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Abstract

We compare the performance of direct-adjoint-looping (DAL) and one-shot methods in a design optimization
task involving turbulent flow modeled using Reynolds-Averaged-Navier-Stokes equations. Two preconditioned
variants of the one-shot algorithm are proposed and tested. The role of an approximate Hessian as a precon-
ditioner for the one-shot method iterations is highlighted. We find that the preconditioned one-shot methods
can solve the PDE-constrained optimization problem with the cost of computation comparable (about four-
fold) to that of the simulation run alone. This cost is substantially less than that of DAL, which requires
O(10) direct-adjoint loops to converge. The optimization results arising from the one-shot method can be
used for optimal sensor/actuator placement tasks, or to provide a reference trajectory to be used for online
feedback control applications.

Keywords: one-shot optimization; PDE-constrained optimization; direct-adjoint looping; boundary control

1. Introduction

Model-based optimization and control of fluid dynamical systems is an active area of research [1] in academia
and industry. Applications include data assimilation in weather prediction [2], atmospheric boundary layer
estimation [3], chemical process control [4], topology optimization in aerodynamics and hydrodynamics
[5, 6, 7], and heating, ventilation and air-conditioning (HVAC) [8, 9, 10]. The highly nonlinear multi-scale
nature of fluid dynamics necessitates use of sophisticated numerical tools to discover system parameters as
well as control inputs that yield optimal performance according to application specific criteria. Such tasks
can be formulated as Partial Differential Equation (PDE)-constrained optimization problems [11].
Such optimization problems are invariably solved using some variant of steepest (or gradient) descent algo-
rithm, where computing sensitivities of the cost function with respect to design parameter(s) is a key step.
For high-fidelity fluid dynamics models, the adjoint method [12] has long been identified as the method of
choice for computing these sensitivities [13, 14, 15, 16]. This method involves an auxiliary PDE, called the
adjoint PDE, whose solution yields the required sensitivities.
There are several algorithms that employ the adjoint method to obtain optimal solutions to PDE-constrained
problems. These algorithms solve the same set of equations, namely direct (forward) and adjoint equations,
to determine the sensitivity of a given cost function to the design parameters. The difference is, however,
in the manner by which the optimal solutions are obtained by each algorithm. The direct-adjoint-looping
(DAL) method [17] involves repeated ‘full solves’ of the direct PDE and the adjoint equations to convergence,
up to a desired numerical residual. The design parameters are updated via gradient descent at the end of
each looping step. The equation involving the parameter update is termed as the design or sensitivity
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equation. The DAL approach is also known as the reduced space approach [18], and the Nested Analysis
and Design (NAND) [19] method.
The DAL method does not require factorization of the inverse of the Jacobian during the evaluation of
Newton steps for direct or adjoint variables. Naturally, each full solve involves several iterations of the
associated linear systems. Overall, the cost of solving the adjoint equations is similar to that of the direct
equations.
It has been argued that it is computationally sub-optimal to solve the forward-adjoint system fully in order
to extract a good descent direction for the design parameters. This has motivated the development of the
one-shot algorithm [20] that solves the coupled system of direct, adjoint and design equations only once. The
one-shot method has computational cost comparable to that of solving only the direct equations [20, 21].
One-shot methods are also referred to as full-space approach, all-at-once, simultaneous Analysis and Design
(SAND), and piggy-backing methods. The linear systems that arise in most popular one-shot methods are
either solved via Jacobi or Seidel iterations. The former involves simultaneous update of all variables during
each iteration. On the other hand, each Seidel iteration involves a sequential update of the direct, adjoint
and design parameters. Several variants of one-shot method [22, 23] for unsteady PDEs [18], in the presence
of additional constraints [24, 25], and chaotic dynamical systems [26] have been studied recently.
The DAL method has been studied extensively for fluid dynamics applications. However, less attention
has been given to the one-shot method and its variants. Moreover, the comparison of the DAL method
and one-shot methods on turbulent flows governed by turbulent Navier-Stokes equations is lacking. In this
paper, we compare the performance of DAL method employed in [9, 8] with two variants of the one-shot
method. The two variants are obtained by preconditioning the one-shot system in two different ways. Both
these variants involve Siedel iterations. The preconditioners we employ in this paper are closely related to
previously reported preconditioners [22, 23]. We perform extensive numerical studies to quantify the effect
of the choice of preconditioners and other parameters on the convergence of the optimizer. Finally, we
compare the one-shot method to the DAL method in terms of computational cost.
The algorithms are tested on two test problems. The first is an inverse-design problem whose globally optimal
solution is known analytically. The second problem is a challenging inverse-design problem involving indoor
airflow where a cool zone is being maintained within a larger open space by an appropriate choice of inlet
velocities.
The rest of the paper is organized as follows. In Section 2, we describe the class of optimization problems
considered in this work, and the direct, adjoint and design equations that make up the system of equations
to be solved. In section 3, we describe the DAL method and two algorithms for implementing the one-shot
method. We provide a mathematical rationale for choosing the form of preconditioning in the two one-shot
algorithms. In Section 4, we provide two case studies and compare the performance of the various algorithms.
In Section 5, we provide conclusions and sketch out directions for future research.

