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Abstract

Beyond data communications, commercial-off-theshelf Wi-Fi devices can be used to monitor
human activities, track device locomotion, and sense the ambient environment. In particular,
spatial beam attributes that are inherently available in the 60-GHz IEEE 802.11ad/ay stan-
dards have shown to be effective in terms of overhead and channel measurement granularity
for these indoor sensing tasks. In this paper, we investigate transfer learning to mitigate
domain shift in human monitoring tasks when Wi-Fi settings and environments change over
time. As a proof-of-concept study, we consider quantum neural networks (QNN) as well as
classical deep neural networks (DNN) for the future quantum-ready society. The effectiveness
of both DNN and QNN is validated by an in-house experiment for human pose recognition,
achieving greater than 90% accuracy with a limited data size.
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Abstract—Beyond data communications, commercial-off-the-
shelf Wi-Fi devices can be used to monitor human activities,
track device locomotion, and sense the ambient environment. In
particular, spatial beam attributes that are inherently available
in the 60-GHz IEEE 802.11ad/ay standards have shown to
be effective in terms of overhead and channel measurement
granularity for these indoor sensing tasks. In this paper, we
investigate transfer learning to mitigate domain shift in human
monitoring tasks when Wi-Fi settings and environments change
over time. As a proof-of-concept study, we consider quantum
neural networks (QNN) as well as classical deep neural networks
(DNN) for the future quantum-ready society. The effectiveness of
both DNN and QNN is validated by an in-house experiment for
human pose recognition, achieving greater than 90% accuracy
with a limited data size.

Index Terms—Integrated sensing and communication (ISAC),
Wi-Fi sensing, human monitoring, quantum machine learning.

I. INTRODUCTION

Wi-Fi-based human activity monitoring has received much
attention over the past decade due to the decreasing cost
and less privacy concerns compared with camera-based ap-
proaches. Modern deep neural networks (DNNs) have made
commercial Wi-Fi-band signals useful for human sensing
tasks such as user identification, gesture recognition, device-
free localization, fall detection, emotion sensing, and skeleton
tracking [1]-[24]. Nonetheless, Wi-Fi sensing is susceptible
to time-varying fading, shadowing, path loss, hardware im-
pairments (such as carrier frequency offset, symbol timing
offset, and sampling frequency offset), interference, and noise.
Accordingly, DNNs designed at a training session may not be
reliable enough at a time of testing.

In this paper, we investigate transfer learning (TL) or
domain adaptation (DA) [25] to be robust against such time-
varying domain shifts for Wi-Fi sensing. We experimentally
validate the benefit of TL for DNNs to accurately recognize
human’s pose using commercial-off-the-shelf (COTS) Wi-Fi
devices. Besides standard DNNs, we introduce a new frame-
work of quantum neural networks (QNNs) which leverage a
quantum processing unit (QPU) as an alternative solution for
an envisioned future era of quantum supremacy [26, 27]. While
quantum machine learning (QML) is considered as a potential
driver in the sixth generation (6G) applications [28], there are
few research yet to tackle practical problems. To the best of
our knowledge, this is the very first paper studying QML for
Wi-Fi sensing. We specifically exploit a similar technique of
quantum transfer learning (QTL) framework [29].

Quantum computers have the potential to realize compu-
tationally efficient signal processing compared to traditional

digital computers by exploiting quantum mechanism, e.g.,
superposition and entanglement, in terms of not only execution
time but also energy consumption. In the past few years, sev-
eral companies including IBM, Google, and Honeywell have
manufactured commercial quantum computers. For instance,
IBM has released 127-qubit QPUs available to the public
via a cloud service. Some groups reported to have achieved
quantum supremacy for specific problems [26,27]. It may be
no longer far future when noisy intermediate-scale quantum
(NISQ) computers [30] will be widely used for various real
applications. Although quantum-ready algorithms for wireless
communication systems have been investigated [31]-[34],
most existing works assume fault-tolerant QPUs, which may
be beyond the capability of near-term NISQ devices. Recently,
hybrid quantum-classical algorithms based on the variational
principle were proposed to achieve high robustness against
quantum errors [35]-[38]. Hence, such modern variational
quantum algorithms have not been studied for communications
problem until very recently [39, 40].

