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Abstract
We introduce an automated machine learning (AutoML) framework to construct a deep neural
network model relevant for inverse design of nanophotonic devices without relying on manual
trial-and-error hyperparameter tuning.
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Abstract: We introduce an automated machine learning (AutoML) framework to con-
struct a deep neural network model relevant for inverse design of nanophotonic devices
without relying on manual trial-and-error hyperparameter tuning. © 2022 The Author(s)

1. Introduction: Beyond the most successful framework called the adjoint method [1], a new framework based on
deep neural networks (DNN) has drawn increased attention for the design of photonic devices more recently [2—4].
While a number of different DNN architectures has been proposed in literature, generative models have shown
state-of-the-art performance [3,4]. However, most DNN models require careful tuning of hyperparameters such as
the number of neurons, the number of hidden layers, the type of activation functions, etc. Finding suitable hyper-
parameters generally involves a considerable amount of manual trial-and-error. The automated machine learning
(AutoML) [5] framework was proposed to tackle this issue by an efficient exploration of DNN architectures and
hyperparameter tuning. In this paper, we demonstrate that AutoML can efficiently construct a generative DNN
model to design a compact broadband photonic beam splitter. We specifically consider a hybrid use of the ad-
joint method and an adversarial conditional variational autoencoder with cycle consistency (ACVAE-CC) [4] to
seamlessly generate good nanophotonic topologies for a given target power splitting ratio.

2. Device Structure: We consider a nanostructured power splitter, based on a silicon-on-insulator (SOI) structure,
having a target splitting ratio towards two output ports, with a low insertion loss and a flat spectrum over a wide
range of wavelengths. It consists of an optimization region of 3um x 3.6um, having 151 x 181 nano-pixels of
20 nm square size as shown in Fig. 1(a). The splitter has one input port and two output ports, each of which
is a straight waveguide having a width of 0.5um. We adopt the adjoint method to generate training data using
Lumerical two-dimensional (2D) finite-difference time-domain (FDTD). It iteratively updates the pixels given an
initial condition by calculating the gradients. Then, the pixel values are binarized under a fabrication constraint of
minimal deposition size. Although the adjoint method is effective at finding better device parameters, it requires a
considerable amount of computing resources due to FDTD runs for each target spectrum. In order to complement
the adjoint method, we use an ACVAE model to seamlessly generate good device topologies given an on-demand
spectrum response. We carried out a total of 15 optimization runs at distinct target splitting ratios from 0.9 : 0.1 to
0.5: 0.5, each around 200 gradient steps, and accumulated 1,729 data samples for DNN training.
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Fig. 1: Nanophotonic power splitter design with AutoML hyperparameter tuning for generative DNN model.

3. Network Architecture: Fig. 1(b) shows an ACVAE model for the device design [4]. For device generation,
a trained decoder (bottom) is used with a desired condition along with latent variables sampled from the normal
distribution, by which a series of device topology candidates are generated. For the training of the whole AC-
VAE model with CC, we use an adversarial loss formulation, that incorporates the mean-square error (MSE) loss
between the decoded topology and actual topology, a Kullback—Leibler divergence (to enforce that the latent vari-
ables follow the normal distribution), the MSE between the two latent variables (to enforce reconstruction of the
latent variables by the reversed decoder-encoder pair), and adversarial blocks (to make latent variables orthogonal
to the spectrum as much as possible). The ACVAE is constructed with many hyperparameters for convolution,
activation, pooling, linear layer, and dropout blocks. Fig. 1(c) depicts AutoML to optimize the DNN hyperparam-
eters. We use Bayesian optimization based on tree-Parzen estimator and hyperband pruning [5]. It automatically
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Fig. 2: AutoML analysis of ACVAE-CC hyperparameter tuning.

explores the latent size, activation functions, dropout rate, convolutional channel sizes, hidden node sizes, regular-
ization factors, and learning rate, without the need of human effort in hyperparameter tuning.

4. Results: We partition the dataset into a 9 : 1 training/validation split. AutoML explores 1,000 trials of hyper-
parameter tuning, where each trains with adaptive momentum gradient over a maximum of 50 epochs. Fig. 2(a)
shows learning trajectories, depicting that some trials are efficiently pruned by the hyperband strategy due to hope-
less or diverging trends. Fig. 2(b) presents the functional analysis of variance (FANOVA) score [5] to assess the
importance of hyperparameters, finding that learning rate, activation functions, and hidden node size are the most
influential hyperparameters. Convolutional channel sizes are moderately important, with the loss contour plotted
in Fig. 2(c) showing a non-trivial landscape for the combination of channel sizes in the first and second convo-
lution layers, indicating difficulty for manual tuning. Figs. 2(d)—(g) show the relation between training loss and
hyperparameters. Some activation functions, such as sigmoid, perform relatively poor compared to the sigmoid
linear unit (SiLU), and lower dropout rate, smaller latent size, and higher learning rate are generally beneficial.

Fig. 2(h) validates the benefit of AutoML. Here, the optimized hyperparameters via the AutoML trials are used
to construct the most relevant DNN model. We use the optimized model to generate 20 new device topologies at
an unseen target of splitting ratio 0.725 : 0.275. The spectral response of those generated devices are evaluated
via FDTD, and compared with the desired flat spectrum. This figure shows the MSE between achieved spectrum
and desired spectrum over the range of wavelengths 1,450 nm and 1,650 nm. We also plot the case with manually
optimized hyperparameters used in [4], where more than 10 hours of hand-crafted tuning was performed. It was
verified that AutoML tuning outperforms manual tuning, achieving MSE lower than 1073 at early epochs. The
achieved MSE corresponds to the insertion loss of 0.106 dB for the designed nanophotonic beam splitter.

For our case, the adjoint method takes about 2.5 hours for a single run. The ACVAE-CC network training takes
up to 40 minutes with a graphic processor whereas one thousand AutoML trials takes about 10 hours. When we
need to generate a series of devices covering a wide range of on-demand spectra, it takes 20 seconds to generate
250 devices, and 21 minutes to validate the spectrum via FDTD. Therefore, once a DNN model is established, it
can generate good devices much faster than individual adjoint method runs.

5. Summary: We showed that hyperparameter tuning of a generative DNN model can be efficiently automated
and accelerated to achieve a good performance of 0.1 dB insertion loss with fewer training epochs.
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