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Abstract
This paper considers indoor localization using multi-modal wireless signals including Wi-Fi,
inertial measurement unit (IMU) and ultra-wideband (UWB). By formulating the localiza-
tion as a multi-modal sequence regression problem, a multi-stream recurrent fusion method
is proposed to combine the current hidden state of each modality in the context of recur-
rent neural networks while accounting for the modality uncertainty which is directly learned
from its own immediate past states. The proposed method was evaluated on the large-scale
SPAWC2021 multi-modal localization dataset and compared with a wide range of baseline
methods including the trilateration method, traditional fingerprinting methods, and convo-
lution network-based methods.
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ABSTRACT

This paper considers indoor localization using multi-modal wireless
signals including Wi-Fi, inertial measurement unit (IMU), and
ultra-wideband (UWB). By formulating the localization as a multi-
modal sequence regression problem, a multi-stream recurrent
fusion method is proposed to combine the current hidden state
of each modality in the context of recurrent neural networks while
accounting for the modality uncertainty which is directly learned
from its own immediate past states. The proposed method was
evaluated on the large-scale SPAWC2021 multi-modal localization
dataset and compared with a wide range of baseline methods
including the trilateration method, traditional fingerprinting methods,
and convolution network-based methods.

Index Terms— Indoor localization, multi-modal, fusion, recurrent
neural network, uncertainty, Wi-Fi, UWB, IMU, CSI, RSSI.

1. INTRODUCTION

WiFi-based indoor localization has received long attraction over the
past two decades [1,2]. Among all frameworks, fingerprinting-based
methods provide an efficient solution for online localization with
low computational complexity [3]. On the other hand, it requires
enormous time and resources to construct an offline database with
chosen fingerprinting features at locations-of-interest to enable fast
online localization.

Existing WiFi-based fingerprinting systems have dominantly
used the coarse-grained received signal strength indicator (RSSI)
and fine-grained channel state information (CSI) at sub-7 GHz to
construct the offline training database as these measurements are
easy to access from commodity 802.11g/n/ac/ax Wi-Fi devices
[4–7]. Recently, millimeter-wave (mmWave) channel measurements
that account for antenna beamforming, e.g., the mid-grained beam
SNRs, have been considered for the fingerprinting-base indoor
localization [8–14]. Traditional machine learning and advanced
deep learning methods have been applied to the Wi-Fi-based
fingerprinting data and show promising results [15–21]. For
instance, the k-nearest neighbor (kNN), support vector machine
(SVM), and decision trees (DT) were applied to the RSSI-based
fingerprinting method [15, 22]. DeepFi exploits 90 CSI amplitudes
from all the subcarriers at all the three antennas using an autoencoder
[5, 6]. Nevertheless, the Wi-Fi-based methods show high sensitivity
to subtle environmental changes and pose the generalization issue
caused by the measurement inconsistency over time due to hardware
impairments and stochastic perturbations.

Beyond Wi-Fi, other wireless radio frequency (RF) signals
can be used for indoor localization such as ultra-wideband (UWB),
Bluetooth, ZigBee, and inertial measurement unit (IMU). Localizing
indoor objects was achieved using the IMU with tracking errors
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Fig. 1: Multi-modal recurrent fusion network for indoor localization.

adjusted by the Wi-Fi [23]. The fusion of Wi-Fi and IMU was
later improved by [24] to predict the trajectory without calibration.
DeepFusion combines heterogeneous wearable (e.g., smartphone
and smartwatch) and wireless (Wi-Fi and acoustic) sensors for
human activity recognition [25]. The fusion of the coarse-grained
RSSI, Bluetooth, and ZigBee data was considered in [26]. In [27],
the fine-grained CSI was used to extract the angle and then fused
with RSSI from Bluetooth.

In this paper, we consider multi-modal indoor localization
using Wi-Fi, IMU, and UWB. Specifically, we formulate the multi-
modal localization as a multi-stream recurrent neural network. Each
stream is designed to learn its underlying state evolution to the
localization in a supervised learning fashion. Different from other
heterogeneous fusion methods for indoor localization, the proposed
recurrent fusion network directly learns the modality quality, namely
relative importance weights, from its own immediate past states
as we conjecture that these immediate past states exhibit highly
relevant features to assess the quality of new sensor measurement at
the current step. Then the learned importance weights are used to
fuse the current states to infer the current location coordinate.

