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Abstract
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linear right-hand side in both the differential and difference equations and with explicit logic
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Reference Governor for Hybrid Dynamical Systems

Ricardo G. Sanfelice and Stefano Di Cairano

Abstract— We formulate a reference governor algorithm for
hybrid systems modeled as hybrid equations, in which the
continuous dynamics are governed by a constrained differential
equation and the discrete dynamics by a constrained difference
equation. Basic definitions, models, and properties of the
proposed hybrid reference governor approach are introduced
and a time-based implementation is formulated. We apply the
methodology to hybrid equations with linear right-hand side in
both the differential and difference equations and with explicit
logic variables. We illustrate the approach in examples.

I. INTRODUCTION

Enforcing constraints by design is a practical challenge
in many control applications. Due to this challenge, one
of the most commonly used control approaches is model
predictive control (MPC) [1], as it not only allows for
constraint satisfaction but also leads to a feedback controller
with optimality properties. Unfortunately, MPC tends to be
computationally expensive, imposing the selection of low
control rates and requiring expensive computing platforms.
An alternative approach that safely handles constraints with
lower computational requirements – possibly at the price of
reduced closed-loop performance – is the reference governor
(RG) approach [2].

RG is a state-feedback control law that manages the ref-
erence signal of a plant, usually pre-stabilized by a feedback
controller. In simple words, the objective of the reference
governor is to manipulate the reference with respect to a user-
defined value so that the closed-loop system satisfies, at every
point in time, its constraints. While MPC requires solving a
multi-variable optimization problem, RG requires only the
selection of a constant reference value, called the command
input, which requires solving an optimization problem with
few variables (often, a single one) or by simply evaluating
inequalities at a set of values. Furthermore, being an add-
on scheme, RG easily integrates with an existing controller
without requiring a full redesign. On the other hand, RG
usually does not allow for complex cost functions that are
allowed by MPC, achieves a slower response being typically
limited to constant references, and requires more stringent
conditions on the plant, e.g., asymptotic stability of an
equilibrium point. Nevertheless, RG is of interest especially
for systems with legacy controllers, high sampling rates, and
requiring reduced cost for the computation platform.
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Reference governors have been studied extensively for
smooth systems, both linear and nonlinear, and applied
successfully in several domains [2]. On the other hand,
studies of RG for hybrid systems are limited. The key
prior contributions focus on specific classes of systems and
constraints exhibiting a nonsmooth or switching behavior,
such as piecewise affine systems [3], switching systems with
hysteresis [4], systems subject to disjunctive constraints for
the approximation of nonlinear constraints [5], and hybrid
designs combining governors for smooth systems to handle
non-convex constraints [6]. Unfortunately, such classes of
systems do not capture all features of hybrid systems, such
as jumps at unknown times, especially when they are inter-
leaved between intervals of continuous evolution.

Motivated by such gap and the emergence of hybrid
behavior in control applications, in this paper we formulate
a hybrid reference governor strategy for plants modeled as a
hybrid equations, which are given by [7]

HP :

 (z, u) ∈ CP ż = FP (z, u)
(z, u) ∈ DP z+ = GP (z, u)

y = h(z) .
(1)

The hybrid plant, denoted HP , is defined by the maps
FP and GP , which govern the evolution of z along flows
and at jumps, respectively, on the sets CP and DP , re-
ferred to as the flow set and the jump set, respectively.
After presenting a motivating application for the need of
RG for hybrid systems, we formulate a general reference
governor strategy for this class of systems. Specifically, we
introduce the maximal output admissible set (MOAS) for
hybrid trajectories and show that it is forward invariant in an
appropriate sense, see Section IV-A. Then, we formulate the
numerical problem for computing the hybrid RG command
at each event triggering its recomputation (see Section IV-
B) and establish its feasibility (see Section IV-C). Based
on these results, we introduce the notion of hybrid time
window and formulate an algorithm implementing a time-
driven version of hybrid RG; see Section IV-D. In Section V,
we specialize the approach to two classes of hybrid systems:
hybrid systems with linear maps and, more briefly, hybrid
systems with modes transitions occurring in a sequence.
Numerical examples illustrate the results.

