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Abstract
We propose a tractable approach to generate abort-safe trajectories for safe spacecraft ren-
dezvous that guarantees safety (the spacecraft does not enter a keep-out set defined around
the rendezvous target), despite process and measurement noise, and the possibility of partial
propulsion failure. We use a combination of stochastic reachability, computational geometry,
and optimization to synthesize a nominal rendezvous trajectory and its associated controller.
The designed trajectory is such that safe recovery is also guaranteed with high likelihood
in the event of a partial propulsion failure. The recovery controllers can be computed only
when needed using offline pre-computation, thereby reducing the online computational effort.
Numerical experiments show the efficacy of the proposed approach.
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Abort-safe spacecraft rendezvous under stochastic actuation and navigation
uncertainty

Abraham P. Vinod∗, Avishai Weiss, and Stefano Di Cairano

Abstract— We propose a tractable approach to generate
abort-safe trajectories for spacecraft rendezvous that guaran-
tees safety, i.e., the spacecraft does not enter a keep-out set
defined around the rendezvous target. We guarantee safety of
the rendezvous trajectory even in the event of propulsion failure
and in the presence of stochastic uncertainty in actuation and
navigation. We use a combination of stochastic reachability,
computational geometry, and optimization to synthesize a
nominal rendezvous trajectory and its associated controller. The
designed trajectory is such that safe recovery, in the event of a
propulsion failure, is guaranteed with pre-specified, sufficiently
high probability. The recovery controllers are available when
needed via an offline pre-computation, which significantly
reduces the online computational effort. Numerical experiments
show the efficacy of the proposed approach.

I. INTRODUCTION

We consider spacecraft rendezvous maneuvers where the
approaching spacecraft, also known as the deputy, must reach
the target spacecraft, also known as the chief. We require that
the deputy can guarantee safety (stay outside a keep out set
defined around the chief) in the event of actuation failure
(Figure 1), despite the stochastic uncertainties arising from
propulsion mismatch as well as navigational uncertainty.
Our prior effort considered the problem of generating such
abort-safe rendezvous trajectories in the absence of uncer-
tainties [1]. In this paper, we combine stochastic reachability
and optimization to generate a nominal rendezvous trajectory
with an associated controller that has a high likelihood of
safety, in the presence of stochastic uncertainties. We also
guarantee that safe abort (recovery) is possible at every time
step with high likelihood using an off-nominal controller that
accommodates uncertainty.

Traditionally, a deputy spacecraft performs a predeter-
mined active collision avoidance maneuver if it deviates
significantly from its nominal rendezvous approach and its
current trajectory is no longer safe in proximity to the
chief [2]. However, such a maneuver may not always be
possible depending upon the current trajectory and the avail-
able actuation. The authors in [3] tackle this issue by gen-
erating nominal and abort sequences concurrently at every
iteration, which is computationally expensive. Alternatively,
researchers have used continuous-time and discrete-time
backward reachability to verify desired behaviors in the ren-
dezvous trajectories when no uncertainty is present [1], [4]–
[6]. In the presence of uncertainty, researchers have turned to
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Fig. 1. Illustration of the abort-safe rendezvous problem. We design ren-
dezvous trajectories that are safe, both in nominal and off-nominal operation,
despite stochastic uncertainty in actuation uncertainty and navigation. In off-
nominal operation, we only have access to a limited actuation, possibly from
a redundant thruster. Picture courtesy: NASA and JAXA.

stochastic viability to ensure that line-of-sight constraints are
satisfied with high likelihood [7]. However, the computation
of the stochastic reachable set is in general computationally
expensive and does not scale well to high dimensional
systems. Moreover, existing work in stochastic reachability
typically assumes access to accurate state information [7],
[8]. To enforce the safe abort constraint under uncertain state
measurements, we present a tractable inner-approximation of
a stochastic viability set with state measurement uncertainty,
which is the set of state measurements from which safe
recovery of the deputy is guaranteed in the event of actuation
failure with high likelihood despite uncertainty. These sets
also enable the synthesis of the safe recovery controller on-
demand.

The main contribution of this paper is a tractable approach
for abort-safe spacecraft rendezvous trajectory optimiza-
tion under uncertainty in actuation and navigation using
stochastic reachability. The proposed approach synthesizes a
rendezvous trajectory that approaches the chief, while staying
outside a pre-specified keep-out set with high likelihood,
including the scenarios of propulsion failures. We utilize of-
fline stochastic reachability computations to synthesize a set
of safe state measurements from which recovery under off-
nominal operation is possible, despite the uncertainties and
the resulting limited actuation. We cast the original stochastic
trajectory optimization with reachability-based constraints as



a mixed-integer optimization problem, which we solve in
a receding horizon framework in practice. In addition, we
discuss a convexification of the optimization problem to
enable real-time control at the expense of additional con-
servativeness. We demonstrate the efficacy of the proposed
approach using numerical simulations.