2. PROBLEM FORMULATION

Like the traditional fingerprinting-based method, we first collect
multi-modal wireless sensor measurements at known positions as
the fingerprinting dataset. Particularly, we use

xri (t),xc
i (t) ∈ CNc×1 → RSSI, CSI of the i-th Wi-Fi anchor (1)

xUWB
i (t) ∈ R2×1 → (range, power) of the i-the UWB anchor

xIMU (t) ∈ R9×1 → 3-axis (acceleration, gyro, and magnetic),



Fig. 2: The overall multi-modal indoor localization pipeline including the measurement calibration, data curation, and the multi-modal
recurrent fusion block.

where Nc is the number of Wi-Fi subcarriers. Assuming Lw and Lu

anchors for the Wi-Fi and UWB, the following multi-modal sensor
measurements form the fingerprinting data at each time step t,

xMM
t = {xr

t ∈ RLw×1, xc
t ∈ CNcLw×1,

xUWB
t ∈ R2Lu×1, xIMU

t ∈ R9×1}, (2)

For each t, the two-dimensional coordinate {xt, yt} is known.
The multi-modal localization is to infer the coordinate from the
multi-sensor data over a certain time interval:

{xMM
i }ti=t−T+1 → {xt, yt}, (3)

where T is the number of time steps used to estimate the coordinate.

3. MULTI-STREAM RECURRENT FUSION NETWORK
FOR INDOOR LOCALIZATION

The overall pipeline is shown in Fig. 2 with the multi-model
recurrent fusion block given in Fig. 1. In Fig. 1, each sensor stream
takes a sequence of one type of sensor measurements and uses the
recurrent neural units (e.g., long short-term memory (LSTM)) to
learn the long-term hidden state evolution. Then, multiple hidden
states immediately preceding the current step are projected to
relative importance weights, a measure of relative data quality
for each sensor. The hidden states at the current step are combined
by these importance weights to predict the coordinate.

3.1. Data Curation

Commodity CSI measurements are known to be impacted by
hardware impairments such as the sample frequency offset (SFO)
and carrier frequency offset (CFO). To mitigate these impacts, we
take a standard procedure to compress the raw CSI data. As shown
in the top figures of Fig. 2, null subcarriers are first removed and the
‘remaining CSI are flipped to smooth the whole frequency spectrum.
Later, the CSI is locally calibrated by normalizing each CSI by its
total sum, i.e., x̃c

i (t) = |xc
i (t)|/

∑
j |x

c
i,k(t)| where xci,k(t) is the

k-th subcarrier CSI of the i-th anchor at time t. The local calibration
is able to fix the gain fluctuation due to the use of automatic gain
control (AGC) at commodity Wi-Fi devices. To reduce the data
overhead, we apply the polynomial fitting to compress the calibrated
CSI into a weight vector ai(t) of dimension P [28],

x̃c
i (t) = Kai(t) (4)

where K = [1,k, · · · ,kP ] is the polynomial basis matrix with
k grouping the remaining subcarrier indices and P denoting the

polynomial order, and ai(t) = [a0,i(t), · · · , aP,i(t)]
T is the

coefficient vector for the i-th calibrated CSI amplitude.
For other sensor measurements such as RSSI, IMU, and UWB,

we apply a simple clipping step to exclude outliers. For instance,
the range measurements from the UWB sensors are clipped at 10
m, while the RSSI is clipped at 0 dBm. As a result, we used the
following multi-sensor data for indoor localization

{x̄r
i ,ai, x̄

UWB
i , x̄IMU

i }ti=t−T+1 → {xt, yt} (5)

where at = [aT
1 (t), · · · ,aT

Lw
]T groups all CSI coefficient vectors

from the Lw anchors, and x̄t represent the clipped version of xt.

3.2. Recurrent Neural Units

To utilize historic data for indoor localization, we formulate the
indoor localization as a sequence regression problem where the
current coordinate is estimated from the multi-modal data from
the current and previous T − 1 time steps. With this sequence-to-
coordinate formulation, the RNN is to learn time-dependent features
from the input sequence. Here, we consider the LSTM network [29].

