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Abstract
While mixed-integer convex programs (MICPs) arise frequently in mixed-integer optimal con-
trol problems (MIOCPs), current state-of-the-art MICP solvers are often too slow for real-time
applications, limiting the practicality of MICP-based controller design. Although supervised
learning has been proposed to hasten the solution of MICPs via convex approximations, they
are not designed to scale well to problems with >100 decision variables. In this paper, we
present PRISM: Presolve and Recurrent network-based mixed-Integer Solution Method, to
leverage deep recurrent neural network (RNN) architectures such as long short-term memory
(LSTMs) networks, in conjunction with numerical optimization tools to enable scalable ac-
celeration of MICPs arising in MIOCPs. Our key insight is to learn the underlying temporal
structure of MIOCPs and to combine this with presolve routines employed in MICP solvers.
We demonstrate how PRISM can lead to significant performance improvements, compared
to branch-and-bound (B&B) methods and to existing supervised learning techniques, for sta-
bilizing a cart-pole with contact dynamics, and a motion planning problem under obstacle
avoidance constraints.
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Abstract
While mixed-integer convex programs (MICPs) arise frequently in mixed-integer optimal control
problems (MIOCPs), current state-of-the-art MICP solvers are often too slow for real-time applica-
tions, limiting the practicality of MICP-based controller design. Although supervised learning has
been proposed to hasten the solution of MICPs via convex approximations, they are not designed
to scale well to problems with >100 decision variables. In this paper, we present PRISM: Presolve
and Recurrent network-based mixed-Integer Solution Method, to leverage deep recurrent neural
network (RNN) architectures such as long short-term memory (LSTMs) networks, in conjunction
with numerical optimization tools to enable scalable acceleration of MICPs arising in MIOCPs.
Our key insight is to learn the underlying temporal structure of MIOCPs and to combine this with
presolve routines employed in MICP solvers. We demonstrate how PRISM can lead to significant
performance improvements, compared to branch-and-bound (B&B) methods and to existing super-
vised learning techniques, for stabilizing a cart-pole with contact dynamics, and a motion planning
problem under obstacle avoidance constraints.
Keywords: Mixed-integer convex programming, optimal control, deep learning, learning for opti-
mization, recurrent architectures, LSTM, contact dynamics, motion planning, MPC.

1. Introduction

The recent development of embedded optimization solvers has led to the proliferation of optimization-
based planning and control in aerospace, robotic, and automotive applications (Di Cairano and
Kolmanovsky, 2018). MICPs allow one to formulate and solve a broad range of optimal control
problems that arise, e.g., in switched dynamical systems (Chen et al., 2021), discrete/quantized ac-
tuation (Walsh et al., 2016), motion planning with obstacle avoidance (Landry et al., 2016), logic
rules and temporal logic specifications (Sahin et al., 2020), among others. State of the art MICP
solvers are based on B&B methods (Mosek APS; Gurobi Optimization, LLC, 2020), using advanced
presolve techniques (Achterberg et al., 2019) to accelerate the B&B solution process. B&B methods
can provide exact solutions for MIOCPs; however, in the worst-case scenario, these algorithms can
incur an exponential number of convex relaxations (Floudas, 1995). Therefore, B&B methods for
MIOCPs are not yet readily deployed in applications with relatively fast sampling rates and limited
computational resources. Although there exist heuristic methods to solving MICPs such as round-
ing fractional integer solutions or terminating B&B early, these approaches can lead to low-quality
solutions and thus degrade closed-loop performance.
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Figure 1: Schematic of PRISM approach for solving MIOCPs with RNN and presolve. The prob-
lem parameters θ are used to make a prediction for the candidate binary optimizer δ̂,
which is then updated to δ̂PS using presolve and the continuous optimizer ẑ? recovered.