II. PRELIMINARIES AND PROBLEM FORMULATION

We employ the following notation throughout the paper:
The interval N[a,b] enumerates all natural numbers between
and including a, b ∈ N. Random vectors are denoted in bold,
‖ · ‖ denotes Euclidean distance, and dist(x,S) denotes the
Euclidean distance between a point x ∈ Rn and a set S.

A. Problem formulation

Consider a chief in a circular Keplerian orbit around Earth
with mean motion ω, and a deputy in proximity to the chief.
The deputy is assumed to be a rigid body such that all control
forces act on its center of mass, the chief is uncontrolled,
and orbital perturbations are neglected. We consider in-plane
motion of the deputy relative to the chief in Hill’s frame
with radial, x, and along-track, y, components. The linearized
dynamics of the deputy relative to chief are given by the
Clohessy-Wiltshire (CW) equations [2]

ẍ− 3ω2x− 2ωẏ =
Fx
md

, ÿ + 2ωẋ =
Fy
md

, (1)

where [x, y]> ∈ R2 is the relative position of the deputy
resolved in Hill’s frame, md is the mass of the deputy,
and [Fx, Fy]> ∈ R2 is the control force applied to the
deputy resolved in Hill’s frame. We discretize (1) in time
with sampling period ∆t and model actuation mismatch as
a stochastic uncertainty to obtain a discrete-time LTI system

xt+1 = Axt +B(ut +wt), (2)

where xt = [x, y, ẋ, ẏ]> ∈ X = R4 is the deputy’s state,
ut = [Fx, Fy]> ∈ U ⊂ R2 is the input, wt ∈ W = R2

is the error due to actuation mismatch, and A and B are
appropriately defined matrices. We assume that the input
set U is convex and compact, and the process noise wt is
an independent and identically distributed Gaussian vector
wt ∼ N (µw,Σw) with µw ∈ R2 and Σw ∈ R2×2.

Measurement model: We model navigational uncertainty
as noisy state measurements yk ∈ Y = R4. We assume yk
are samples of a random vector yk at every time step k,

yk = xk + γk. (3)

Here, xk is the unknown true state of the deputy relative
to the chief, and γk ∼ N (µγ ,Σγ) is an independent and
identically distributed Gaussian noise that models the state
measurement uncertainty with known mean vector µγ ∈ R4

and known covariance matrix Σγ ∈ R4×4.
Effect of actuation: Next, we consider the effect of execut-

ing an open-loop control sequence U ∈ UN over a planning
horizon N ∈ N. Due to the linearity of the system (2) and
the Gaussianity of the stochastic process and measurement

noises, the future state xt|k is a Gaussian random vector for
all t ∈ N[k,k+N ],

xt|k ∼ N (µt|k,Σt|k), (4a)

µt|k = At−kµk|k + Cu(t, k)(U + µW ), (4b)

Σt|k = At−kΣk|k
(
At−k

)>
+ Cu(t, k)ΣW (Cu(t, k))> (4c)

yt|k ∼ N (νt|k,Γt|k), νt|k = µt|k + µγ , Γt|k = Σt|k + Σγ (4d)

Here, W ∼ N (µW ,ΣW ) is the concatenated disturbance
random vector for the process noise, and Cu(t, k) is the
controllability matrix for (2) of appropriate dimensions.

Safety definition: We define KeepOut as a convex and
compact set in (x, y)-coordinates around the chief located at
the origin. The safety of the mission requires the following:

1) Safety under nominal operation: We require the state
xt|k 6∈ KeepOut at all time steps t ∈ N[k,k+N ].

2) Safety under off-nominal operation: In the event of
actuation failure at some failure time T ∈ N[k,k+N ],
the input space is restricted to a convex and compact
subset V ⊂ U for all future time t ≥ T . We require the
state xt|k 6∈ KeepOut at all time steps t ∈ N[T,T+M ]

for a longer safety horizon M ∈ N, with M > N .
Due to the stochastic nature of the dynamics (2), we
seek probabilistic safety guarantees. For some user-specified
safety probability α ∈ (0, 1], we require that the probability
of violating either of the safety requirements is no larger than
1−α. We refer to the off-nominal safety requirement with an
empty set V as passive safety, and refer to the off-nominal
safety requirement as active safety otherwise [1].

Cost definition: For a planning horizon N , we seek an
open-loop controller that approaches the set KeepOut safely
with minimal control effort. We denote the mission cost J :
XN × UN → R as a quadratic function,

J(µk+1|k, . . . , µk+N |k, U)

=
∑

t∈N[k+1,k+N]

dist(µt|k,KeepOut)2 + λ‖U‖22. (5)

Here, λ ≥ 0 trades-off the control effort with the proximity
to KeepOut.