In the context of multi-modal indoor localization, an LSTM is
to estimate the conditional probability

p(xt, yt|{x̄r
i ,ai, x̄

UWB
i , x̄IMU

i }ti=t−T+1). (6)

Take the RSSI x̄r
t as an example. The RSSI-stream LSTM can be

described with the following process:

ct = ft � ct−1 + it � c̃t, (7)
c̃t = tanh (Wrcx̄

r
t + Whcht−1 + bc) , (8)

ft = σ (Wrf x̄
r
t + Whfht−1 + bf ) , (9)

it = σ (Wrix̄
r
t + Whiht−1 + bi) , (10)

ht = ot � tanh (ct) , (11)
ot = σ (Wrox̄

r
t + Whoht−1 + Wco � ct + bo) , (12)

Specifically, in (7), a memory cell content ct updates its “old”
memory content ct−1 passing through the “current” forget gate
output ft and adds new “candidate” memory cell c̃t weighted by the
“current” input gate output it. The candidate memory cell, computed
in (8), uses the tanh function to combine the previous hidden state
ht−1 and the current input x̄r

t , plus a bias term bc, into a value
range of (−1, 1). The forget gate of (9) also acts on (ht−1, x̄

r
t )

but compresses the value into (0, 1) with the sigmoid function
σ(·) to determine how much of the old memory cell content ct−1

should retain in (7). Similarly, the input gate of (10) compresses
(ht−1, x̄

r
t ) into another value in between 0 and 1 and decides how



much information we should take from the new input x̄r
t via c̃f in

(7). Finally, the new hidden state ht is updated in (11) with ot as
the output gate in (12).

In other words, the new hidden state is a gated version (via ot)
of the tanh of the memory cell ct. For instance, when the output
gate is close to 1, the hidden state is effectively the memory cell
content to the next time step or the regression head. One can stack
multiple LSTM layers and use not only the forward pass but also the
backward pass for a bi-directional choice [30].

3.3. Relative Importance Weights

Compared with the standard multi-stream LSTM [30] for computer
vision applications, the data quality of multi-modal RF sensors
may vary drastically over time due to the surrounding environment,
e.g., non-line-of-sight (NLOS) scenarios, and sensor failures. For
instance, the UWB works well when the user is in sight while
degrading quickly at NLOS locations. Motivated by the observation,
we propose to project a concatenated “immediately preceding”
hidden states hu = [hT

t−F , · · · ,hT
t−1]T into a measure of modality

quality, u, and normalize these quality measures to reflect the
relative importance of each sensor at time t. Specifically, we utilize
a fully-connected (FC) layer followed by the sigmoid function:

u = σ
(
wT

uhu + bu
)

(13)

whereF is the number of past hidden states, wu is the corresponding
FC coefficient vector of dimension FNh × 1 with Nh denoting the
hidden state dimension, and bu is the bias term. Collecting all u for
selected sensor types, we use the softmax function to normalize the
uncertainty to the relative importance of each sensor type

αm =
eum∑M

m=1 e
um
∈ [0, 1], (14)

where m = 1, · · · ,M refers to the sensor type such as the RSSI,
CSI, IMU and UWB, and

∑
m αm = 1.

3.4. Recurrent Fusion

With the multi-stream LSTM and the uncertainty estimates, we
propose to fuse the last hidden states from multiple LSTM streams,
weighted by the learned uncertainty:

hfusion =

M∑
m=1

αmhm
t . (15)

The fused state is then fed into the coordinate estimation block which
consists of several FC layers along with the ReLU activation σR(·):

[x̂t; ŷt] = WQ
o vQ

o + bQ
o ,v

q
o = σR(Wq−1

o vq−1
o + bq−1

o ), (16)

where q = 1, · · · , Q, v0
o = hfusion, and Q is the number of FC

layers. We train the multi-modal fusion network in an end-to-end
fashion with the loss function of mean squared error (MSE) between
the estimated coordinate [x̂t, ŷt] and the ground truth [xt, yt].

Remark: Kalman filter-like approaches also use relative importance
or uncertainty for multi-sensor fusion via the propagation of (cross-
and self-) covariance matrices of multiple sensor modalities with
known measurement and (and likely Markovian) dynamics models.
In contrast, the multi-stream LSTM is a data-driven approach that
utilizes a standard LSTM to learn both nonlinear measurement
and dynamics models over a long-term horizon and introduces a
nonlinear mapping of immediate past hidden states to estimate the
relative importance.

Fig. 3: The floor plan of the SPAWC2021 multi-modal localization
dataset [31] where red squares and red circles denote, respectively,
the UWB and Wi-Fi anchor locations.

4. PERFORMANCE EVALUATION

In the following, we present experimental evaluation on the SPAWC2021
multi-modal localization dataset.