Related work: To maintain high-quality solutions without exorbitant computational expendi-
ture, recent work has adopted machine learning for efficient optimization (Bengio et al., 2021). For
continuous optimization, a recent approach has been to learn warm starts for the continuous vari-
ables in trajectory optimization problems (Zhang et al., 2019; Wang et al., 2020; Chen et al., 2022).
For MIOCPs, using supervised learning to replicate solutions of B&B methods procured offline
and inferring these solutions online at high speed has resulted in dramatic improvement of solution
times (Masti and Bemporad, 2019; Bertsimas and Stellato, 2019; Srinivasan et al., 2021). Alterna-
tively, supervised disagreement learning has been proposed to perform real-time solver selection for
MIOCPs in (Chakrabarty et al., 2021). In addition, reinforcement learning has been used to learn
tree-search policies for B&B (Mern et al., 2021; Khalil et al., 2022), but these methods may still
require enumerating the full B&B tree in the worst case.

For parametric MIOCPs, supervised learning can approximate the mapping from problem pa-
rameters to the binary variable solution of an MICP directly. Multiple techniques have been explored
to formulate this supervised learning problem, including the use of kernels and non-parametric clas-
sification methods (Chakrabarty et al., 2016; Zhu and Martius, 2020), deep neural networks for
regression (Masti and Bemporad, 2019; Srinivasan et al., 2021), and classification (Bertsimas and
Stellato, 2019; Cauligi et al., 2020, 2022). Löhr et al. (2020) proposed a supervised learner that
only predicts the binary variables associated with the first time step; however, this is likely to incur
significant suboptimality. Alternatively, the policy induced by an exact solver for the MIOCP could
be imitated directly using deep neural networks (Srinivasan et al., 2021), or a value function could
be learned (Landry et al., 2021) by leveraging data obtained via offline simulations. A drawback
of these approaches is that they are effective for small-size problems, but require extensive data
collection or sampling for high-dimensional MIOCPs. Further, these techniques do not consider
how the convex relaxation is solved downstream, i.e., agnostic to the use of numerical optimization
methods such as heuristics or presolve (Hespanhol et al., 2019; Liang et al., 2021).

Our Contributions: We propose presolve and recurrent network-based mixed-integer solution
method (PRISM), an approach that integrates presolve techniques and a supervised learning frame-
work that learns the underlying temporal structure inherent to MIOCPs to efficiently solve long-
horizon MIOCPs with hundreds of binary decision variables. In the offline data collection phase
of PRISM, we solve a set of MICPs for representative problem parameter values θ and collect the
set of binary optimizers δ?. Subsequently, we train an RNN, such as LSTM, to learn a mapping from
problem parameters θ to binary optimizers δ?. As shown in Figure 1, given new problem parameters
θ, the solution phase of PRISM leverages the trained RNN to predict a binary solution candidate δ̂.
This δ̂ is then followed by a presolve routine to provide an updated candidate δ̂PS. This candidate
is used in the solution of a subsequent convex program to quickly generate a feasible solution for
the original MICP. We demonstrate the efficacy of PRISM through numerical experiments on two
case studies: a cart-pole with soft contact system and motion planning in the presence of obstacles.

2



PRISM: RNNS AND PRESOLVE METHODS FOR FAST MIXED-INTEGER OPTIMAL CONTROL

Our results demonstrate that PRISM computes solutions an order of magnitude faster than existing
commercial solvers while introducing only up to 5% suboptimality.

2. Preliminaries

This section provides a brief discussion on the parametric MIOCPs studied in this work, how re-
current layers can be used to learn sequential information in control action sequences, and how to
improve the inference of deep neural networks via presolve techniques prevalent in MICP solvers.

2.1. Parametric MIOCPs

Given a vector of problem parameters θ ∈ Rnp , a parametric MIOCP can be written as

minimize
x0:N ,u0:N ,δ0:N

∑N
t=0 gt(xt, ut, δt; θ)

subject to x0 = xinit(θ)
xt+1 = ψt(xt, ut, δt; θ), t = 0, . . . , N − 1
ft,i(xt, ut, δt; θ) ≤ 0, t = 0, . . . , N, i = 1, . . . , nf
δt ∈ {0, 1}nδ , t = 0, . . . , N,