2. Problem Formulation

2.1. Abstract Formulation of Optimization Problem

We first introduce the optimization problem using an abstract notation. We consider the optimization
problem

min
w,u

J (w, u),

s.t. R(w, u) = 0,
(1)

where w ∈ W is the state vector, u ∈ U is the design vector and W,U are appropriate Hilbert spaces. Here
R : W × U → W represents the governing (‘forward’ or ‘direct’) equations such as the turbulent Navier-
Stokes or Boussinesq equations, and J :W×U → R is the objective function. To avoid notational overload,
we use the same notation for infinite dimensional quantities and their finite discretizations.
To solve Eq. 1, we construct a functional L(w, u) = J (w, u)−λ>R(w, u), where λ is the vector of Lagrange
multipliers or the adjoint variables [15, 27, 17]. Hence, the necessary optimality conditions are
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R(w, u) = 0 (direct equations), (2)

∇wL(w, u, λ) = 0 (adjoint equations), (3)

∇uL(w, u, λ) = 0 (design equations). (4)

For a differential operator A, an exact solution F is such that AF = 0. An approximate solution obtained
from numerical methods is denoted by F . We define the residual as either ‖F − F‖ or ‖AF‖ where ‖‖ is
an appropriate norm. We denote residuals for direct equations and adjoint equations by Resw and Resλ,
respectively. The residual for the algebraic design equations is denoted by Resu. Finally, as R is zero at
feasible points by construction, we may choose λ freely, yielding L(w, u) = J (w, u) and, hence, ∇L = ∇J .
Throughout the paper, we may choose either notation.

2.2. Governing Equations

We consider flows on a two-dimensional domain D, modeled by the steady Reynolds-averaged Navier-Stokes
(RANS) equations,

∂vj
∂xj

= 0,

∂vivj
∂xj

+
∂pi
∂xi
− ∂

∂xj
(

1

Re

∂vi
∂xj

) = 0,

(5)

where v and p are non-dimensionalized ensemble-averaged velocity and pressure, respectively. Using the
Boussinesq hypothesis for turbulence, the effective viscosity νeff is the sum of molecular viscosity ν and
eddy viscosity νt. The latter is computed using a two equation turbulence model, e.g. the standard k − ε
closure model [28]. Reynolds number in Eq. 5 is defined as Re =

VrefLref

νeff
,where Vref and Lref are the

reference velocity and length of the problem.
We prescribe the following boundary conditions.

inlet : v = vin, (ni∂/∂xi)p = 0,

outlet : (ni∂/∂xi)vi = 0, p = 0,

wall : v = 0, (ni∂/∂xi)p = 0,

(6)

where n is the unit vector normal to the surface, and the subscript ‘in’ denotes the values at the inlet.

2.3. Cost Function and Adjoint Equations

We consider the class of optimization problems where the objective is to maintain a desired velocity field
vd in a region of interest Ω, by choosing optimal inlet velocities vin as the design parameter. We define the
cost function as

J =

∫
Ω

(
v− vd

)2
dV, (7)

The adjoint equations Eq. 3 are explicitly given by

∂va,j
∂xj

= 0,

va,j
∂vj
∂xi
− vj

∂va,i
∂xj

− ∂

∂xj
(

1

Re

∂va,i
∂xj

) +
∂pa
∂xi

+ β(vi − vd,i) = 0,

(8)
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The corresponding adjoint boundary conditions are

inlet : va = 0, (ni∂/∂xi)pa = 0,

outlet : vnvta +
1

Re
(ni∂/∂xi)v

t
a = 0,

pa = vnvna +
1

Re
(ni∂/∂xi)v

n
a ,

wall : va = 0, (ni∂/∂xi)pa = 0,

(9)

where superscripts n and t denote the normal and tangential components, respectively.
We use the ‘frozen turbulence’ hypothesis [29] in deriving Eq. 8. As a result of this assumption, the effective
viscosity used in Eq. 8 is obtained by solving the k − ε equations along with the direct system of equations
Eq. 5. An assessment of the validity of this assumption for problems similar to those studied in the current
work has been carried out in [9].
The design equation Eqs. 4 are explicitly given by

∇uL = pan−
1

Re
n.∇v, (10)

where all values are evaluated at the inlet. For the specific RANS-constrained optimization problem, w =
(v, p) is the vector of state variables, and u is the vector of design variables i.e. u = (vin). The vector of
adjoint variables is λ = (va, pa). In that context, Eqs. 5, 6 correspond to Eq. 2, Eqs. 8, 9 correspond to
Eq. 3, and Eq. 10 corresponds to Eq. 4, respectively. The Eqs. 8-10 are derived in [8].
The gradient descent based update of the design parameters, given by Eq. 10, requires selection of a step size.
Properly chosen step sizes using line-search [30], or adaptation [31], may increase the rate of convergence.
Other strategies, e.g. relaxation approach or conjugate gradient, can also be adopted; however, it is unclear
which, if any, is superior [27]. In this paper, we do not seek optimal step sizes (although this is an important
direction for future studies) and instead our focus is on i) the role of preconditioner on the convergence
and robustness, and ii) comparison of the DAL method with variants of the one-shot method. For each
algorithm, we picked the step size based on numerical experiments.

2.4. Details of Numerical Solver
We use the finite-volume [32] solver OpenFOAM [33]. This solver uses a collocated grid arrangement and
offers object-oriented implementations that suit the employed continuous adjoint formulation (the solver
is based on icoFoam). Pressure and velocity are decoupled using the SIMPLE algorithm [34] technique
in the direct/adjoint equations. For the convection terms, second order Gaussian integration is used with
the Sweby limiter [35] for numerical stability. For diffusion, Gaussian integration with central-differencing-
interpolation is used. The discretized algebraic equations are solved using the Preconditioned BiConjugate
Gradient (PBiCG) method [36]. The adjoint equations are also solved using the numerical method described
for solving the forward or direct equations. We found that using an upwind and first order method for solving
the adjoint equations Eqs. 8 resulted in inaccurate gradients, and hence those methods were not adopted.