Optimal control problem: At each step k, given the current
state measurement yk, solve

min. Cost J as defined in (5) (6a)

s. t. Dynamics (4) for the state xt|k with U ∈ UN , (6b)

P
{
∀t ∈ N[k+1,k+N ],xt|k 6∈ KeepOut

}
≥ αnom, (6c)

∀ potential failure time T ∈ N[k,k+N−1],
P
{
∀t ∈ N[T,T+M ], xfail

t|T 6∈ KeepOut
}
≥ αoff

with state xfail
t|T for dynamics (4) under limited

actuation V ⊆ U with xfail
T |T initialized to xT |k.

(6d)

Here, αnom, αoff ∈ (0, 1] are probability thresholds selected
to ensure that the safety objectives are met with a likelihood
no smaller than α. In practice, we solve (6) in the receding
horizon control framework, which motivates the need for
computationally efficient solutions.



Problem 1. Design a tractable chance constrained optimiza-
tion formulation of (6) for α-safe rendezvous, in the presence
of stochastic uncertainty in actuation and navigation, and
even in presence of actuation failure.

Motivated by our previous work [1], we approach Prob-
lem 1 using stochastic reachability theory to account for
stochastic uncertainty in actuation and navigation.

Problem 1.a. Use stochastic reachability to enforce (6d)
without an explicit computation of the controllers needed for
the recovery from a potential actuation failure.

We generalize recent results in stochastic viability set
computation [7] to the computation of a stochastic viability
set with state measurement uncertainty, the set of safe state
measurements from which recovery using noisy state mea-
surements and limited actuation is possible with sufficiently
high probability. These sets provide a tractable approach to
enforce (6d).

III. MAIN RESULTS

The key component of the proposed approach is the
construction of stochastic viability sets under state mea-
surement uncertainty. We use these sets to cast (6) as a
chance constrained optimization problem, and to avoid the
need for the synthesis of off-nominal state-measurement-
feedback controllers online. We solve the resulting opti-
mization problem via mixed-integer quadratic programming,
propose a convexification approach that yields a feasible
(possibly suboptimal) solution to (6) via a convex quadratic
program, and discuss the conservativeness introduced in the
proposed approach for the sake of tractability.

A. Safety under actuation failure and state measurement
uncertainty via stochastic viability sets

We first define the stochastic viability set under state
measurement uncertainty and discuss a tractable inner-
approximation. The proposed definition extends existing def-
inition of stochastic viability sets (see [8]) to problems where
state information is available with measurement uncertainty.

Let ρ : Y → V denote any Borel-measurable state-
measurement-feedback control law. For a safety horizon M ,
let π , (ρ0, ρ1, . . . , ρM−1) ∈ M denote a (possibly time-
varying) state-measurement-feedback control policy, and let
{xπ,y0k }M

k=0
denote the random process corresponding to the

stochastic model (2), (3) under the influence of π and an
initial state measurement y0.

Definition 1 (STOCHASTIC VIABILITY SET WITH STATE
MEASUREMENT UNCERTAINTY). We define the stochastic
viability set with state measurement uncertainty L(S, β) for
the stochastic dynamics (2) and (3), a safe set S ⊆ Rn, a
safety horizon M ∈ N, and a safety probability β ∈ (0, 1]
as the set of all initial state measurements y0 that satisfies

L(S, β) = {y0|∃π ∈M, P{∀k ∈ N[0,M ],x
π,y0
k ∈ S} ≥ β}

Intuitively, L(S, β) are the set of initial measurements y0

from which an state-measurement-feedback control policy

π exists such that the underlying stochastic state process
{xπ,y0k }M

k=0
stays within S with a likelihood no smaller than

β. However, the exact computation of L(S, β) is expected to
be hard, since even for the case of perfect state knowledge,
the state-of-the-art relies on grid-based dynamic program-
ming [8]. Such methods suffer from the curse of dimen-
sionality, and can not reliably solve systems with dimension
n ≥ 3 without incurring significant approximations [9].

We can utilize Definition 1, (4d), and a sufficiently high
αout ∈ (0, 1] to cast (6d) as a chance constraint,

∀t ∈ N[k,k+N ], P
{
yt|k ∈ L(X \KeepOut, αoff)

}
≥ αout. (7)

Consequently, we require an inner-approximation of L(S, β)
to remain conservative in the right direction.

Next, we introduce the notion of robust control invariance
for the non-stochastic dynamics with state measurement
uncertainty to propose an inner-approximation of L(S, β). In
contrast to Definition 1, robust control invariance seeks safety
guarantees, despite any realization of bounded disturbances.