II. MOTIVATION

Consider the “impactor-runner” mechanism shown in Fig-
ure 1 used in several applications such as automotive valves
and circuit breakers [8], [9], in which an actuated impactor
mass (first mass, m1) is controlled to impact with a runner
mass (second mass, m2) and to move it to a desired position.



Fig. 1. Impactor-runner motion mechanism. The runner mass (left) is
controlled and the impactor mass (right) is at rest at the stopper.

The change of position p1 of the impactor mass moving
alone, referred to as mode 1, and joined to the runner mass,
referred to as mode 2, is governed by

m1p̈1 + c1p̈1 + k1p1 = F, (2)
(m1 +m2)p̈1 + (c1 + c2)p̈1 + k1p1 + k2(p1 − p̄) = F (3)

respectively, where c1, c2 are the damping coefficients; k1, k2

are the spring stiffness on the first and second masses; and
p̄ is the pre-charge position of the spring acting on m2.

The impacts between impactor and running are perfectly
inelastic, that is, when the impactor impacts the runner, the
two stick together. The stopper placed at p1 = p∗ also un-
dergoes inelastic impacts with m2. This and the mechanical
design ensure that the runner mass is only moving when in
contact with the impactor mass, i.e., m2 is captured at the
stopper by m1, and released only at the stopper, where it
stays until the next impact with m1. Thus, the position p2 of
the runner mass when alone (mode 1) and when joined with
the impactor mass (mode 2) is governed by ṗ2 = p̈2 = 0 and
by p1 = p2, ṗ1 = ṗ2, p̈1 = p̈2, respectively. By momentum
conservation, since ṗ2 is initially zero (at rest), the inelastic
impact between m1 and m2 results in the velocity update

ṗ+
1 =

m1

m1 +m2
ṗ1. (4)

The masses are subject to the velocity constraints

ṗ1 ≤ 12 m/s, ṗ2 ≤ 5 m/s (5)

where the constraint on ṗ2 imposes a constraint on ṗ1 when
the masses are joined, since ṗ1 = ṗ2 in such condition.

For each mode of operation, we design a feedback-
feedforward controller F = ufb + uff that stabilizes the
dynamics and provides a closed-loop system with unitary
DC-gain from reference to position. The feedback component
of the control signal is subject to the constraint

|ufb| ≤ 175N. (6)

Figure 2(a) shows closed-loop trajectories using two standard
RGs designed separately aiming at reaching a reference of
0.5m: a RG for when the first mass moves alone (mode 1)
according to (2) and another RG for when the two masses
move together (mode 2). As the plots show, after the impact
at ≈ 0.03s, the constraints are violated, because the governor
for mode 1 ignores the jump and the constraints of mode 2.
Figure 2(b) shows the result of using two different (standard)
RGs that achieve safe operation by first aiming to reach the
jump set with low speed, and only after the jump aiming

(a)

(b)

Fig. 2. Impact-runner motion mechanism simulations: (a) two RGs designed
separately cause constraints violations at impact; (b) two RGs designed
separately satisfy the constraints by having m1 cautiously approaching m2,
to the jump set, but tracking is slowed. Trajectories (solid blue), reference
r (red diamonds), virtual reference from RG (solid black) constraints (dash
red), m2 rest position (black dot), boundaries of controller sampling interval
when impacts occur (red circles).

at the actual reference. In this case, the approaching phase
to the jump set is rather slow, causing an impact at low
speed, before start tracking the actual reference, which results
in overall slow tracking. In both cases, the control loop
operates at 200Hz, i.e., with a period of 5ms, which rules
out computationally expensive control algorithms [10], as
the embedded processors for these applications have limited
computing power [11]. The lack of constraint satisfaction or
limited performance obtained using standard RGs motivate
the need for hybrid RG strategies.