3. Algorithms for solving optimality equations

3.1. Direct-Adjoint-Looping Method
Each ‘loop’ of the DAL method 1, indexed by LD, involves a ‘full solve’ (up to a chosen residual) of the
direct Eq. 2, followed by the solution of the adjoint Eq. 3. In general, each such ‘full solve’ requires
multiple individual iterations of the linear systems corresponding to direct and adjoint equations, which are
indexed by kD and ka, respectively. This is followed by a gradient descent step of the algebraic design Eqs.
4. The trajectory (wLD , uLD , λLD ) approaches the optimal solution (w∗, u∗, λ∗) along the intersection of
the solution hypersurfaces of the direct and adjoint equations, as shown in Fig. 1(a). Since our aim is to
compare the DAL method with preconditioned one-shot methods, we also use a BFGS type preconditioner
(BD) in our DAL method implementation. This preconditioner is similar to the one discussed in Section
3.2.1.
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Algorithm 1 DAL Algorithm (D)

1. Put LD = 0. Obtain an admissible guess uLD for the vector of design parameters.

2. Solve the direct Eqs. R(w, uLD ) = 0, up to a residual Resw < εw, to obtain wLD .

3. Solve the adjoint Eqs. ∇wL(wLD , uLD , λ) = 0, up to a residual Resλ < ελ, to obtain λLD .

4. IF Resu > εu
update uLD+1 = uLD − α(BD)−1∇uL(wLD , uLD , λLD ),
LD → LD + 1,
Go to Step 2.

ELSE
Terminate.

𝛁𝒘𝓛 = 𝟎

𝛁𝒖𝓛 = 𝟎

ℛ 𝒖,𝒘
= 𝟎

Adjoint equations Direct equa1ons

Sensitivity equations

Optimal solution
𝒖∗ 𝒘∗

𝐿$ − 1𝐿$

𝑅𝑒𝑠%

(a) DAL method

Optimal solution
𝒖∗ 𝒘∗

𝐿"

𝐿" − 1

𝑅𝑒𝑠#

𝑅𝑒𝑠$

𝑅𝑒𝑠%

(b) One-shot method

Figure 1: Hypersurfaces of direct (or forward), adjoint and sensitivity equations. The residuals for the design variable, Reu,
direct variables, Resw, and adjoint variables Resλ, defined in the text, are shown via a thin double-headed arrow. The red
curve is the intersection of forward and adjoint hypersurfaces. Panel (a) is a schematic of the DAL method and panel (b) is
a schematic of the one-shot method. For the DAL method, the residuals for direct and adjoint equations are assumed to be
negligible. The black circles represent iterations as defined in the text, the black arrows indicate a hypothetical direction of
the (scaled) gradient. LD and Lo are the number of iteration loops for the DAL method and one-shot methods, respectively.
The optimal solution is denoted by the blue circle at the intersection of the three hypersurfaces and corresponds to u∗ and w∗.

3.2. One-shot Methods

The one-shot method involves solving the combined optimality system of Eqs. (2,3,4) only once. It was first
proposed by Hazra and Schulz [37], inspired by an earlier research by Ta’saan [38]. It has been observed
numerically that one-shot methods can outperform DAL methods by about an order of magnitude in terms
of iteration counts and runtime [19].
Several variants were proposed by Griewank et al. [21] and others (e.g., [39, 40]). As mentioned in the
introduction, one classification of these variants can be done according to the type of linear systems iterations
involved in the process [22]. Jacobi iteration has been employed by [21, 39, 40, 41, 42], while [20, 22, 23, 37]
have employed Siedel iteration variants. It has been reported that the computational cost of the Siedel
method could be lower than that of the Jacobi variant [22, 43].
For each one-shot variant, several choices for the preconditioner B have been proposed to ensure convergence
of the coupled iteration. For the Jacobi variants, a modified exact projected Hessian was introduced in [21]
to ensure that real eigenvalues of the coupled iteration are within the unit circle. However, as shown in [44],
complex eigenvalues with modulus greater than 1 may still occur in that case. Hence, for the Jacobi variant,
most efforts are aimed at constructing the preconditioner using an approximation of the partial Hessian of
the augmented Lagrangian [41], i.e.

La(w, u) = N(w, u, λ)− λ>w +
α′

2
‖G(w, u)− w‖+

β′

2
‖Nw(w, λ, u)− λ‖.

Here, G is a contractive operator that arises in fixed point iteration of the forward equations, i.e., Eq. 2 is
replaced by w = G(w, u). Finally, N(w, λ, u) := J + G(w, u)λ is the shifted Lagrangian. Convergence can
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be enforced by suitable choice of α′ and β′, and an approximate BLo ≈ ∇2La can be efficiently computed by
low-rank secant updating, e.g. BFGS type updating. However, theoretical bounds may result in conservative
design of the parameters and, thereby, lead to slow convergence. In practice moderate estimates of α′ and
β′ may lead to good convergence behavior [23].
On the other hand, preconditioners for the Siedel one-shot variant with continuous adjoint formulation have
been less explored. In [23], the authors proposed to control the complex eigenvalues without making design
updates excessively conservative and they demonstrated local convergence of the coupled iteration under
moderate assumptions in the neighborhood of the fixed point of the KKT system. They used a BFGS
update on the Hessian of Lagrangian, i.e., ∇2L (instead of augmented Lagrangian ∇2La). The test cases
were restricted to systems with linear Laplace-like operators. Subsequently, [22] performed a comparison
of Jacobi and Siedel variants for a laminar incompressible Boussinesq problem with boundary control, and
used AD to calculate the adjoint variables.
The one-shot methods we study in this paper are modifications of the Siedel type variants discussed in
[20, 37]. First, we show that under some assumptions, these variants result in the same linear systems as
the Jacobi variants introduced in [21, 41]. As we shall see, the difference between these methods boils down
to the choice of the preconditioner.
The necessary conditions for optimality Eqs. (2,3,4) can be written in a single system as

F (w, λ, u) = −

∇wL(w, λ, u)
∇uL(w, λ, u)
R(w, λ, u)

 = 0. (11)

Consider a linearization of Eq. 1 by a Taylor expansion to construct a Reduced Sequential Quadratic
Programming (RSQP) formulation of the problem:

min
w,u

J (w, u)

s.t. R(w, u) + J(w, u)∆w +Ru(w, u)∆u = 0,
(12)

with the exact Jacobian J = ∂R
∂w assumed to be invertible in this study.