(1)

where the state xt ∈ Rnx and control ut ∈ Rnu are the continuous decision variables and δt ∈
{0, 1}nδ are the binary decision variables. For simplicity, we denote δ ∈ {0, 1}Nδ , where Nδ =
(N + 1)nδ, as the stacked binary decision variable vector, i.e., δ0:N . Similarly, z ∈ R(N+1)(nx+nu)

refers to the continuous decision variables, i.e., (x0:N , u0:N ). Here, the stage cost gt(·), terminal cost
gN (·), and inequality constraints ft,i(·) are assumed to be convex functions. The dynamics ψt(·) are
assumed to be linear, e.g., possibly using a mixed-integer formulation of piecewise affine (PWA)
dynamics (Marcucci and Tedrake, 2019). The objective function and constraints are functions of
the parameter vector θ ∈ Θ, where Θ ⊆ Rnp is the admissible set of parameters. Parameters could
include, for instance, a given initial state, target state, obstacle coordinates, to name a few.

In (1), the binary decision variables δ are the “complicating” variables: i.e., if δ are fixed, then
the remaining problem is convex and much easier to solve. Concretely, if the optimal binary solution
δ? for (1) is fixed, the continuous optimizers x?0:N and u?0:N can be computed by solving a single
convex optimization problem,

minimize
x0:N ,u0:N

∑N
t=0 gt(xt, ut, δ

?
t ; θ)

subject to x0 = xinit(θ)
xt+1 = ψt(xt, ut, δ

?
t ; θ), t = 0, . . . , N − 1

ft,i(xt, ut, δ
?
t ; θ) ≤ 0, t = 0, . . . , N, i = 1, . . . , nf ,

(2)

which is considerably cheaper to solve than the MIOCP in (1). An interesting approach to solving
problems of the form (1) involves learning a map between the vector of problem parameters θ
and the discrete optimizer δ? (Masti and Bemporad, 2019; Cauligi et al., 2020), such that a convex
program of the form (2) needs to be solved instead. Although such approaches lack the completeness
guarantees provided by B&B, learning an effective mapping to identify δ? would allow the user to
avoid having to search through a B&B tree. Another limitation of such approaches is that they
neglect the sequential decision making structure of the MIOCP. For example, the binary solution
trajectory δ?0:N for (1) may often attain identical values for part of the trajectory in time. In such
cases, incorporating the temporal nature of the binary solution into the formulation may improve
the performance of learning a mapping between θ and δ?.
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2.2. Recurrent Neural Network Architectures

To this end, we propose using RNN architectures to incorporate the sequential decision making
structure of MIOCPs in learning the mapping between parameter vector θ and the binary optimizer
δ?. Concretely, we learn a mapping between θ and δ?t at each step of the RNN for t = 0, . . . , N . We
choose LSTMs for our network architecture (Hochreiter and Schmidhuber, 1997), but PRISM can
be easily extended to accommodate, e.g., more traditional RNNs or gated recurrent units (GRUs).
LSTMs have allowed for tremendous strides in time-series forecasting and temporal predictions
and have demonstrated effectiveness in controls and robotics applications (Chung et al., 2015; Mor-
ton et al., 2017). Herein, the LSTM learns the temporal structure of the binary optimizer for the
MIOCP. The primary advantage of considering the temporal structure of the binary solution is that
it can reduce the number of target labels in supervised learning. To illustrate, consider that for the
problem (1), the maximum number of target labels is 2Nδ , where Nδ = (N + 1)nδ, for nδ binary
variables. Conversely, decomposing the binary variables over time leads to at most 2nδ target labels,
which is substantially lower than 2Nδ for large N . Having fewer target labels for a given number of
training samples results in improved learning quality by the LSTM.