We use variational quantum circuit (VQC) [41] to build
QNN [42] as a state-of-the-art QML approach [43]-[48]. The
contributions of this paper are three-fold as described below:

o This paper is the very first one to introduce QML for
Wi-Fi sensing.

o We verify its feasibility for the human pose recognition
application with COTS Wi-Fi devices.

o The TL framework is validated to improve the robustness
against domain shifts across Wi-Fi scanning sessions.

II. WI-FI SENSING FOR HUMAN MONITORING

For Wi-Fi sensing, we collect beam scanning measurements
associated with a class of human gestures as a fingerprinting
data to learn DNN and QNN models.

A. Human Pose Recognition Experiments

Fig. 1 (a) shows our experimental configuration using one
Wi-Fi station in front of a subject and another station behind
the subject. Both stations are placed on a stand of a height
of 1.2 meters with a distance of approximately 2 meters. As
shown in Fig. 1 (b), the subject is asked to perform a total of
8 poses including distinct gestures like ‘sit’, ‘stand with left
arm lifted’, etc. For each pose, we recorded 7 independent
data sessions with different time durations and with sufficient
time separation between consecutive two sessions. We use the
measurements in the first four data sessions as the training
data (referred to as ‘source domain’) and those in the last
three sessions as the test data (‘target domain’).
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Fig. 1. Wi-Fi sensing tasks and experiment settings.

TABLE I
NUMBER OF BEAM SNR SAMPLES FOR EACH POSE

Pose  Source Domain  Target Domain
0 434 151
1 499 149
2 325 173
3 347 129
4 238 88
5 314 96
6 272 119
7 432 135
Total 42,915 1,040

The total number of measurement samples is 42,915 and
1,040 in the source domain and target domain datasets, re-
spectively. The pose-wise distribution is listed in Table L
We further divide the dataset in each domain into two sub-
sets: 1) labeled for training an ML model and ii) unlabeled
for evaluating prediction accuracy of the ML model. For
simplicity, no data augmentation was used.

B. COTS Wi-Fi Testbed: mmWave Beam SNR

As super-grained mmWave channel state information is not
accessible from COTS devices without additional overhead,
we use mid-grained Wi-Fi measurements in the beam angle
domain—beam signal-to-noise ratios (SNRs)—generated from
the beam training (a.k.a. beam alignment) phase. For each
probing beampattern (a.k.a. beam sectors), beam SNR is col-
lected by 802.11ad devices as a measure of beam quality. Such
beam training is periodically carried out and the beam sectors
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Fig. 2. Mid-grained beam SNR measurements at mmWave frequency bands,
i.e., 60 GHz in 802.11ad standards.

are adapted to environmental changes. Fig. 2 shows beam
SNRs at pre-specified beampatterns used at the transmitting
side. Access to raw mmWave beam SNR measurements from
COTS devices is obtained via an open-source software [49].

We use 802.11ad-compliant TP-Link Talon AD7200 routers
to collect beam SNRs at 60 GHz. This router supports a
single stream communication using analog beamforming over
a 32-element planar array. From one beam training, one Wi-Fi
station can collect 36 beam SNRs across discrete transmitting
beampatterns. The measured beam SNRs are sent to a work-
station via Ethernet cables to train DNN or QNN (e.g., through
the IBM quantum cloud service). The experimental system is
deployed in a standard indoor room setting. Further details of
the experiments can be found in our previous work [24]

The key challenge of Wi-Fi sensing is that Wi-Fi measure-
ments or the ambient environment may change over measure-
ment sessions and these changes will degrade the efficiency
of machine learning models due to the domain shifts. We
investigate a TL framework to tackle the domain shift issues,
focusing on QTL [29] as described in the next section.