It can be shown that the solution of Eq. 12 can be written as a coupled linear system of the form J> 0 0
∂R
∂u

>
H 0

0 ∂R
∂U J

∆λ
∆u
∆w

 = −

∇wL∇uL
R

 , (13)

where H is the exact Hessian.
Eq. 13 can be considered as an approximate Newton step for the optimality system of Eq. 11. Inspired by
the research presented in [45, 46], a preconditioner K with block structure similar to Eq. 13 was proposed
in [37]. Let A,B denote the approximate Jacobian and Hessian, respectively. We split the state and design
variable vectors into two parts w = (wI , wb) and u = (uI , ub), where the subscript b refers to the part of
domain where the design vector explicitly appears in Eq. 11. The subscript I corresponds to the rest of
the domain. For the class of problems we consider in this work, design parameters only appear in the inlet
boundary conditions. Hence, wI = (v, p), wb = (vin), and uI = 0. Similarly, Rb = wb − ub = 0 is the inlet
boundary condition, and RI = 0 denotes the direct equation along with its remaining boundary conditions.
This yields

∂Rb
∂ub

= −I, ∂RI
∂uI

= 0.

Furthermore, we can write the approximate Jacobian as

A =

(
AII AIb
AbI Abb

)
,
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where

AIb =
∂RI
∂wb

= 0, AbI =
∂Rb
∂wI

= 0.

Then Eq. 11 with a preconditioner K is

−K


∇wIL(w, λ, u)
∇wb
L(w, λ, u)

∇uL(w, λ, u)
Rb(w, λ, u)
RI(w, λ, u)

 = 0, (14)

where

K =


A>II 0 0 0 0

0 A>bb 0 0 0

0 ∂Rb

∂ub

>
B 0 0

0 0 ∂Rb

∂ub
Abb 0

0 0 0 0 AII


−1

. (15)

=


A−>II 0 0 0 0

0 A−>bb 0 0 0

0 −B−1A−>bb B−1 0 0

0 A−1
bb B

−1A−>bb −A−1
bb B

−1 A−1
bb 0

0 0 0 0 A−>II

 . (16)

Hence, Eq. 14 reduces to

A−>II ∇wIL = 0,

A−>bb ∇wb
L = 0,

−B−1A−Tbb ∇wb
L+B−1∇uL = 0,

A−1
bb B

−1A−>bb ∇wb
L+A−1

bb B
−1∇uL+A−1

bb Rb = 0,

A−>II RI = 0,

(17)

By definition again, Abb =
∂Rb
∂wb

= I. The term AII =
∂RI
∂wI

is the (approximate) Jacobian, and we set

AII = I following [47]. As indicated in Eq. 9, Dirichlet boundary conditions for the direct equations result
in homogeneous (zero) boundary conditions for the adjoint equations, i.e., since δwb = 0, the optimality
conditions are satisfied for any value of ∇wb

L. Without loss of generality for inlet boundaries, we set
∇wb
L = 0. As a result, and by uniting b and I domains, the preconditioned Eqs. 14 are reduced to

R = 0,

∇wL = 0,

B−1∇uL = 0.

(18)

Hence, we have shown the equivalence of Eq. 14 and 18 under assumptions for the choice of quantities in
Eq. 15.
Next, we discuss different preconditioning choices for Siedel type one shot methods.

3.2.1. Preconditioned One-Shot methods with Siedel Iterations

In [47], the authors introduced pseudo-time stepping as a means of under-relaxing Eq. 18 as they iterate
towards the steady-state feasibility and optimality. In this work, instead of adopting the notion of pseudo-
time stepping, we use iterations with explicit under-relaxation. In the following, Lo is the iteration index for
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the one-shot method, and BLo is the approximate Hessian of the Lagrangian. Each iteration of the one-shot
method for Eq. 18 involves one iteration of the linear systems of the direct and adjoint fixed point equations,
followed by a gradient descent step of the preconditioned design equation. Therefore, a typical trajectory
(wLo , uLo , λLo) approaches the optimal solution (w∗, u∗, λ∗) along a path that need not lie on any solution
hypersurface, as shown schematically in Fig. 1(b).
Hazra and Schulz [37, 20, 47] proposed the one-shot method 2, with the following approximation for the
Hessian

BLo =

{
β̄ (zLo )>sLo

(zLo )>zLo
I (zLo)>sLo > 0,

β̂I otherwise,
(19)

where zLo = ∇uLLo+1 − ∇uLLo and sLo = uLo+1 − uLo . The following upper and lower bounds on β̄ are
imposed:

βmin ≤ β̄
(zLo)>sLo

z>Lo
zLo

≤ βmax,

where β̄, β̂, βmin and βmax are constants to be chosen based on the problem. There is no systematic way
to pick these constants. Furthermore, the approximate Hessian is re-evaluated at each iteration with no
explicit memory of the previous iterations. To remedy this, we modify the approximate Hessian as follows:

BLo =

{
β̄ (zLo )>sLo

(zLo )>zLo
I (zLo)>sLo > 0,

BLo−1 otherwise.
(20)

This update eliminates one of the constants β̂, and uses the previous iteration for the approximate Hessian
if positive definiteness of BLo is not achieved. As we will see in the next section, this modification leads
to better convergence in practice. Moreover, in practice we set α = 1 for this algorithm so that we only
optimize β̄. The one-shot method with the above preconditioner is referred to as the ‘curvature-based
one-shot algorithm’ (OC).