2.3. Presolve Techniques

Presolve techniques can tighten constraints or prune a subset of decision variables by fixing them
to predetermined values, e.g., using domain propagation, coefficient strengthening, and probing.
For MICPs, the development of effective presolve methods in commercial solvers has proven crucial
in accelerating computation times (Achterberg et al., 2019). As an example of how presolve routines
can be applied, consider an MICP including the inequality constraints x1 ≤ M(θ)δ1 and x1 ≥ 1,
where x1 ∈ R, δ1 ∈ {0, 1}, and M(θ) > 0 is a given upper bound value. We see clearly that δ1
cannot attain the value 0 as this would require both x1 ≥ 1 and x1 ≤ 0 simultaneously. This implies
δ1 = 1 and we can therefore remove (“prune”) δ1 from the set of decision variables. Thus, pruning
reduces the complexity of the original MICP. We refer to the MICP in (1) as P(θ), and we use the
compact notation P(θ, δI = δ̂) to denote the problem (1) after fixing δi = δ̂i, i ∈ I for an index set
I, in the following simplified definition of a presolve routine.

Definition 1 (Presolve) Given the problem P(θ) and a set of binary values {δ̂i}i∈I for the index
set I ⊆ {1, . . . , Nδ}, the presolve routine computes

{flag, δ̂+, I+} ← Presolve(P(θ), δ̂, I), (3)

resulting in an updated set of binary values {δ̂+i }i∈I+ for the index set I+ ⊆ {1, . . . , Nδ}, for
which the following conditions are satisfied:

1. The new set of indices includes at least the original set, i.e., I ⊆ I+.

2. Problem P(θ, δI+ = δ̂+) is infeasible or unbounded, i.e., flag = False, if and only if
P(θ, δI = δ̂) is infeasible or unbounded.

3. Any feasible or optimal solution of P(θ, δI+ = δ̂+) can be mapped to a feasible or optimal
solution of P(θ, δI = δ̂), and their objective values are identical.

A presolve routine applied to a root node in B&B corresponds to Definition 1 with I = ∅. In
general, presolve cannot prune all of the binary (or integer) decision variables, but it can often lead
to a reduced problem that is significantly faster to solve.
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3. PRISM: An LSTM-Presolve Pipeline for Solving MIOCPs

3.1. Offline Data Generation

Algorithm 1 provides an overview for the offline phase of PRISM. First, a set of problem param-
eter values {θi}Mi=1 representative of the control problem are sampled, where M is the number of
samples drawn from Θ. For each parameter value θi, the MICP is solved and, if the problem is
feasible, the continuous and binary optimizers (zi,?, δi,?) are returned (Line 3). A binary optimizer
set ∆ collects the unique binary variable solutions and, for each time step t ∈ [0, N ] associated
with the MIOCP horizon, the binary solution δi,?t for time t is added to ∆ if it is not already
included, i.e., ∆ = ∪i,tδi,?t . The class label yit associated with δi,?t is identified (Line 6) and{(
θi, t, δi,?t , yit

)}
t∈[0,N ]

is then appended to the training data D (Line 8). Finally, an LSTM neural

network hφ is trained using the data and labels contained in D (Line 11).

Algorithm 1 PRISM Offline Supervision
Require: Batch of parameter values {θi}i=1,...,M , MIOCP in (1)

1: Initialize binary optimizer set ∆← {}, train set D ← {}, and k ← 0
2: for each θi do
3: (zi,?, δi,?,feasible)← SolveMICP(θi) in (1)
4: if feasible == True then
5: for t ∈ [0, N ] do
6: ∆← ∆ ∪ δi,?t and identify class label yit for δi,?t in ∆
7: end for
8: Add

{(
θi, t, δi,?t , yit

)}
t∈[0,N ]

to D
9: end if

10: end for
11: Choose network weights φ which minimize the training loss
12: return hφ, ∆

For the inference step of the network hφ, a given value for the parameter vector θ is first pro-
cessed through a feedforward block FC1 before being passed as input to the LSTM. The output
hidden state ht from the LSTM is then passed through a feedforward block FC2 to generate the
binary candidate δ̂t for that time step, and as input to the LSTM block at the next time step. We
note that FC1 and FC2 do not vary per time step, but could be adjusted to accommodate problems
with a different number of parameters or binary decision variables at each step (e.g., signal temporal
logic). The predictions δ̂t for each time step t ∈ [0, N ] are used to construct a candidate binary op-
timizer δ̂. Training hφ could be cast both as a classification or as a regression problem, and PRISM
is agnostic to whether hφ performs classification or regression. Furthermore, the developments in
the remainder of this paper generalize to both frameworks.