III. PRELIMINARIES

A. Reference Governor

Consider a discrete-time system

x+ = f(x, vc), y = h(x, vc) (7)



where x ∈ Rn and y ∈ Rp are the state and constrained
output vectors, respectively, and vc ∈ R. For every con-
stant vc, (7) admits a unique globally asymptotically stable
equilibrium, possibly due to (7) being already a closed-loop
system. The reference governor (RG)

vc = κ(x, r) (8)

determines the virtual reference vc ∈ R as close as possible
to r such that the output constraint y ∈ Y is satisfied
for all resulting output trajectories of (7), where Y is the
output admissible set. Most RG designs augment (7) with a
constant virtual reference v+

c = vc and construct an invariant
set for the augmented system in the state-reference space,
denoted O ⊂ Rn × R, such that h(O) ⊂ Y . At any time
instant k ∈ {0, 1, . . .}, the RG chooses vc(k) such that
(x(k), vc(k)) ∈ O, by minimizing a distance between vc(k)
and r(k) – commonly, the Euclidean distance |vc(k)−r(k)|.
The forward invariance property of O ensures recursive
feasibility and constraint satisfaction. Different approaches
have been proposed for designing O, including reachability
tools and Lyapunov functions [2].

B. Hybrid Systems

Following [7], a hybrid plant HP is defined by (1), where
z ∈ RnP , u ∈ RmP , y ∈ RrP are the state, input, output,
respectively, and the hybrid system data are given by CP ,
the flow set of the plant; FP , the flow map of the plant;
DP , the jump set of the plant; GP , the jump map of the
plant; and h, the output map of the plant. Solutions to HP
are given by pairs (t, j) 7→ (φz(t, j), φu(t, j)), where φz and
φu are the state and input trajectories, respectively. Solutions
are parameterized by ordinary time t ∈ R≥0 := [0,∞) and
jump time j ∈ N := {0, 1, . . . , }, and given in terms of
hybrid arcs, which are functions defined on a hybrid time
domain. A solution is nontrivial if it flows for some nonzero
amount of time or jump at least once. It is maximal if it
cannot be further extended. See [12] for more details.

When the input u to HP is assigned by a (potentially
hybrid) controller, the resulting closed-loop system is

H :

 (x, vc) ∈ C ẋ = F (x, vc)
(x, vc) ∈ D x+ = G(x, vc)

χ = hcl(x, vc)
(9)

where x ∈ Rn is the state of the resulting closed-loop system,
χ ∈ Rs is its output, and vc is its input. We denote the
set of maximal solution pairs (φx, φvc) to H by SH. Given
an initial condition x0 for H, we also define the set of
maximal solutions pairs to H with initial state x0 and denote
it SH(x0), and the set of inputs for which a solution to H
exists as VH(x0).

IV. REFERENCE GOVERNOR FOR HYBRID SYSTEMS

Motivated by the example in Section II, we formulate a
reference governor strategy for hybrid systems.

A. Admissible Sets for Hybrid Reference Governor
Given a hybrid plant and a hybrid controller defining the

closed-loop system (9), the output admissible set is

Y ⊂ Rs (10)

which enables formulating constraints on the state x and
the command input vc. The maximal output admissible set
(MOAS) is the set of all initial states and hybrid command
inputs (not necessarily constant) such that the resulting
output response satisfies the constraints, at any future time.

Definition 4.1 (Maximal output admissible set): Given
the hybrid closed-loop system H (9) and the output
admissible set Y (10), the maximal output admissible set is

O∞ := {(x0, φvc) : ∀φx : (φx, φvc) ∈ SH(x0),

rgehcl(φx, φvc) ⊂ Y }
(11)

where rge denotes range, namely, rgehcl(φx, φvc) :=
{hcl(φx(t, j), φvc(t, j)) : (t, j) ∈ dom(φx, φvc) }.