4.1. SPAWC2021 Multi-Modal Localization Dataset

The SPAWC2021 multi-modal localization dataset was collected
using a robot in a multi-room setting with a square footage about
8 m× 8 m, as shown in Fig. 3 (a). The robot platform was mounted
with a multi-sensor testbed consisting of multiple commercial-of-
the-shelf Wi-Fi (ESP32), UWB (DW1000), and IMU (BNO055)
chipsets [31]. The pseudo-ground-truth coordinates were obtained
from the SLAM algorithm from a two-dimensional Lidar, ultrasonic
distance sensors, wheel-tick sensors, infrared sensors, and the IMU.
More details about the dataset can be found in [31].

We consider Dataset 1 with about 750k samples of the three
sensor data. The covered robot trajectories are highlighted in blue
in Fig. 3 (a) for a course of 1975.28 m. For each sampled location,
RSSI (scalar) and CSI (64 subcarriers) from 11 Wi-Fi anchors, range
and power readings from 3 UWB anchors, and a 9-dimensional IMU
data were recorded. Fig. 3 (b) and (c) show the RSSI and UWB
heatmaps, respectively, when 7−10 Wi-Fi and all 3 UWB anchors
report valid readings. It is seen that the upper-right room is well
covered by all 3 UWB anchors, while the lower-left room has no
UWB coverage due to the NLOS configuration.

4.2. Implementation

We standardize each input entry by subtracting the mean and
normalizing it with the standard deviation. For the LSTM, we use a
network configuration of 2 layers, a hidden dimension ofNh = 256,
an optional bi-directional implementation, an uncertainty estimation
block of a varying number of hidden states F = {1, 2}, and an
output block of Q = 2 FC layers with a hidden layer dimension
of 128. To regularize the training from overfitting, we adopt the
dropout that randomly sets the hidden state outputs of both the first
and second LSTM layers to zeros with a probability of 0.2 [32].

We consider various combinations of sensor fusion, ranging
from M = 1 (no fusion) to M = 3 (three types of sensors). Two
sequence lengths T = 10 and T = 30 with corresponding stepsizes



(a) Individual sensor

(b) Sensor fusion

Fig. 4: The cumulative distribution function (CDF) of localization
errors for the recurrent fusion methods and a list of baseline methods.

of 1 and 10, respectively. We train the network using the Adam
optimizer with a weight decay of 1e−4 and a learning rate of 1e−3.
For up to 50 × 104 iterations, the models are trained with a mini-
batch size of 128 by an 80/10/10 splitting of Dataset1 among the
training, validation, and testing sets, as the same as [31].

4.3. Comparison to Baseline Methods

We include the following baseline methods: 1) two trilateration
methods (X-Tri with X denoting the sensor type) [1]; 2) two
k-nearest neighbor methods (X-FP) that idenfity k = 2 nearest
fingerprinting samples to the input and apply a linear interpolation
between the two fingerprinted locations [2]; 3) three single-frame
convolution neural network method (X-Conv) [7] with the architecture
auto-tuned by the AutoML tool [31]; and 4) three convolution-based
fusion methods [31]. We also include four individual-stream LSTM
(X-LSTM) of M = 1. The performance metric is the cumulative
distribution function (CDF) of localization errors.

Fig.4 (a) compares the trilateration method, fingerprinting
methods, convolution net-based methods, and the individual stream
LSTM methods. First, as observed in [31], the trilateration (magenta)
and fingerprinting (red) methods give more large localization errors,
e.g., more than 3 m, partly due to the presence of NLOS areas.
Second, except for the CSI data, the X-Conv methods (black) show
better performance. Particularly, the IMU-Conv method provides
the best result among the X-Conv methods as the IMU data is
less impacted by the NLOS areas. Third, the sequential X-LSTM
methods (blue) lead to further improved localization performance.
This improvement is noticeable for the UWB sensor by comparing
the three solid curves.

Table 1: Localization errors (m) on SPAWC2021 dataset.

