such that Bi,t+1 < 0 then

10: return θ min
t+1

11: Update dataset, D ←D ∪{θ ?
t , `(θ

?
t ),g(θ

?
t )}

12: Update Gaussian process posterior
13: return VABO solution: θ min

T+1

IV. CASE STUDY: CONSTRAINED VCS OPTIMIZATION

In this section, we present a framework to safely tune set-
points of a VCS. As shown in Fig. 1, a VCS typically consists
of a compressor, a condenser, an expansion valve, and an
evaporator. While physics-based models of these systems can
be formulated as large sets of nonlinear differential algebraic
equations to predict electrical power consumption, there are
a variety of challenges in developing and calibrating these
models. This motivates interest in directly using measure-
ments of the power under different operating conditions
to search optimal set-points to the VCS actuators using
data-driven, black-box optimization methods such as BO, to
minimize the power consumption.

Compressor

EEV

CondenserEvaporator
Fan Fan

VABO 
AutoTuner

MotorMotor

Power
Compressor Discharge Temperature 

Flow of Refrigerant

Fig. 1. Schematic diagram of vapor compression system with our proposed
VABO controlling the EEV (electronic expansion valve) and the two fans’
speed. For simplicity, we do not show other measurements and controls.

During the tuning process, one constraint, considered here,
is on the temperature of the refrigerant leaving the com-
pressor, also referred to as the ‘discharge temperature’. The
discharge temperature must be managed because compressors
are designed to operate within specific temperature ranges;
excessively high temperatures can result in the breakdown
of refrigerant oils and increase wear and tear. In addition,
high temperatures are often correlated with high pressures,
which can cause metal fatigue and compromise the integrity
of the pressurized refrigerant pipes in extreme cases. While
managing the constraints mentioned above in the long run



is critical, we also observe that small violations over short
periods of time have limited harmful effects. Indeed, it may
be beneficial to take the risk of short-period limited violation
to accelerate the tuning process.

We cast the VCS optimization problem in the same form
as (2), with ` denoting the steady-state power of the
VCS with set points θ . The constraint g ≤ 0 is given by
Td(θ)− T̂d ≤ 0, where Td(θ) is the steady-state discharge
temperature with set points θ and T̂d is a safe upper bound.
We close a feedback loop from compressor frequency to
room temperature, leaving the set of 3 tunable set points θ

as the expansion valve position and the indoor/outdoor fan
speeds. The effect of these set points on power and discharge
temperature are not easy to model, and no simple closed-form
representation exists. In practice, we assign a setpoint θ , wait
for an adequate amount of time until the power signal resides
within a 95% settling zone, and use that power value as `(θ)
and the corresponding discharge temperature as Td(θ).

Implementation Details: We use a high-fidelity model of
the dynamics of a prototype VCS1 written in the Modelica
language [25] to collect data and optimize the set-points on-
the-fly. A complete model description is available in [1]. The
model was first developed in the Dymola [26] environment,
and then exported as a functional mockup unit (FMU) [27].
Its current version comprises 12,114 differential equations.
Bayesian optimization is implemented in GPy [28].

We define our set-point search space Θ := [200,300]×
[300,400]× [500,800], in expansion valve counts, indoor fan
rpm, and outdoor fan rpm, respectively. We aim to keep the
discharge temperature below T̂d = 331 K; these constraints
are set according to domain knowledge [24]. We initialize
the simulator at an expansion valve position of 280 counts,
an indoor fan speed of 380 rpm, and an outdoor fan speed
of 700 rpm, which is known to be a feasible set-point based
on experience. Constraint violations are penalized with the
function ci(s) = s2, s ∈ R+. The quadratic nature of the
violation cost implies that minor violations are not as heavily
penalized as larger ones. The reason for this is that small
violations over a small period of time are unlikely to prove
deleterious to the long-term health of the VCS, whereas
large violations could have more significant effects, even
over short periods of time; for instance, damage to motor
winding insulation or exceeding mechanical limits on the
pressure vessel of the compressor. These constraints have
been incorporated into the selection of the thresholds T̂d . Of
course, the threshold values and a parameterized violation
cost could be considered to be hyperparameters, and could
be optimized via further experimentation. We choose the RBF
kernel for our problem, which is commonly used in Bayesian
optimization [4], and compare our method to safe BO [29]
and generic cBO [19]. Based on our domain experience,
we set the kernel variance to be 15.0 (2.0, respectively)
and the kernel lengthscales to be [50,60,70] ([20,24,28],
respectively) for the objective (constraint).