Remark 1 (hφ as Regressor) If the network hφ being trained is a regressor, that is, the network is
trained to directly predict the value δ̂t, then the output dimension for each time step is nδ and the
training loss used is binary cross-entropy loss with logit activations applied to the output layer.

Remark 2 (hφ as Classifier) If the network hφ denotes a classifier, we train it to select the best
value δ̂t ∈ ∆; in this case, the output dimension is the cardinality |∆| of the binary optimizer set
and the training loss function is a cross-entropy loss.
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3.2. Online: Inference Procedure and Iterative Presolve

LSTM
θ FC1

h0

δ0

LSTM
θ FC1

h1
LSTM

θ FC1

h2

FC2

δ1

FC2

Figure 2: The PRISM inference procedure with the LSTM block in blue, the fully connected feed-
forward block FC in yellow, and ht the hidden state of the LSTM at time t.
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Figure 3: Iterative presolve method to fix binary variables in MIOCP.

The inference procedure for PRISM is detailed in Algorithm 2. Given a vector of problem
parameters θ, the inference procedure consists of a forward pass through the LSTM cell for each
time step of the MIOCP as shown in Figure 2. The LSTM predictions δ̂t are used to construct
a candidate binary optimizer δ̂ (Line 1). However, rather than directly applying δ̂, the iterative
presolve routine is called to adjust the neural network prediction δ̂ to increase the rate of feasibility.
The iterative presolve uses δ̂ to generate a new binary prediction δ̂PS, which is used to fix the binary
variables in a convex approximation (2) of the original MICP (Line 6). This procedure continues
for nevals binary predictions and the best feasible solution is stored (Lines 6-9).

Algorithm 2 PRISM Online Variable Fixing Approach
Require: Problem parameters θ, set ∆, trained neural network hφ, nevals

1: Generate candidate binary solutions {δ̂j}j=1,...,nevals using network hφ
2: z? ← ∅, δ? ← ∅, J? ←∞,success← False
3: for j = 1, . . . , nevals do
4: (flag, δ̂jPS)← IterativePresolve(δ̂j , θ) in Alg. 3
5: if flag == True then
6: (z̄, J̄ ,feasible)← SolveCP(θ, δ̂jPS) in (2)
7: if feasible == True and J̄ < J? then
8: J? ← J̄ , z? ← z̄, δ? ← δ̂jPS,success← True
9: end if

10: end if
11: end for
12: return (success, z?, δ?, J?)
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Algorithm 3 Iterative Presolve Routine
Require: Candidate binary solution δ̂, problem parameters θ

1: Initialize set of pruned binary variables I ← ∅ and values δ̂PS ← ∅
2: for i ∈ {1, . . . , Nδ} do
3: {flag, δ̂PS, I} ← Presolve(P(θ), δ̂PS, I)
4: if flag == False then
5: return (False, δ̂PS)
6: end if
7: if |I| == Nδ then
8: return (True, δ̂PS)
9: end if

10: j ← VarSelect({1, . . . , Nδ} \ I)

11: Fix binary variable δ̂PS,j = δ̂j , I ← I ∪ {j}
12: end for

As illustrated in Figure 3, an iterative presolve method is used to correct predictions made by the
supervised learner hφ, given that the presolve operation can provide additional fixings that preserve
feasibility and optimality; see Definition 1. The implication is that if presolve prunes a subset
of the binary variables, then the supervised learner only needs to fix the remaining binary decision
variables. This allows for improvements of the supervised learner in instances when presolve prunes
a binary variable δi for which the supervised learner made an incorrect prediction that would have
resulted in an infeasible solution. Algorithm 3 describes the proposed iterative presolve routine
given a candidate binary solution δ̂ for a particular vector of problem parameters θ. Let I be the
index set of pruned decision variables (i.e., δi for i ∈ I are fixed), |I| is the number of pruned
binary decision variables, and I, δ̂PS are initialized as empty sets (Line 1). The presolve routine
is then called (Line 3) and returns whether infeasibility was detected, an updated set of indices I,
and corresponding values δ̂PS. Algorithm 3 terminates if all of the binary variables have been fixed
(Line 7) or if infeasibility is detected (Line 4). Otherwise, one of the remaining free binary variables
δj for j ∈ {1, . . . , Nδ}\I is selected and fixed to the value proposed by the supervised learner, i.e.,
δ̂PS,j = δ̂j (Line 10-11). Here, we denote VarSelect as the procedure to choose the binary variable
δj to fix next, which is closely related to the variable selection policy in B&B routines. Algorithm 3
is an iterative procedure, which calls the presolve routine (Line 3) at each iteration. One could also
skip the presolve call when a particular limit on the computation time has been reached, i.e., such
that all remaining free binary variables are fixed directly by the supervised learner (Line 11).

