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Abstract
This study reports a novel hardware-friendly modular architecture for implementing one
dimensional convolutional neural network (1D-CNN) digital predistortion (DPD) technique
to linearize RF power amplifier (PA) real-time. The modular nature of our design enables
DPD system adaptation for variable resource and timing constraints. Our work also presents
a co-simulation architecture to verify the DPD performance with an actual power amplifier
hardware-in-the-loop. The experimental results with 100 MHz signals show that the proposed
1DCNN obtains superior performance compared with other neural network architectures for
real-time DPD application.
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Abstract—This study reports a novel hardware-friendly modu-
lar architecture for implementing one dimensional convolutional
neural network (1D-CNN) digital predistortion (DPD) technique
to linearize RF power amplifier (PA) real-time. The modular
nature of our design enables DPD system adaptation for variable
resource and timing constraints. Our work also presents a co-
simulation architecture to verify the DPD performance with an
actual power amplifier hardware-in-the-loop. The experimental
results with 100 MHz signals show that the proposed 1D-
CNN obtains superior performance compared with other neural
network architectures for real-time DPD application.

Index Terms—DPD, power amplifier, CNN, neural network

I. INTRODUCTION

The fifth-generation (5G) new radio (NR) is designed to
deliver enhanced mobile broadband with higher data rates up
to 20 Gbps. The growth in data rates is made possible partly
by carrier aggregation, which has increased the total supported
bandwidth from 100 MHz used in long-term evolution ad-
vanced (LTE-A) to over 1 GHz in 5G-NR [1]. The increase
in bandwidth leads to a significant challenge in linearization
of power amplifier (PA) over a wide bandwidth. Digital pre-
distortion (DPD) has been widely adopted to improve PA
linearity [2]. The conventional DPD is mainly based on the
Volterra series [3] or its simplified versions like memory
polynomial [4]. Recently, researchers have introduced a deep
neural network (DNN) framework for DPD operation [5]–[7].
Most DNN-based DPD systems are implemented using soft-
ware models written using popular machine learning libraries
in python. Although these models perform well on offline
data, adopting them to real-time hardware designs such as
FPGA is challenging due to timing and resource constraints.
These challenges could be addressed by using either a radio-
frequency (RF) analog accelerator [8] or a digital accelerator
[9]. This paper presents a novel modular implementation of a
one-dimensional convolutional neural network (1D-CNN) that
can operate in real-time. The modular nature of the architec-
ture increases the adaptability of the system to different neural
network configurations. The synthesis results show that the
presented DNN-DPD system can operate in greater than 100
MHz bandwidth which can be used to pre-distort wideband
orthogonal frequency-division multiplexing (OFDM) signals
used in 5G-NR.

II. DNN-BASED DPD

In practice, applying DNN to linearize RF power amplifier
in radio transmitter demands special attention, due to the strict

Fig. 1. NMSE performance of different NN architectures for PA modelling.

latency and resource constraints. Thus several modifications to
conventional DNN should be made to adopt them to DPD. A
commonly used simple approach for this is the real-valued
time-delayed neural network (RVTDNN) [10]. It was further
modified by the augmented real-valued time-delayed neural
network (ARVTDNN) [5] which extends the input layer by
adding pre-calculated envelope and its higher-order terms.

Convolution neural networks (CNNs) have been also inves-
tigated for DPD application [6], where the input data and its
envelop terms are stacked together for two-dimensional CNN.
Our simulation results in Fig. 1 shows that one-dimensional
(1D) CNN can outperform several other configurations, in-
cluding RVTDNN based on multi-layer perceptron (MLP),
recurrent neural networks based on long short-term memory
(LSTM), and conventional memory polynomial. Motivated by
this result, we investigate a hardware-friendly 1D-CNN design
for the DPD application.

III. DESIGN OF MODULAR 1D-CNN ARCHITECTURE

Our architecture adopts the modularity and parametric de-
sign principles for the adoptability of our design to other DNN
architectures. The overall 1D-CNN architecture is shown in
Fig. 2. The ConvBlock is a parameterized implementation of
the 1D convolution defined with a kernel size K, an input
channel Cin and an output channel Cout for specification of
kernel weights and biases. A system that converts an input
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Fig. 2. System architecture of 1D-CNN processor.

with Cin channels to an output with Cout channels should
have Cin × Cout number of 1D filters. The design uses the
‘generate’ construct in Verilog to allow the design to support
a user-specified number of input/output channels.

The 1D filters are implemented using the transposed finite-
impulse response (FIR) filter structure [11] since it is known
that the transposed form filters can outperform the direct form
filters when the filters are large [12]. In the transposed FIR
filters, multipliers can be avoided entirely if the coefficients
are powers of two (PoT) [12] which leads to more hardware-
friendly designs.