1Note that while the behavior of this model have been validated against a
real VCS, the numerical values and/or performance presented in this work
is not representative of any product.

We showcase the effect of varying B by selecting B = 0,
10, and 20, and set βt = max{β0,

1
T−t+1}. This choice allows

the algorithm to use an increasing fraction of the budget when
approaching the sampling limit T . We also observe that the
impact of β0 is insignificant for this example, and therefore
we set β0 = 1.0. Proposition 1 gives a conservative way of
choosing εt . In this case study, setting εt to a small constant
0.01 works well. We use “VABO B” to indicate violation
aware BO with budget B. We repeat the experiments with
different initial safe points Θ0 randomly sampled from region
[260,300]× [360,400]× [700,800] for 11 times.

Results and Discussion: Fig. 2 illustrates the experimental
results on one instance. We observe that the best feasible
solution’s power of our VABO with B= 10 decreases slightly
faster than generic constrained BO and significantly faster
than safe BO. At the same time, our method manages
the violation cost well under the violation cost budget. In
comparison, generic constrained BO incurs very large costs
in the last few steps, far exceeding the violation cost budget
10 by more than an order of magnitude. The improvements
from VABO are due to its recognition that the discharge
temperature is sensitive to the expansion valve position, but
that this position needs to be adjusted in coordination with
the fan speeds. cBO causes large discharge temperatures
after step 12 because it makes large adjustments to the
expansion valve position while maintaining the indoor fan
speed at a low value, a combination that is not penalized
during exploration. VABO with B = 10 reduces the power
by about 9% compared to the most power-efficient initial
safe set-points after 20 steps. We also observe that the Td
constraint is often violated during exploration, and that large
violations are entirely possible without violation awareness,
as demonstrated by generic cBO. Table I shows the average
results.

TABLE I
EXPERIMENTAL RESULT: AVERAGE ± STANDARD DEVIATION

Safe
BO

cBO VABO
0.0

VABO
10.0

VABO
20.0

Optim.
Power
[W]

473.1±
3.7

463.9±
6.9

466.9±
13.3

462.3±
12.3

459.5±
2.4

Violation
Cost

1.3 ±
2.4

140.4±
104.1

0.02 ±
0.05

9.2 ±
6.4

17.2 ±
5.4

Even without any violation cost budget (Bi = 0), our
violation-aware BO finds better solutions faster than safe BO.
One explanation for this is that safe BO tends to waste a
lot of evaluations to enlarge the safe set, which may lead
to slow convergence. Conversely, VABO implicitly encodes
the safe set exploration into the acquisition optimization
problem (8) and only enlarges the safe set when necessary for
optimization, while keeping the violation risk under control.

V. CONCLUSIONS

In this paper, we design a sample-efficient and violation-
aware Bayesian optimization (VABO) algorithm to solve
the closed-loop control performance optimization problem
with unmodeled constraints, by leveraging the fact that small
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Fig. 2. Best feasible solution’s power, discharge temperature, cumulative violation cost and the three set-points’ evolution.

violations over a short period only incur limited costs during
the optimization process in many applications such as for
vapor-compression cycles. We strategically trade the bud-
geted violations for faster convergence by solving a tractable
auxiliary problem with probabilistic budget constraints at
each step. Our experiments on a VCS show that, as compared
to existing safe BO and generic constrained BO, our method
simultaneously exhibits accelerated global convergence and
manages the violation cost.
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