Mean Median CDF@0.9

RSSI-Tri 13.74 2.09 7.00
UWB-Tri 7.57 9.36 11.54
RSSI-FP 1.05 0.81 2.35
CSI-FP 4.18 4.53 6.32
CSI-Conv 1.53 1.45 2.66
UWB-Conv 1.99 2.07 3.18
IMU-Conv 0.64 0.43 1.42

RSSI-LSTM 1.10 0.75 2.43
CSI-LSTM 0.94 0.41 2.40
UWB-LSTM 1.07 0.65 2.64
IMU-LSTM 0.60 0.26 1.68

RI-Conv 0.46 0.32 0.96
CI-Conv 0.39 0.22 0.97
RIU-Conv 0.26 0.18 0.52

RF(F=1, seq30, biTrue) 0.18 0.12 0.33
RF(F=1, seq30, biFalse) 0.19 0.13 0.37
RF(F=1, seq10, biTrue) 0.06 0.05 0.12
RF(F=1, seq10, biFalse) 0.07 0.06 0.13
RF(F=2, seq30, biTrue) 0.33 0.18 0.63
RF(F=2, seq30, biFalse) 0.19 0.12 0.35

Fig.4 (b) compares the convolution-based fusion methods, i.e.,
the RI-Conv, CI-Conv, and RIU-Conv, with the proposed recurrent
fusion method. For these two considered sequence lengths T = 10
and T = 30, the performance is better than the RIU-Conv result,
the best one of the convolution-based fusion class [31]. Table 1
further summarizes quantitative performance in terms of the mean,
median, and the location error corresponding to the 90th percentile
of the CDF. For the recurrent fusion (RF) method, we list these
error metrics with various configurations. Several observations
can be made here. First, F = 1 appears to yield better results
than F = 2. This is potentially due to the redundant information
included in the later hidden state and more parameters to be learned
with a larger F . Second, the bi-directional option shows only
marginal performance improvements when F = 1. Finally, a short
sequence of T = 10 leads to a bigger performance gain than other
configuration parameters. The best RF version shows a performance
improvement of an order of magnitude over the RIU-Conv method.

5. CONCLUSION

This paper has considered the multi-modal sensor fusion for indoor
localization in a sequential learning setting. Specifically, we
proposed to fuse the hidden states from these multi-modal sensors,
weighted by their uncertainties directly learned from their past
hidden states. Comprehensive performance comparison on a large-
scale open dataset confirms significant performance gain of the
proposed method over a long list of baseline methods.

6. ACKNOWLEDGEMENT

The authors sincerely thank Dr. Maximilian Arnold from Nokia
Bell Labs (Germany) for releasing the SPAWC2021 multi-modal
localization dataset and providing the original figure data in [31] for
the baseline comparison.



7. REFERENCES

[1] S. He and S. H. Chan, “Wi-Fi fingerprint-based indoor
positioning: Recent advances and comparisons,” IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 466–
490, 2016.

[2] F. Zafari, A. Gkelias, and K.K. Leung, “A survey of indoor
localization systems and technologies,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.

[3] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building
RF-based user location and tracking system,” in INFOCOM,
March 2000, vol. 2, pp. 775–784.

[4] K. Wu et. al., “CSI-based indoor localization,” IEEE Trans.
on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1300–
1309, July 2013.

[5] X. Wang, L. Gao, S. Mao, and S. Pandey, “DeepFi:
Deep learning for indoor fingerprinting using channel state
information,” in WCNC, March 2015, pp. 1666–1671.

[6] X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-
based fingerprinting for indoor localization: A deep learning
approach,” IEEE Transactions on Vehicular Technology, vol.
66, no. 1, pp. 763–776, Jan 2017.

[7] H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi:
Convolutional neural networks based indoor Wi-Fi localization
using channel state information,” IEEE Access, vol. 5, pp.
18066–18074, 2017.

[8] M. Pajovic, P. Wang, T. Koike-Akino, H. Sun, and P. V. Orlik,
“Fingerprinting-based indoor localization with commercial
MMWave WiFi–Part I: RSS and Beam Indices,” in
GLOBECOM, Dec. 2019.

[9] P. Wang, M. Pajovic, T. Koike-Akino, H. Sun, and P.V. Orlik,
“Fingerprinting-based indoor localization with commercial
mmwave WiFi–Part II: Spatial beam SNRs,” in GLOBECOM,
Dec 2019.

[10] T. Koike-Akino, P. Wang, M. Pajovic, H. Sun, and P. V. Orlik,
“Fingerprinting-based indoor localization with commercial
mmwave WiFi: A deep learning approach,” IEEE Access, vol.
8, pp. 84879–84892, 2020.

[11] P. Wang, T. Koike-Akino, and P. V. Orlik, “Fingerprinting-
based indoor localization with commercial mmwave WiFi:
NLOS propagation,” in GLOBECOM, December 2020.