4. Numerical Experiments

We validate PRISM on two benchmark problems shown in Figure 4: (1) an underactuated cart-pole
with soft contacts and (2) motion planning in the presence of obstacles.

We demonstrate the efficacy of using an LSTM architecture and compare against the fully con-
nected neural network regressor from (Masti and Bemporad, 2019) and classifier from (Cauligi
et al., 2022). We used the PyTorch machine learning library (Paszke et al., 2017) to implement
our neural network models with the ADAM optimizer for training. The optimization problems are
modeled and solved using Gurobi (Gurobi Optimization, LLC, 2020). For each system, the training
set consists of 90,000 MICP solutions corresponding to problem parameters θ representative of the
control task. The test set consists of 10,000 additional MICPs corresponding to θ sampled from
the same parameter space. To assess the quality of our proposed method for each MICP in the test
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Figure 4: Benchmark problems. (a) Cart-pole with contact system. (b) Robot motion planning.

set, we report the percentage of failure to find a feasible solution, the computation time, and the
suboptimality of the feasible solution found by each approach with respect to the globally optimal
solution. We present results for predicting δ̂ by both a classifier and a regressor to highlight that the
use of PRISM enables both choices. All reported computation times include both the inference time
of the neural network architecture and the convex program solution time by Gurobi.

4.1. Cart-Pole with Soft Walls

We study a cart-pole with soft contacts shown in Figure 4, a problem representative of under-
actuated, multi-contact control problems (Aydinoglu et al., 2020; Mordatch et al., 2012). Al-
though MICPs form an attractive framework for modeling such problems, controllers that can react
and plan online for such systems are rarely real-time feasible or near-optimal (Marcucci et al., 2017).
The MIOCP entails using the horizontal forces of the cart to regulate an inverted pendulum towards
a goal state xg and a vector of binary variables δt ∈ R4 is used to model the forces generated when
the pendulum strikes the side walls; see Figure 4(a). We select a horizon length of N = 50, result-
ing in Nδ = 204 binary variables in this mixed-integer quadratic program (MIQP). The problem
parameters θ ∈ R4 for this problem consist of the initial condition xinit.

Results: We compare our proposed LSTM architecture in PRISM against a feedforward neural
network classifier and regressor to demonstrate the effectiveness of the recurrent architecture for
this problem. Through a cursory hyperparameter search, we empirically found that network perfor-
mance was more sensitive to the network width compared to the depth. For the LSTM, the network
follows what is shown in Figure 2 and consists of a one hidden layer feedforward network with 128
neurons for FC1 and FC2 and a three-layer LSTM cell with a 128-dimensional hidden layer. To
maintain parity, the feedforward network is designed with three hidden layers and 128 neurons per
layer. For this problem, we further benchmark against a fully connected network where a one-hot
encoding of size RN+1 is used to indicate which δt is being queried. By using δt as the target labels,
the time-wise decomposition in PRISM yielded 7 unique target labels as compared to 2687 target
labels when predicting the sequence of binary decision variables δ0:N directly.