III. QUANTUM TRANSFER LEARNING (QTL)
A. Quantum Machine Learning (QML)

Variational quantum algorithms [35]-[38] are key enabling
techniques for NISQ QPUs [30]. We previously demonstrated
that they are useful for some communications problems
in [39,40] by using real QPU computing at the IBM cloud
service. Variational quantum computing has been further inte-
grated to machine learning, e.g., QNN [42], quanvolutional
network [43], quantum autoencoder (QAE) [44], quantum
graph neural network (QGNN) [48], and quantum generative
adversarial network (QGAN) [46,47].

Fig. 3 shows a yearly trend of QML in the number of
articles hit in Google scholar with keywords of ‘quantum
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Fig. 3. Number of articles hit in Google scholar: articles on “quantum machine
learning” has exponentially increased at an annual growth rate of 2 folds.

machine learning’ vs ‘deep neural network’. It is found that
the number of QML articles has been exponentially increasing
over the last decade with a growth rate of 2 folds every year.
Interestingly, this is just behind the growth of DNN articles by
six years. It may potentially suggest that QML will be widely
used in numerous research communities in a couple of years,
considering the fact that applications of DNN are presently
seen nearly everywhere.

It was proved that QNN holds the universal approximation
property [50], which shows the close relation between the
number of qubits in QNN and the number of DNN layers, and
also the number of quantum layers of QNN and the number
of hidden nodes in DNNs. Accordingly, increasing the number
of qubits may enjoy state-of-the-art DNN performance. More
importantly, quantum circuits can be analytically differentiable
with a parameter-shift rule [51] that enables stochastic gradient
optimization of VQC. Nevertheless, QNN often suffers from
a vanishing gradient issue called the barren plateau [52]. To
mitigate the issue, some techniques have been studied, e.g, an
identity initialization strategy [53] and a simplified two-design
(STD) ansatz [54] to cover nearly arbitrary unitary spectrum
with shallow staggered entanglers.

B. Quantum Supremacy

Although quantum supremacy over classical computers has
been reported for some specific problems [26, 27], the feasibil-
ity of realizing quantum advantages for practical problems has
still been argued intensively. Nevertheless, it is highly expected
that quantum computers could provide breakthroughs in a wide
range of research fields. This is particularly due to the known
limits of power efficiency for classical computers, especially
for deep learning, where training has become extremely energy
intensive [55]. For sustainable growth, a new computing
modality such as quantum computers is demanded for a future
eco-friendly society. Although no one can certainly foresee
that QPU will supersede classical computers in future, it is of
importance to explore many possibilities.

C. Quantum Neural Network (QNN) Transfer Learning

Fig. 4 depicts QNN using STD ansatz [54], which consists
of Pauli-Y rotations and staggered controlled-Z entanglers in
sequence. The STD ansatz is a simplified variant of a 2-
design whose statistical properties are identical to ensemble
random unitaries with respect to the Haar measure up to the
first 2 moments. For an n-qubit VQC, there are 2(n — 1)L
variational parameters {6} over an L-layer STD ansatz. To
embed 36-dimensional beam SNRs, an input linear layer
is used to initialize the quantum state for rotation angles
of Pauli-Y gates. The 8-class pose estimation is provided
by quantum measurements in the Hamiltonian observable of
Pauli-Z operations, followed by an output layer to align the
dimension. The variational parameters as well as input/output
layers are optimized by the adaptive momentum stochastic
gradient descent to minimize the softmax cross entropy loss.
The QNN model is first trained by labeled data in source
domain, and then fine-tuned with few-shot labeled data from
the target domain for transfer learning while input/output
layers are frozen. While QNN is not necessarily better than
DNN in prediction accuracy, the potential advantage of QNN
lies in its computational efficiency to manipulate 2" quantum
states at once with a small number of quantum gates.