The construction of O∞ in Definition 4.1 collects all
possible hybrid command input signals φvc that, for the
given state x0, lead to outputs to H that remain in Y . It
is a generalization of the conventional case, which typically
restrict the command inputs to constant signals of time [2].

Lemma 4.2: (invariance of MOAS) For each (x0, φvc) ∈
O∞, each φx such that (φx, φvc) ∈ SH(x0) satisfies
rge(φx, φvc) ⊂ O∞.

B. The Hybrid Reference Governor Problem
With the constructions given in Section IV-A, we formu-

late the following hybrid reference governor problem:

Problem (?). Given a hybrid closed-loop system H (9),
its current state x0, a MOAS Y (11), a nontrivial hybrid
reference signal (t, j) 7→ r(t, j), and the previously
applied command φṽc ∈ VH(x0), the hybrid command
input is

φvc = φṽc + γ(r − φṽc) (12)

where (t, j) 7→ γ(t, j) is a hybrid input that solves

γ = sup
γ̄

γ̄(t, j) ∀(t, j) ∈ dom γ̄ (13a)

s.t. (x0, φṽc + γ̄(r − φṽc)) ∈ O∞ (13b)
rge γ̄ ⊂ [0, 1]. (13c)

C. Feasibility
The following feasibility result is a direct consequence of

the properties of O∞ and the formulation of Problem (?).
Lemma 4.3: (feasibility) Suppose (t, j) 7→ r(t, j) is con-

stant. If x0 is such that there exists a nontrivial hybrid
input φvc

′ such that (x0, φvc
′) ∈ O∞ then Problem (?) has

a nontrivial solution, namely, there exist (t, j) 7→ φṽc(t, j)
and (t, j) 7→ γ(t, j) such that domφṽc = dom γ has more
than one point, the conditions in (13) are satisfied, and γ is
the result of the maximization formulated in (13a).



D. A (Hybrid) Time-Driven Implementation of Hybrid RG

Next, we propose a hybrid time-driven implementation of
the reference governor for H, where Problem (?) is solved at
the initial hybrid time, (t, j) = (0, 0), and then at (T1, J1),
(T2, J2), etc., which are pairs in R≥0 × N. One way to
determine these time instances is by separating them by a
finite amount of hybrid time, namely, a hybrid time window

T = {(t, j) ∈ R≥0 × N : max{t/δ, j} = τ} (14)

where τ ∈ N defines the number of jumps allowed in the
hybrid time window and δ > 0 adjusts the length of the
window relative to ordinary time t. With the finite-hybrid
time horizon structure, a hybrid signal can be defined to
have a hybrid time domain that fits within the hybrid time
window.

Using the definitions above, we obtain a hybrid reference
governor with time driven recomputation events, based on
the parameters δ and τ of the generic hybrid time window
in (14) to calculate the instants (Ti, Ji) at which the hybrid
command input is recomputed.

Algorithm 1 Hybrid Reference Governor
1: Set i = 0.
2: Set initial computation time (T0, J0) = (0, 0).
3: Set x0 = φx(0, 0).
4: Set φṽc

−1 such that (x0, φṽc
−1) ∈ O∞.

5: while true do
6: Solve Problem (?) to obtain a command input φṽc

i.
7: while max{(t− Ti)/δ, j − Ji} ≤ τ do
8: Apply φṽc

i to H to track r under constraints.
9: end while

10: i = i+ 1.
11: (Ti, Ji) = (t, j).
12: x0 = x(Ti, Ji).
13: end while

In Algorithm 1, the resulting hybrid command input φṽc is
a sequence of hybrid command inputs {φṽci}∞i=0. The entry
φṽc

i of this sequence corresponds to the value of the input
from hybrid time (Ti, Ji) to (Ti+1, Ji+1), and is obtained by
solving Problem (?) (Line 6) using the following data:

• The current state x(Ti, Ji);

• The shifted version of the hybrid reference signal r,
denoted r̃ i, which is defined by shifting r by (Ti, Ji),
namely, for each (t, j) ∈ dom r−{(Ti, Ji)} =: dom r̃ i,
r̃ i(t, j) := r(t− Ti, j − Ji);

• The previously applied command φṽc
i−1.