The numerical results are shown in Table 1. We begin by comparing the percentage of problems
in the test set for which each approach fails to find a feasible solution. We immediately see two
broad trends: (1) the classifier outperforms the regressor, and (2) the use of an LSTM allows both
the classifier and the regressor to compute more feasible solutions. Concretely, for the classifier, the
feedforward network fails for 7.9% of the test set compared to 6.0% for the PRISM classifier. The
performance improvement allowed by the LSTM is more significant for the regressor, with 24.7%
infeasible solutions with a fully connected regressor compared to only 13.9% infeasible solutions
with the PRISM regressor. We see that this performance improvement comes with a slight increase
in computation time for the LSTM, which requires on average approximately 20% longer for the
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Infeasibility [%] Suboptimality [%] Time [ms]

Gurobi B&B 0.0 0.0 (0.0, 0.0) 611.9 (186, 1248)
Gurobi B&B (20 ms limit) 77.8 2.3 (0.0, 21.2) 20.9 (20.1, 22.9)

Regressor 24.7 1.1 (0.0, 7.3) 10.7 (9.5, 12.2)
Regressor OH Time 27.7 0.7 (0.0, 3.6) 10.7 (9.5, 12.1)

PRISM Regressor (LSTM) 13.9 0.4 (0.0, 1.6) 12.9 (11.6, 14.4)

Classifier 7.9 0.4 (0.0, 1.0) 10.8 (9.6, 12.3)
Classifier OH Time 14.2 0.3 (0.0, 0.6) 10.8 (9.5, 12.2)

PRISM Classifier (LSTM) 6.0 0.1 (0.0, 0.1) 12.9 (11.6, 14.4)

Table 1: Illustration of the benefit of recurrent architectures on a simulation study using the cart-
pole with contact system with N = 50, and PRISM is highlighted in blue. The values for
suboptimality and time include the average and 5%, 95% percentiles between parentheses.

PRISM regressor and classifier to compute a forward pass and solve the convex relaxation. PRISM
also improves upon the one-hot encoding (OH Time) approach, which results in more than twice
the failure rate of the PRISM regressor and classifier, respectively. We also compare against the
Gurobi B&B solver timed out after 20ms and note that doing so leads to 78% infeasibility on the
test set. We attribute the improved performance of the LSTM approaches to having only 7 target
labels by using δt rather than δ0:N as the target labels, exploiting the temporal aspect of the MIOCP
and leading to improved supervision of the LSTM for this benchmark problem.

The rate of infeasibility for the results in Table 1 could be reduced further by generating multiple
candidate binary solutions for the classifier architectures as shown in (Bertsimas and Stellato, 2019),
i.e., nevals > 1 in Algorithm 2. For example, the rate of infeasibility for our PRISM classifier is 6.0,
4.1, 3.0 or 2.4 % for nevals = 1, 2, 4 or 8, respectively. The performance of the proposed iterative
presolve method in Algorithm 3 will be illustrated on the next numerical case study.

4.2. Motion Planning

A fundamental problem in robotics is motion planning in the presence of obstacles and MICPs can
be used to model the inherently combinatorial nature of obstacle avoidance (LaValle, 2006). In this
work, we study the problem of a planar robot navigating a workspace with axis-aligned obstacles.
A popular approach for solving the motion planning problem is through numerical optimization
techniques and the inclusion of binary variables to enforce the non-convex xt ∈ Xsafe safety con-
straint (Landry et al., 2016). Following the formulation from (Cauligi et al., 2022), the MIOCP for
planning a collision-free trajectory towards a goal state xg is an MIQP with 4Nobs(N + 1) binary
decision variables. We choose a number of control intervals N = 20 and a number of obstacles
Nobs = 4 for a total of Nδ = 336 binary variables. The parameters θ ∈ R20 for this problem are
comprised of the initial state xinit and the positions of the four obstacles.