[12] J. Yu, P. Wang, T. Koike-Akino, and P. V. Orlik, “Human pose
and seat occupancy classification with commercial mmwave
WiFi,” in GLOBECOM Workshop on Integrated Sensing and
Communication (ISAC), December 2020.

[13] J. Yu, P. Wang, T. Koike-Akino, Y. Wang, P. V. Orlik, and R. M.
Buehrer, “Multi-band Wi-Fi sensing with matched feature
granularity,” arXiv:2112.14006, 2022.

[14] T. Koike-Akino, P. Wang, and Y. Wang, “Quantum transfer
learning for Wi-Fi sensing,” in IEEE International Conference
on Communications (ICC), May 2022.

[15] M. Youssef and A. Agrawala, “The horus location
determination system,” Wirel. Netw., vol. 14, no. 3, pp. 357–
374, June 2008.

[16] S. Mazuelas et. al., “Robust indoor positioning provided by
real-time RSSI values in unmodified WLAN networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 3, no. 5,
pp. 821–831, Oct 2009.

[17] D. Li, B. Zhang, Z. Yao, and C. Li, “A feature scaling based k-
nearest neighbor algorithm for indoor positioning system,” in
GLOBECOM, Dec 2014, pp. 436–441.

[18] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting
for indoor localization with a deep learning approach,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 1113–1123, Dec
2016.

[19] X. Wang, L. Gao, and S. Mao, “Biloc: Bi-modal deep learning
for indoor localization with commodity 5GHz WiFi,” IEEE
Access, vol. 5, pp. 4209–4220, 2017.

[20] C. Hsieh, J. Chen, and B. Nien, “Deep learning-based indoor
localization using received signal strength and channel state
information,” IEEE Access, vol. 7, pp. 33256–33267, 2019.

[21] M. T. Hoang, B. Yuen, X. Dong, T. Lu, R. Westendorp, and
K. Reddy, “Recurrent neural networks for accurate RSSI
indoor localization,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10639–10651, Dec 2019.

[22] Z. Wu et. al., “Location estimation via support vector
regression,” IEEE Trans. on Mobile Computing, vol. 6, no.
3, pp. 311–321, March 2007.

[23] L. Chen, E. H. Wu, M. Jin, and G. Chen, “Intelligent fusion of
Wi-Fi and inertial sensor-based positioning systems for indoor
pedestrian navigation,” IEEE Sensors Journal, vol. 14, no. 11,
pp. 4034–4042, 2014.

[24] J. Choi and Y.-S. Choi, “Calibration-free positioning technique
using Wi-Fi ranging and built-in sensors of mobile devices,”
IEEE Internet of Things Journal, vol. 8, no. 1, pp. 541–554,
2020.

[25] H. Xue et al., “DeepFusion: A deep learning framework for
the fusion of heterogeneous sensory data,” in MobiHoc, 2019,
pp. 151–160.

[26] M. L. Rodrigues, L. F. M. Vieira, and M. F. M.
Campos, “Fingerprinting-based radio localization in indoor
environments using multiple wireless technologies,” in
PIMRC, 2011, pp. 1203–1207.

[27] A. U. Ahmed et. al., “Multi-radio data fusion for indoor
localization using Bluetooth and WiFi,” in PECCS, 2019, pp.
13–24.

[28] A. Sobehy, E. Renault, and P. Muhlethaler, “CSI based indoor
localization using ensemble neural networks,” IFIP MLN, pp.
367–378, 2019.

[29] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
11 1997.

[30] B. Singh et al., “A multi-stream bi-directional recurrent neural
network for fine-grained action detection,” in CVPR, 2016, pp.
1961–1970.

[31] M. Arnold and F. Schaich, “Indoor positioning systems: Smart
fusion of a variety of sensor readings,” arXiv:2105.05438,
2021.

[32] N. Srivastava et al., “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014.


	Title Page
	page 2

	
	 Introduction
	 Problem Formulation
	 Multi-Stream Recurrent Fusion Network for Indoor Localization
	 Data Curation
	 Recurrent Neural Units
	 Relative Importance Weights
	 Recurrent Fusion

	 Performance Evaluation
	 SPAWC2021 Multi-Modal Localization Dataset
	 Implementation
	 Comparison to Baseline Methods

	 Conclusion
	 Acknowledgement
	 References