For i = 0, the optimization problem is solved at (T0, J0) =
(0, 0) using a predefined value of the hybrid command input,
which is denoted φṽc

−1 (see Line 4). The recomputation
times {(Ti, Ji)}∞i=0 are regulated online, through the defi-
nition of the hybrid time window T . Due to the condition
in Line 7, (Ti+1−Ti, Ji+1−Ji) is not necessarily constant.
However, when the jump set D is empty, the algorithm

simplifies to sampled-data reference governor for continuous-
time systems. Similar observations can be made when C is
empty, with τ = 1 recovering the standard (discrete-time)
implementation of reference governor. We emphasize that
the hybrid command inputs φṽc

i are defined over hybrid time
domains and therefore are not discretized during flows.

V. SOLVING THE HYBRID REFERENCE GOVERNOR
PROBLEM FOR SPECIAL CLASSES OF HYBRID SYSTEMS

A. Reference Governor for Hybrid Systems with Linear
Maps and Constant Reference

In this section, we consider the case when H in (9) has
linear flow, jump, and output map, i.e.,

H` :

 x ∈ C ẋ = Acx+Bcvc
x ∈ D x+ = Adx

χ = Mx+Hvc

(15)

where x ∈ Rn, χ ∈ Rs, and vc ∈ Rm, and the output admis-
sible set is Y ⊂ Rs. For solving Problem (?) numerically,
we first need to construct the set O∞.

To construct O∞, we augment the system with constant
reference dynamics and apply tools for the characterization
of forward invariance of sets for autonomous hybrid systems
[13]. The state variable µ models the constant dynamics of
the reference signal r, which take values from S ⊂ Rmr . The
resulting augmented hybrid system with state w = (x, µ) is

Haug

` :


x ∈ C, µ ∈ S

{
ẋ = Acx+Bcµ
µ̇ = 0

x ∈ D, µ ∈ S
{
x+ = Adx
µ+ = µ

χ = Mx+Hµ

(16)

The chosen dynamics for µ guarantee that, for a given
initial condition µ(0, 0) = r, the resulting trajectory for µ is
constant and equal to r, along both flows and jumps. The set
O∞ in (11) associated to (16) is denoted Oaug

∞ and is given
by{
w0 : ∀w = (x, µ) : w ∈ SHaug

`
(w0), rgeMx+Hµ ⊂ Y

}
which means that Oaug

∞ collects all initial conditions w0 =
(x0, µ0) for which the output of the trajectory of H` in
(15) belongs to Y . With the construction of the augmented
system, we characterize Oaug

∞ as

K :=
{

(x, µ) ∈ C × S : Mx+Hµ ∈ Y, (x, µ) ∈ L̂
}

(17)

where the set L̂, which is to be determined, restricts the
values of x and µ. Specifically, the set L̂ should be chosen
so that the set K is forward invariant for Haug

` .
There are several tools in the literature of hybrid systems

that certify forward invariance of a set and that can be
applied to characterize Oaug

∞. One approach is to use tangent
cone conditions certifying forward invariance and proceed
as in [14]. An alternative approach is the (multiple) barrier
functions approach proposed in [13] that characterizes K
using a sublevel set of a barrier function. We illustrate the
latter approach in an example.