Results: For this system, the feedforward networks consist of three hidden layers with 256 neu-
rons each and the appropriately sized output dimension. The LSTM in PRISM consists of a one
hidden layer feedforward network with 256 neurons for FC1 and FC2 and a three-layer LSTM cell
with a 128-dimensional hidden layer. We additionally include the task-specific logical strategies for
this system presented in (Cauligi et al., 2022). In this one-hot obstacle (OHO) approach, PRISM
learns the binary variable assignment separately for each of the Nobs obstacles and uses an LSTM
with input dimension adjusted to include the one-hot encoding of size RNobs , which denotes the ob-
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Infeasibility [%] Suboptimality [%] Time [ms]
Standard Presolve Standard Presolve Standard Presolve

Gurobi B&B − 0.0 − 0.0 (0.0, 0.0) − 102.7 (33, 239)
B&B (20 ms) − 87.4 − 247.1 (68, 575) − 20.6 (20.1, 23.2)

Regressor 83.6 1.8 2.3 (0.0, 4.6) 11.4 (0.0, 49.8) 3.0 (2.9, 3.1) 9.4 (6.4, 12.7)
OHO 70.5 1.8 6.1 (0.0, 22.5) 9.3 (0.0, 42.3) 3.1 (3.0, 3.3) 9.5 (6.3, 13.1)

PRISM 72.1 2.3 4.8 (0.0, 5.4) 5.5 (0.0, 22.7) 4.5 (4.3, 4.7) 11.0 (7.8, 14.4)
PRISM OHO 29.5 1.9 1.5 (0.0, 4.5) 2.3 (0.0, 8.9) 3.7 (3.5, 3.9) 10.1 (6.7, 13.6)

Classifier 54.7 2.6 3.1 (0.0, 16.9) 29.2 (0.0, 151) 3.2 (3.0, 3.4) 9.0 (6.2, 12.3)
OHO 44.0 1.9 1.8 (0.0, 6.0) 8.2 (0.0, 45.3) 3.2 (3.0, 3.4) 9.2 (6.1, 12.6)

PRISM 16.0 1.5 0.5 (0.0, 1.7) 2.7 (0.0, 8.9) 4.6 (4.4, 4.8) 10.7 (7.5, 14.1)
PRISM OHO 16.5 1.1 0.5 (0.0, 1.2) 2.2 (0.0, 6.0) 3.7 (3.5, 3.9) 9.7 (6.6, 13.2)

Table 2: Results with and without the iterative presolve method in Alg. 3 for the motion planning
example with N = 20, including the one-hot obstacle (OHO) approach. The values for
suboptimality and time include the average and 5%, 95% percentiles between parentheses.

stacle for which the variables are predicted, and output dimension of 4 for each LSTM output layer.
For this problem, the number of unique target labels with PRISM was 244 for δt as compared to
42406 target labels for δ0:N without the time-wise decomposition. We illustrate the computational
efficiency of the iterative presolve method in Algorithm 3 based on the embeddable C code imple-
mentation of a presolve step (Line 3) from (Hespanhol et al., 2019; Liang et al., 2021).

The results for this benchmark example are shown in Table 2. As the primary point of compari-
son, we compare the performance of each approach with and without the presolve routine integrated.
Without the presolve routine, we see once again that an LSTM architecture leads to performance
improvements for both the regressor and classifier, with 11.5% and 38.7% more feasible solutions
found for the PRISM regressor and classifier, respectively. With the presolve routine, the percentage
of feasible solutions found for all approaches is dramatically improved, with a worst-case infeasi-
bility of less than 3%. However, the quality of the solution found with presolve differs across the
approaches and the suboptimality of PRISM is considerably lower than those found by the feedfor-
ward networks. Table 2 also demonstrates that PRISM can be effectively integrated with the one-hot
obstacle (OHO) approach and yields higher quality solutions than OHO alone. Thus, we see that
presolve is crucial in enabling the application of supervised learning techniques for the motion plan-
ning problem as it reduces failure rates by an order of magnitude while maintaining the ability to
find near optimal solutions and only a slight slow down in computation time.

5. Conclusion

In this work, we showed how leveraging recurrent neural network architectures in conjunction with
presolve techniques from numerical optimization leads to dramatic improvements among existing
supervised learning approaches in terms of both feasibility and optimality. We demonstrated the
efficacy of PRISM on two standard robot planning and control tasks, cart-pole with contact system
and motion planning in the presence of obstacles. Future work may focus on exploring end-to-end
learning based frameworks where the decisions made by the presolve routine to prune particular
binary variables are included in the loss function used to train the neural network.
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