Algorithm 2 Curvature-based one-shot algorithm (OC)

1. Set Lo = 0, λLo = 0 and and obtain an admissible initial guess for design parameters u. Also need an initial
guess for w0 and approximate Hessian BLo .

2. Compute λLo+1 = N(wLo , λLo , uLo), i.e., obtain the next iterate of the adjoint equation.

3. Compute BLo from either Eq. 19 or 20.

4. Update the design parameter uLo+1 = uLo − α(BLo)−1∇uL(wLo , λLo+1, uLo).

5. Compute wLo+1 = G(wLo , uLo+1), i.e., obtain the next iterate of the direct equation.

6. IF Resw > εw OR Resλ > ελ OR Resu > εu
Lo → Lo + 1.
Go to step 2.

ELSE
Terminate.

Algorithm 2 still requires judicious selection of several constants. The diagonal structure of the approximate
Hessian is also excessively restrictive. To remedy these shortcomings, we use the popular BFGS [30] method
for the update, which has also been used by other researchers [22, 39]. This preconditioner is applied to
∇2L instead of ∇2La, as is common for Siedel iterations. This method proposes the following choice for the
inverse of the approximate Hessian, Ĥ = B−1.

ĤLo+1 =

{ (
I − ρLosLo(zLo)>

)
ĤLo

(
I − ρLozLo(sLo)>

)
+ ρLosLo(sLo)> ρLo > 0,

ĤLo otherwise,
(21)
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with

ρLo =
1

(zLo)>sLo
.

In addition to superior convergence properties of the BFGS update, the use of the inverse of the approximate
Hessian also allows the search direction to be calculated by means of a simple matrix-vector multiplication.
Also, following some previous results [48], and for the reasons to be clarified in Section 4, we normalize the
gradient in the search direction.
Finally, in algorithm 3, we use the following update for design variables:

uLo+1 = uLo − αĤLo
∇uLLo

‖∇uLLo‖
. (22)

Algorithm 3 BFGS-based one-shot algorithm with normalized gradient (OB)

1. Set Lo = 0, λLo = 0 and and obtain an admissible initial guess for design parameter u. Also need an initial
guess for w0 and approximate Hessian BLo .

2. Compute λLo+1 = N(wLo , λLo , uLo), i.e., obtain the next iterate of the adjoint equation.

3. Compute ĤLo from Eq. 21.

4. Compute the updated design parameter, uLo+1, via Eq. 22.

5. Compute wLo+1 = G(wLo , uLo+1), i.e., obtain the next iterate of the direct equation.

6. IF Resw > εw OR Resλ > ελ OR Resu > εu
Lo → Lo + 1.
Go to step 2.

ELSE
Terminate.

In the next section, we compare the results of Algorithms 1 (D), 2 (OC), and 3 (OB). We assess the
accuracy and computational cost of each algorithm. We pick the step size α to be a reasonable value across
all methods. Ideally an optimal step can be found using line search methods and strong Wolfe conditions [30].
However, for CFD applications, such a method is not numerically tractable, as it requires expensive function
evaluations. We quantify the computational cost by the operation counts nD and no for the DAL method
and the particular one-shot method, respectively. Using the notation of Fig. 1, we have nD = (kD + ka)LD
and no = 2Lo.

4. Results and Discussion

To validate our numerical framework, we first consider the analytically solvable case of a laminar parallel
flow between two plates. Next, we consider the case of a turbulent mixing flow in an enclosure with 8 design
variables. This problem is solved using the two variants of one-shot method introduced in the previous
sections, as well as the preconditioned DAL method.

4.1. Analytical case study: Plane Poiseuille Flow

In this case study, we consider the two-dimensional, laminar, incompressible Poiseuille flow between two
horizontal parallel plates of length Lref , separated by a vertical distance h. We denote the inlet velocity
of this pressure driven flow by Vin. The flow variables (velocity and pressure) are governed by the two-
dimensional Navier–Stokes equations 5. We choose a uniform (in the wall-normal direction) inlet condition
of V oin(y) = 1m/s, and denote the corresponding steady state by vd, as the desired velocity in the region of
interest.
The aim of the inverse problem is to recover the correct inlet speed, assuming that the inlet flow is uniform.
We employ both the DAL method and one-shot methods to optimize the cost function given by Eq. 7.
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Since the ‘optimal’ solution is known (V oin), this procedure serves as a method to validate the numerical
optimization framework. For this test case we have:

vd =
6

h2
Vin(yh− y2)̂i,

J =
( 6

h2

)2
(Vin − V oin)2 `h

5

30
,

∇Vin
J = 2

( 6

h2

)2
(Vin − V oin)

`h5

30
,

(23)

where ` is the length of the rectangular region of interest. This region is taken to be in the fully developed

region for which
∂v

∂x
= 0. Here î is the unit vector in the horizontal direction. x and y are horizontal and

wall-normal (vertical) coordinates, respectively. We non-dimensionalize using Lref = 2m and Vref = 1m/s
as reference scales. The region of interest is taken to be [0.5, 0.75] × [0, h]. We start the optimization
procedure for all methods from a guess of Vin = 0.5.
To verify that one-shot Algs. 2 and 3 are computing the correct sensitivities, we first use α = 0 to obtain
the gradient of the cost function at the initial guess. We set the residuals as εw = ελ = 10−6 in this case.
Fig. 2 shows the evolution of ∇Vin

J along with Resw and Resλ for Vin = 0.5. After initial oscillations, the
gradient converges to ∇Vin

J = −5.797× 10−4. The analytical value from Eq. 23 is −6× 10−4. Hence, the
relative error compared to the analytical value is less than 0.3 percent for a mesh of the size 400 elements
(20×20). An alternative calculation using the finite difference:

∇Vin
J =

J (Vin + δVin)− J (Vin − δVin)