Example 5.1: Consider the model of second-order system
with continuous dynamics ż1 = z2, ż2 = u when z1 ≥ 0 and
discrete dynamics z+

1 = z1, z
+
2 = −λz2 when z1 = 0 and

z2 ≤ 0, where z1 represents position, z2 represents velocity,
u is the control input, y = h(z) := z is the output, and
λ is a parameter modeling the impact restitution coefficient.
This model resembles the well-known bouncing ball with
actuation during the continuous dynamics [7]. Denoting by
r = r∗, r∗ ≥ 0, the desired constant reference to track,
a suitable tracking controller is given by the static control
law κ(z) := −k1z1 − k2z2 + k1r

∗, with k1 and k2 such
that the matrix Ac =

[
1 0
−k1 −k2

]
is Hurwitz, cf. (15), where,

in particular, x = z. When λ ∈ (0, 1], κ guarantees global
asymptotic stability of r for the resulting closed loop.

Now, consider the maximal output admissible set Y :={
z ∈ R2 : |z1| ≤ zmax

}
where zmax ≥ 0. Noting that

C =
{
z ∈ R2 : z1 ≥ 0

}
and S = {r ∈ R : r ≥ 0 }, the

associated set K in (17) is given by

{(z, µ) : z1 ∈ [0, zmax], µ ≥ 0 } ∩ L̂.

Using the certificate

B(z, µ) :=
[
z1 − µ z2

]
P

[
z1 − µ
z2

]
∀(z, µ) ∈ R3

with P = P> > 0 such that A>c P + PAc < 0 it follows
that for1 µ 7→ c(µ) := B(zmax,−p12p22

(zmax − µ)) and Ŝ :=
{µ ∈ R : µ ∈ [0, zmax] } the set{

(z, µ) ∈ C × Ŝ : B(z, µ) ≤ c(µ)
}

(18)

is forward invariant and a subset of Y × S. To show this
property, note that (16) is given by

z1 ≥ 0, µ ≥ 0


ż =

[
0 1
−k1 −k2

]
z

+

[
0
k1

]
µ

µ̇ = 0

z1 = 0, z2 ≤ 0, µ ≥ 0

 z+ =

[
1 0
0 −λ

]
z

µ+ = µ
χ = z

(19)

Since µ̇ = 0, the variation of B − c along the flows of (19)
is given by〈
∇{B(z, µ)− c(µ)} ,

[ 0 1
−k1 −k2

]
z +

[
0
k1

]
µ

0

〉 ≤ 0

(20)
for each z1 ≥ 0 and each µ ∈ R. Moreover, the change of
B − c at jumps of (19) satisfies

B(z+, µ+)− c(µ+)− (B(z, µ)− c(µ)) ≤ 0 (21)

when λ ∈ (0, 1]. Then, by [13, Theorem 1], for each
c ≥ 0, {(z, µ) ∈ C × S : B(z, µ)− c(µ) ≤ c } is forward

1The function c returns the largest sublevel set of B that is contained in
Y .

invariant for the augmented system. In particular, this set is
forward invariant for the augmented system when c = 0. The
last step is to show that c and Ŝ are such that2{

(z, µ) ∈ C × Ŝ : B(z, µ) ≤ c(µ)
}
⊂ Y × S. (22)

This property holds since, from the definition of c, c(µ)
defines the largest level for the level set of the function B
that is contained in

{
z ∈ R2 : z1 ≤ zmax

}
.

We perform simulations for λ = 0.9, zmax = 10, and
r∗ = 9.999, which is close to the boundary of the constraint
defined by Y ; hence, it puts our hybrid RG strategy to the
test. With the controller parameters designed as k1 = k2 = 1,
Figure 3 shows the trajectories for the states of the plant
z1 and z2. The stars represent times at which the hybrid
command input vc are updated, as well as jumps of the
hybrid plant. Following the implementation formulated in
Section IV-D, vc is updated every time that the timer reaches
zero. To test robustness of the approach, these events are
separated by δ seconds of flow, which changes after each
event within the range of values [0.8s, 1.5s]. The bottom
plot in the figure shows how vc monotonically approaches
r∗ after each event.
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Fig. 3. Trajectories for (z1, z2) in Example 5.1 as a function of ordinary
time (top two plots), timer triggering the events at which the hybrid
command input is computed (third plot), and hybrid command input vc.