In order to update weights without modifying any design
files, the weights are declared in a separate file and included
in the Conv1d implementation. This design pattern requires
resynthesizing every time the weights are updated. Alterna-
tively, weights can be stored in registers which can be updated
by a processor.

The design supports various nonlinear activation function
such as sigmoid. Our experiment showed that rectified linear
unit 6 (ReLU6) outperforms sigmoid activation in 1D CNN-
based DPD systems. The ReLU6 implementation is also
hardware-friendly compared to most other activation functions
as it just needs two cooperators.

IV. VERIFICATION USING CO-SIMULATION

A co-simulation strategy is used to verify the design. The
verification setup uses the ModelSim as the register-leverl
transfer (RTL) simulator and Python to communicate with
RFWebLab [13] and simulate the software-based 1D CNN.
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Fig. 3. Verification architecture.

The complete verification architecture is shown in Fig. 3.
MyHDL [14] and Matlab Engine are used through Python
libraries that communicate with ModelSim and Matlab. OFDM
signals are generated in MATLAB and provided as the input to
the DPD system running in ModelSim simulator. The output
is sent to RFWebLab, an online accessible testbed with a real
PA. The output from PA is returned to MATLAB, to measure
the improvement.

The DPD is trained using the indirect learning archi-
tecture (ILA) shown in Fig. 4(a). A post-distortion (PoD)
model is used in ILA, which has the same architecture as
the DPD model. The PoD model is trained using the PA
output y and PA input xdpd. The error is calculated by
e(n) = xpod(n)–xdpd(n). The PoD model is trained until the
normalized mean squared error is minimized. Fig. 4(b) shows
that PoD model output xpod(n) closely predicts the PA input
xdpd(n) when the error is minimized. After the training, the
parameters of the PoD model are passed on to the DPD model.

We use 50 MHz OFDM signals to test the DPD performance
in terms of adjacent channel power ratio (ACPR) [15]. The
experimental results showed that DPD improves the ACPR
from −32.92 dB to −38.88 dB. The power spectral density
(PSD) comparison with and without the DPD is also shown
in Fig. 4(c).

The hardware design is synthesized targeting the Xilinx
ZCU104 FPGA board. Table I shows the timing and area
reports of the design synthesis for different configurations. All
configurations use the fixed point number representation with
16 total bits and 10 fractional bits. The ACPR results shown
in Fig. 4(c) is taken from the design with two hidden layers,
20 neurons per layer, and a kernel size of 5. The performance
could be increased by increasing them at the cost of more
hardware resources. The timing results in Table I show that
our design meets the requirement to run at least 100 MHz for
50 MHz bandwidth.
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Fig. 4. DPD verification using co-simulation: (a) In-direct learning architecture; (b) Post distorter output (xpod(n) comparison with PA input (xdpd(n)) after
training; (c) Power spectral density of the transmit signal without using DPD (shown in red) which has an ACPR of −33.92 dB and transmit signal after
using DPD (shown in blue) which has an ACPR of −38.88 dB.

TABLE I
TIMING AND RESOURCE UTILIZATION OF HARDWARE DESIGN FOR

DIFFERENT NETWORK CONFIGURATIONS

Design Timing Area
hidden
layers

neurons
per layer

kernel
size

Critical
path (ns) LUTs Regs DSPs

1 20 5 1.541 ∼4k ∼1k 400
1 20 9 1.541 ∼4k ∼1k 400
2 20 5 3.218 ∼55k ∼46k 914
1 40 5 1.541 ∼5k ∼7k 510
2 40 5 4.040 ∼76k ∼59k 1k

The synthesis is targeted for Xilinx MPSoC FPGA in ZCU104 board
which has 230k LUTs, 460k Regs and 1.7k DSP blocks

V. CONCLUSION

This paper presents a hardware-friendly modular architec-
ture of a 1D-CNN-based DPD system. Due to the modular
nature and parametric design, this architecture is easily adapt-
able to different DNN configurations to accommodate different
timing and resource constraints. The design is verified using a
co-simulation strategy that measures the ACPR improvement
for an FPGA. The performance of the DPD system can be
approximated in significantly less time since it avoids the
bit-stream generation time. The initial experimental results
showed around a 5 dB reduction in ACPR for two-layer 1D-
CNN with 20 neurons per hidden layer. This performance
can be further improved by using a deeper/wider network
configuration at the cost of increased resource utilization. A
software-based post-distortion model is used to extract the
parameters for the DPD model. In future work, we will
investigate direct learning architecture to update the DPD
model parameters on the fly. The current design uses DSP
blocks in the FPGA to perform multiplication. In the future, we
will investigate PoT approximations for the model parameters
and the improvement in resource utilization by replacing DSP
blocks with shift and addition operations.
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