2δVin
, (24)

yields ∇VinJ = −5.98 × 10−4 with δVin as the perturbation of the inlet velocity. Thus, the relative error
between the gradient calculated by the adjoint method and that of the finite difference is only 0.05 percent.
By refining the mesh adjacent to the inlet, one may obtain a more accurate estimate of ∇Vin

J [9].
After evaluating the accuracy of gradients, we now consider the inverse problem using both the one-shot
(OC variant) method and the DAL method. As shown in Fig. 3, both one-shot and DAL converge to the
optimal solution, i.e. V oin = 1, with the desired accuracy for ∇Vin

J , which we set to be 10−6. In all figures
the norm of the gradients are plotted on the log-scale. The one-shot method reaches the residual threshold of
1e-6 in Lo = 628 iterations, implying no = 1256 operation counts for the direct and adjoint equations. Each
DAL method ‘loop’ comprises a direct (or forward) solution and an adjoint solution, each of which require
approximately kD = 200 and ka = 150 iterations respectively on average to satisfy the same convergence
criteria. Overall, LD = 53 loop iterations are required for the gradient to reach Resu = 10−6. Hence the
total operation count is nD = 18550, which is ≈ 15 times that of the one-shot method. We note that for
the current case study, we are using a fixed step with Bk = I.

4.2. Numerical case study: Zone cooling

This case study involves buoyancy-driven airflow in a 2D room. A schematic for the problem domain D is
shown in Fig. 4. The height and the length of the room are denoted by H and L, respectively. We divide
the room into two hypothetical regions: an ‘occupied zone’ on the left with length `1; and an ‘unoccupied
zone’ on the right of the room. Each zone has two inlets and one outlet, which are indexed as shown in
Fig. 4. A prescribed inflow is provided, for example, by an air conditioning unit or a mechanical fan.
The inlet velocity is Vin,i with i ∈ 1, 2, 3, 4 indicating the index of the inlet. For instance, Vin,1 is the
velocity boundary condition of inlet 1 with horizontal and vertical components of V xin,1 and V yin,1. The
design variables are taken to be the magnitude and direction of the inlet velocity.
For mesh sensitivity analysis, we carried out two separate tests for the direct and adjoint equations. For the
solutions of the direct equations, we used the cost function as the monitoring parameter to check the mesh
sensitivity between three mesh sizes of 28,400, 133,920 and 525,120 elements. For the steady state solutions,
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(a) (b)

(c)

Figure 2: Evolution of a) the gradient of the cost function ∇Vin
J , b) residuals for the direct equations Resw, i.e. two

components of velocity and pressure, and c) residuals for adjoint equations Resλ, i.e. two components of adjoint velocity and
pressure, for Vin = 0.5.

we noticed that the cost function differs by less than 8% relative error between the solutions calculated using
the 28,400 elements and 525,120 elements meshes. For the adjoint equations, on the other hand, sensitivity
to the mesh size is much more pronounced, particularly near the inlet. This can be seen from Eq. 10,
where the gradient of adjoint velocity at the inlet boundary is employed to calculate the gradient of the
cost function. Hence, we refined the mesh in particular around the inlet. We found significant discrepancy
between the gradient value obtained using Eq. 10 for a 28,400 elements mesh, and the gradient computed
using a finite-difference calculation. Therefore, a refined mesh with 133,920 elements is used to solve the
adjoint equation, even though significantly fewer mesh elements are required if only direct simulations were to
be considered. Such computationally demanding behavior of the continuous adjoint method is also observed
in other studies (e.g. see [49]).
The test case is motivated by application to ‘targeted’ cooling of the occupied zones in large open areas
within a built environment. Such a zone cooling approach potentially leads to a decrease in the energy
consumption while maintaining thermal comfort for the occupants. The region of interest, denoted by Ω,
is a rectangular region that extends from x = 3m to x = 5m in the horizontal direction and from the floor
to a height of y = 1.5m, to mimic a typical occupancy height in the occupied zone. For such architectural
fluid mechanics problems, the airflow patterns depend on the relative location of the heat source and inlets
[50, 51]. Hence, we consider two regions of interest, ΩI and ΩII .
We pick the reference inlet velocities at all inlets to be pointing downward. The velocity magnitude is chosen
such that the Reynolds number is Re = 4000, which is typical for this class of problems within ‘architectural
fluid mechanics’ [50]. The steady state vd obtained using these input velocities is shown in Fig. 5a. As
shown, by carefully designing the velocity at inlets, two large source-sink pairs from each inlet to the nearby
outlet are formed in each zone, separated by two horizontally-narrow vortices which extend vertically over
the entire cavity. These two narrow vortices minimize the exchange flow between the two zones and form a
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(a) (b)

(c) (d)

Figure 3: Optimization results for the case study involving laminar plane Poiseuille flow. (a,b) Design variable, and ‖∇Vin
J‖

based on the (OC) one-shot method as a function of Lo. (c,d) Design variable, and ‖∇Vin
J‖ based on the DAL method as a

function of LD.

virtual air curtain.
The aim of the inverse problem is to identify the correct inlet velocities, and the cost function is defined
in Eq. 7. We consider two regions of interest, denoted by ΩI and ΩII (as shown in Fig. 4). Region of
interest I focuses on local mixing in the occupied zone, while region of interest II extends across both the
occupied and unoccupied zones. To examine the robustness of the methods, we also consider two different
initial guesses. The initial guesses are listed in Table 1.
Next, we discuss the results of the test problem 1, i.e. the case with region of interest I (see Fig. 4)
and initial guess I. When the direct (forward) problem is solved with the provided initial guess, we obtain
J0 = 8.49 × 10−5, the maximum (among all inlets i) of ∇V y

in,i
J 0 = −6.00 × 10−5, and the maximum

(among all inlets i) of ∇V x
in,i
J 0 = 4.36 × 10−6. This steady-state flow, corresponding to the initial guess I

in ΩI , is shown in Fig. 5-b. We define three quantities RJ , Rx and Ry to quantify the performance of each

Table 1: Various tests for zone cooling case study. Region of interests I and II are denoted by ΩI and ΩII , respectively.