B. Reference Governor for Hybrid Systems with Modes
Next, we consider an example for when H has linear flow

and jump maps, linear output map, and an explicit logic
variable q denoting the mode of the system. Specifically,
we consider the following special case of (9):

Hm :


z ∈ Cq

{
ż = Aqz +Bqvc
q̇ = 0

z ∈ Dq

{
z+ = Eqz +Nqvc
q+ = Jq(z)q +Kq(z)

χ = Mqz +Hqvc

(23)

with z ∈ Rn being the continuous state, q ∈ Q the discrete
(logic) state, vc ∈ R is the command, χ ∈ Rs the con-
strained output, {(Aq, Bq, Eq, Nq,Mq)}q∈Q constant matri-
ces, {(Jq,Kq)}q∈Q functions of the continuous state, Cq :=

2The set L̂ in (17) is omitted, but it is given by L̂ :={
(z, µ) ∈ R3 : B(z, µ) ≤ c(µ)

}
.



{z : MC,qz ≤ LC,q }, and Dq := {z : MC,qz ≤ LD,q },
for given constants {(LCq , LDq )}q∈Q. We consider a given
sequence QN = (q1, q2, . . . , qN ) to achieve a constant refer-
ence r, where the jump times are not fixed, and implement
the hybrid RG in discrete time that enforces the inequalities
pointwise-in-time with period Ts. We construct the sequence
of MOASs Oqi∞ for each for i = N . . . 1, where for each
Oqi∞ we further constrain the jump set to the constraint
admissible jump set (CAJS), the set of states that “lands”
into Oqi+1

∞ . The additional constraint is enforced by the RG.
This guarantees that during flow the constraints of qi are
satisfied, and after the jump, the constraint of qi+1 are also
satisfied, and that all the problems are convex.

Example 5.2: Figure 4 shows the results of the hybrid RG
for the impactor-runner motion mechanism in Section II. As
guaranteed by the RG design, the constraints are satisfied
even after the mode changes, and the virtual reference
approaches the actual reference. The time for vc to nearly
reach the reference r is a little longer (about 15%) than
the one obtained by the two separated RGs shown in Fig-
ure 2(a), because these ignore, and in fact violate, constraint
enforcement at the jump. On the other hand, the hybrid RG
command nearly reaches the reference sooner (about 30%)
than the conservative design of Figure 2(b), which is overly
cautious to avoid constraint violation after the jump, which
cannot be handle by design using the traditional approach.
As shown in Figure 4, the invariant set for the mode of the
impactor mass moving alone intersects the jump set only in
the CAJS. In fact the trajectory reaches the jump set in the
CAJS, which ensures landing in the invariant set for the mode
of impact and runner moving together, and this guarantees
constraints satisfaction after the jump.

VI. CONCLUSION

In this paper, a hybrid reference governor strategy for a
broad class of hybrid dynamical systems is presented. The
optimization to solve involving hybrid signal as well as basic
properties are introduced. Future work includes extending,
beyond those in Section V, the class of systems for which
the hybrid RG strategy can be solved.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[2] E. Garone, S. Di Cairano, and I. Kolmanovsky, “Reference and
command governors for systems with constraints: A survey on theory
and applications,” Automatica, vol. 75, pp. 306–328, 2017.

[3] F. Borrelli, P. Falcone, J. Pekar, and G. Stewart, “Reference governor
for constrained piecewise affine systems,” J. Process Control, vol. 19,
no. 8, pp. 1229–1237, 2009.

[4] C. Danielson and S. Di Cairano, “A reference governor for wheel-
slip prevention in railway vehicles with pneumatic brakes,” in Proc of
American Control Conference, 2020, pp. 1011–1016.
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