IV. PERFORMANCE EVALUATION
A. Comparison of ML Methods

We first evaluate the baseline performance in the human
pose recognition task without any TL techniques: specifically,
ML models are trained using only the labeled data in the
source domain and tested in the target domain. Besides DNN
and QNN, we compare different ML methods including sup-
port vector machine (SVM), decision tree (DT), k-nearest
neighbor (kKNN), Gaussian naive Bayes (GNB), random forest
(RF), bagging ensemble, and extra tree ensemble methods (10
base models). For DNN, we consider residual 4 hidden layers
with 100 hidden nodes using Mish activation, where there are
approximately 35k trainable parameters. For QNN, we use 10
qubits with 1-layer STD ansatz [54], dressed by input and
output linear layers, where there are 18 quantum variational
parameters and 610 classical trainable parameters in total. We
use AdamW optimizer for a mini batch size of 100 over 100
epochs with a learning rate of 0.02 and weight decay of 10~%.
For simplicity, we consider no quantum noise for simulations.

Fig. 5 shows the test accuracy as a function of the number
of labeled training samples in the source domain. One can
notice that the performance can exceed an accuracy of 90%
for DNN, QNN, and SVM when a sufficient amount of labeled
data is available. It is confirmed that a small-scale QNN can
achieve performance comparable to a large-scale DNN. Most
conventional ML techniques are found ineffective for our pose
recognition task.

B. Pose Recognition Analysis

We further discuss pose-wise detection performance in
terms of confusion matrix and receiver operating characteristic
(ROC) curve in Fig. 6. Here, we present performance of
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Fig. 5. Test accuracy (target domain) vs. training samples (source domain).

SVM, DNN, and QNN when 104 training samples (0.03%
data labeled in the source domain) are available to learn those
models. From the confusion matrices, the prediction of pose
class 4 was found to be the most challenging. It is particularly
significant for DNN models in terms of ROC area under
curve (AUC) score as shown in Fig. 6(f) for the pose class
4. Although the mean accuracy of DNN was slightly better
than that of QNN, QNN outperformed DNN in the sense of
macro/micro-averaging ROC-AUC performance.

C. Domain Shift Impact

Although DNN/QNN/SVM showed a reasonable prediction
with an accuracy greater than 90% in Fig. 5 for a sufficient
size of training data in the source domain, it does not exceed
95%. This is mainly because of the domain shift issues across
measurement sessions as shown in Fig. 7, where we present the
test accuracy of unlabeled source domain data when training
with labeled source domain data. All ML models could achieve

Fig. 8 shows TL performance for DNN and QNN using
few-shot transfer samples from the target domain. Here, the
pre-transfer model uses 129 training samples from the source
domain. We present mean accuracy with 1-standard deviation
zones over H-times fine tuning. It is confirmed that TL-QNN is
comparable to TL-DNN, achieving greater than 95% accuracy
over 300 samples. The corresponding confusion matrix and
ROC curves for TL-QNN at 104 transfer samples are shown
in Fig. 6(d) and (h), respectively. We can observe that the
TL can predict the pose class 4 accurately with a significant
improvement in ROC-AUC.

V. CONCLUSION

This paper considered transfer learning of DNN and QNN to
deal with domain shifts due to changes of Wi-Fi measurements
and environments over data sessions for Wi-Fi sensing tasks.
Specifically, we demonstrated the benefit of TL through real-
world experiments with an in-house Wi-Fi testbed. We showed
a small-scale QNN can achieve greater than 90% accuracy,
comparable to a large-scale DNN, in human pose recognition.
Demonstration on real quantum processors will be provided
in a future work. This is a very initial proof-of-concept study
for quantum-ready Wi-Fi sensing and there remain many
fascinating open issues to solve in future.
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