Test 1 Initial guess I V yin,i/V
x
in,i = −0.7914, 0.7914,−0.7914, 0.7914 ΩI

Test 2 Initial guess II V yin,i/V
x
in,i = 1.8610, 0.8992, 0.2567,−1.7011 ΩI

Test 3 Initial guess I V yin,i/V
x
in,i = −0.7914, 0.7914,−0.7914, 0.7914 ΩII

Test 4 Initial guess II V yin,i/V
x
in,i = 1.8610, 0.8992, 0.2567,−1.7011 ΩII
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Figure 4: Problem domain D for buoyancy-driven flow with occupied and unoccupied regions marked. The design variables are
the inlet velocities Vin,1 . . .Vin,4 with subscripts 1 . . . 4 indicating the inlet index. Each region has one outlet at the top. The
regions of interest ΩI and ΩII are highlighted with black and red dashed boxes respectively within D.

optimization algorithm:

RJ =
J∗

J0
, Rx = max

i

∇V x
in,i
J ∗

∇V x
in,i
J 0

, Ry = max
i

∇V y
in,i
J ∗

∇V y
in,i
J 0

,

where the superscript 0 and * denote, respectively, the values related to the initial guess and the (near-)
optimal solution obtained from the optimization.
We solve this inverse problem using the two variants of one-shot methods for one-shot method, i.e. Alg. 2
(OC) with β̄ = 1000, βmin = 10 and βmax = 10000, and Alg. 3 (OB) with α = 0.001. The results are shown
in Fig. 6. All the vertical velocities reach an approximate steady state after Lo ≈ 10000, and this value is
different from the initial guess. For this problem, the x-velocity of input 4 has almost no impact on the cost
function, as is reflected in Fig. 6-d; the values of ∇V y

in
are in general much larger than ∇V x

in
. Specifically,

the value for ∇V x
in,4

is negligible. This implies that the flow in region of interest I is mostly affected by
incoming flow from inlets 1, 2, and 3.
As shown in Fig. 6(c), the BFGS-based Alg. 3 results in a lower cost function with a larger Lo. Since
the step size for BFGS with normalized gradient is proportional to the design parameter, a typical value of
α = 0.01− 0.001 can be used for the step size. However, for the curvature-based Alg. 2 (OC), the step size
(or alternatively β̄) is less intuitive and should be proportional to the gradient of the cost function, which is
not available a priori and can depend on the initial conditions or regions of interest. At convergence for the
BFGS cases, we obtain RJ = 3.99× 10−5, Rx = 0.009, and Ry = 0.0026, which shows orders of magnitude
of reduction of cost function and sensitivity values after optimization.
Next, we study the impact of the initial guess on the optimization results to assess the robustness of one-shot
methods. To do this, we choose test 2 of Table 1. The steady-state solution for this case with an initial guess
(without optimization) is shown in Fig. 5-c. The velocity field is quite different from the reference solution,
and notably does not have vertical air curtain in the middle of the interior space. As a result, extensive
mixing between occupied and unoccupied regions is evident. The optimization results are shown in Fig. 7.
For the optimal solution using Alg. 3 (OB), we get RJ = 2.67× 10−4, Ry = 0.0018, and Rx = 8.59× 10−4,
which again demonstrates significant progress towards the optimal solution. Similar reduction in the cost
function is also observed for optimization initialized with several different initial guesses. Hence, both one-
shot methods (OB) and (OC) seem to be robust to variations in the choice of initial guess, at least in a
reasonable neighborhood.
The results shown in Figs. 6 and 7 demonstrate the minimal effect of horizontal inflow from inlet 4 on cost
function when using region of interest I. Fig. 8 shows the results for test 3 that involves region of interest
II extending over both the occupied and unoccupied zones. We note that the impact of inflow from inlets 2
and 3 becomes much more pronounced in this case.
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(a) Ground truth

(b) Test 1 and 3 initial guess

(c) Test 2 and 4 initial guess

(d) Test 1 optimal solution

(e) Test 2 optimal solution

(f) Test 3 optimal solution

(g) Test 4 optimal solution

Figure 5: Streamlines (black) superposed on a colormap of the velocity magnitude for various tests, as described in the text.
Panel a) shows the reference field for which the inverse problem seeks to find the corresponding inlet velocities. The optimal
solutions are based on the one-shot (BFGS variant) method with normalized gradient, i.e. Alg. 3 (OB).
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(a) (b)

(c) (d)

(e)

Figure 6: (a,b) Design parameters, (c,d) sensitivities and (e) cost function for test 1. Inlets 1, 2, 3 and 4 are denoted by thick
solid, solid-dotted, dotted, and thin solid lines, respectively. The black curves are for the results obtained by Alg. 3 (OB) and
the red curves are for the results obtained by Alg. 2 (OC).
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(a) (b)

(c) (d)

(e)

Figure 7: Same as Fig. 6 but for test 2.
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If we use the test 1 step size β̄ = 1000 for test case 3, the OC Alg. 2 diverges. Hence, a new step size is
required to make it work. On the other hand, the OB Alg. 3 converges for test case 3 using the same step
size α used in test 1. This robustness of the OB Alg. 3 to changes in the parameters of the optimization
problem implies that minimal user input is required for it to work across different problems. The optimal
solution is shown in Fig. 5-f.
Another comparison between the OC algorithm with a new step size β̄ where we get convergence, and the
OB algorithm, for test case 3 is shown in Fig. 8. Similar results are obtained for test 4, and we omit
discussing those results. The optimal solution for test 4 is however shown in Fig. 5-g. In both panels f and
g of Fig. 5, the double counter-rotating vortices in the middle of the cavity are apparent. Hence, when the
region of interest in the cost function extends across both the occupied zone and the unoccupied zone, this
important feature of the flow field can be recovered.
In order to compare the performance of the one-shot method with the DAL method, we also carry out
DAL-based optimization for test 1, using Alg. 1 (D). Results are shown in Fig. 9. We used α = 0.6 with
BFGS-type update for the preconditioner.
Using the one-shot method, the cost function is approximately 10−8 after Lo ≈ 14000 iterations (or no ≈
28000 total operation counts for the direct and adjoint equations). On the other hand, the cost function
computed by the DAL method, even after LD = 100 loops, does not converge to such a low value. We note
that that each DAL method ‘loop’ requires approximately kD = 5200 and ka = 4100 iterations on average
to converge. Hence, even after nD = 93000 operation counts for the DAL method, equivalent convergence
to that of the one-shot method is not obtained. Finally, we note that the total operation count of one-shot
method (i.e. no) is less than six times that of a single simulation of the direct equations (i.e. kD). In
terms of the computational cost, a typical direct simulation takes about 110.5s of CPU time. We ran the
case in parallel mode on 10 Intel Xeon 2.40GHz CPUs. Using the one-shot method for test 1, the overall
optimization took 722.84s, and hence the ‘retardation factor’, the ratio of the optimization computational
cost to the simulation computational cost, is less than 7. However, for the preconditioned DAL method, the
overall optimization cost for 100 DAL loops is 12238s.

5. Conclusions and future work

We have numerically investigated the performance of variants of one-shot methods with two types of pre-
conditioners for continuous adjoint-based PDE-constrained optimization. Consistent with previous results,
we found that the choice of preconditioner has a significant impact on the convergence rate and stability of
one-shot methods.
The validation of the algorithms was carried out using an analytically solvable laminar (plane Poiseuille)
flow inverse problem. The performance of different one-shot variants was compared by solving a complex
turbulent flow inverse problem, motivated by HVAC applications in the built environment. The robustness
of the algorithms was verified by using several different initial guesses and problem regions of interest. All
algorithms show robustness to the choice of cost function and initial guess.
We found that for various case studies, the BFGS based algorithm (OB) has several advantages. First, the
only optimization parameter that needs to be tuned in this case is the step size for the gradient descent
step. This can be chosen intuitively, e.g., to be a small fraction of the design parameters. Secondly, the
stability of the method has been shown to be superior compared to the curvature-based one-shot algorithm
(OC). The steady state optimal solution obtained by the OB algorithm has been found to have a smaller
optimal value of cost function than the converged optimal solution of the OC algorithm.
Finally, we have also compared the one-shot variants with the preconditioned DAL method to promote better
one-shot variants for practical use in the fluid dynamics community. We found that the one-shot method
can converge an order of magnitude faster than the DAL method. In fact, consistent with [20, 21, 40], the
total operation count of the one-shot method is a single-digit multiple of the operation count required for
a single solution of the direct (or governing) equations. The reduced computational cost associated with
the appropriate one-shot method makes this approach feasible for increasingly challenging fluid mechanics
applications.
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(a) (b)

(c) (d)

(e)

Figure 8: Same as Fig. 6 but for test 3. With β̄ = 1000 Alg. 2 (OC) diverges. The black curves denote the results for Alg. 3
(OB). The red curves denote the results for Alg. 2 (OC) with β̄ = 100.

An important application of this work is in airflow pattern optimization in the built environment. Customized
airflow patterns in various regions of the room help avoid a (potentially undesirable) well-mixed environment,
and instead allow for a focus on individual thermal comfort demands consistent with potential savings in
energy consumption. A natural extension of this work would be to account for the temperature distribution
by using Boussinesq equations. Such an extension is straightforward and all algorithms provided in Section
3 can be used for such a purpose.
For small size problems when dim(u) ≤ 50, we have obtained very robust and efficient solutions with the
BFGS-variant algorithm. We suspect that this would remain the case for intermediate problems when
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(a) (b)

(c) (d)

(e)

Figure 9: (a,b) Design parameters, (c,d) sensitivities, and (e) cost function for test 1 based on Alg. 1 (D), i.e. DAL method.
Inlets 1, 2, 3 and 4 are denoted by thick solid, solid-dotted, dotted, thin solid lines, respectively. The design parameters V yin,i
and V xin,i values are shown in panel a and b, respectively. A BFGS-tyoe preconditioner is used for the DAL method.

dim(u) ≤ 1000 [52]. Most boundary control problems would fall in the above two categories. However, for
larger scale problems, e.g. optimal initial perturbation and minimal seed problems [53], when dim(u) ≥ 1000,
limited-memory variants of BFGS, i.e. L-BFGS, should serve as a better choice. For such large scale
problems, approximate Hessian matrices cannot be computed within a reasonable computational budget
and, furthermore, there is no guarantee they are sparse. L-BFGS algorithms maintain implicit and compact
approximation of such Hessian matrices by storing only a few representative vectors, and despite avoiding
the construction of the full Hessian matrix, they often offer acceptable accuracy and rate of convergence

19



[30]. We believe that the algorithms presented in this work can be modified to use the L-BFGS algorithm
for large scale problems, and intend to address this topic in the future.
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[39] E. Özkaya, N. R. Gauger, Automatic transition from simulation to one-shot shape optimization with Navier-Stokes equa-

tions, GAMM-Mitteilungen 33 (2) (2010) 133–147.
[40] A. Borz̀ı, V. Schulz, Computational optimization of systems governed by partial differential equations, SIAM, 2011.
[41] A. Hamdi, A. Griewank, Properties of an augmented Lagrangian for design optimization, Optimization Methods & Software

25 (4) (2010) 645–664.
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