Definition 2 (ROBUST CONTROL INVARIANCE UNDER
STATE MEASUREMENT UNCERTAINTY). For some bounded
process noise set Eact and measurement noise set Emeas,
consider

xt+1 = Axt +B(ut + wt), yt = xt + γt, (8)

where no stochastic information is available on wt ∈ Eact ⊂
Rm and γt ∈ Emeas ⊂ Rn. Let M ∈ N be the safety
horizon, and S ⊂ X be the safe set of interest. The robust
control invariant set with state measurement uncertainty
Ok(Eact, Emeas,S) is defined recursively for k ∈ N[0,M−1],

1) safety of the current state: for every measurement
noise γk ∈ Emeas and every state measurement yk ∈
Ok(Eact, Emeas,S), the associated state is safe, i.e.,
xk = yk − γk ∈ S, and

2) safety of the next state and the state measurement:
for every state measurement yk ∈ Ok(Eact, Emeas,S),
there exists an input uk ∈ V such that for every
process noise wk ∈ Eact and every measurement
noise γk ∈ Emeas, the resulting next state is safe,
i.e., xk+1 = A(yk − γk) + B(uk + wk) ∈ S .
Additionally, the system can be rendered safe from
every possible next state measurement, yk+1 = xk+1 +
γk+1 ∈ Ok+1(Eact, Emeas,S) for every measurement
noise γk+1 ∈ Emeas.

We define OM (Eact, Emeas,S) = S 	 Emeas for the safety of
terminal state xM , since no control occurs after k = M .

By Definition 2, a system that starts from a robust con-
trol invariant set with state measurement uncertainty yk ∈
Ok(Eact, Emeas,S) at time k can be driven safely, xt|k ∈ S
for every t ∈ N[k,k+M ], using a state-measurement-based
feedback policy, despite the bounded disturbance values.
Lemma 1 follows from standard computational geometry
arguments, similar to robust control invariant sets [10].

Lemma 1 (SET-BASED DYNAMIC PROGRAMMING RE-
CURSION). For any bounded sets Eact and Emeas, the



sets {Ok(Eact, Emeas,S)}Mk=0 can be obtained from the
following recursion for k ∈ N[0,M−1], initialized with
OM (Eact, Emeas,S) = S 	 Emeas,

Pk(Eact, Emeas,S) = Ok+1(Eact, Emeas,S)	 (−Emeas)

	 (BEact)	 (−AEmeas) (9a)

Ok(Eact, Emeas,S) = A−1(Pk(Eact, Emeas,S)⊕ (−BV))

∩ (S 	 (−Emeas)). (9b)

Theorem 1 (INNER-APPROXIMATION OF STOCHASTIC VIA-
BILITY SETS WITH STATE MEASUREMENT UNCERTAINTY).
For any αact, αmeas ∈ (0, 1], let Eact and Emeas be bounded
sets such that

P{wt ∈ Eact} ≥ α
1
M
act, and P{γt ∈ Emeas} ≥ α

1
M
meas. (10)

Let the current time be k ∈ N. Then, for all failure times T ∈
N[k,k+N ] and the corresponding state measurement yT |k ∈
O0(Eact, Emeas,X \KeepOut),

P
{
∀t ∈ N[T,T+M ], x

fail
t|T 6∈ KeepOut

}
≥ αactαmeas, (11)

where xfail
t|T corresponds to the state at time t ≥ T

under limited actuation V ⊆ U and dynamics (2). In
other words, O0(Eact, Emeas,X \ KeepOut) ⊆ L(X \
KeepOut, αactαmeas).

We omit the proof of Theorem 1 due to space constraints.
The key insight used in the proof is the law of total
probability and the robust state constraint satisfaction offered
by Definition 2. Based on Theorem 1, O0(Eact, Emeas,S)
is the set of state measurements from which safety can
be guaranteed with high likelihood for the stochastic dy-
namical system (2) and measurement noise model (3). For
any choice of αact and αmeas, the safety guarantee holds
with a likelihood no smaller than αactαmeas over the safety
horizon, despite actuation failure (future control is limited
to ut ∈ V ⊆ U), stochastic actuation uncertainty wt, and
stochastic measurement uncertainty γt.

In light of Theorem 1, every feasible solution of

min. Cost J as defined in (5)

s. t. Dynamics (4) for the state xt|k
and measurement yt|k under U ∈ UN ,

(12a)

P
{
∀t ∈ N[k+1,k+N ], xt|k 6∈ KeepOut

}
≥ αnom, (12b)

P
{
yt|k ∈ O0(Eact, Emeas,X \KeepOut)

}
≥ αout,

∀t ∈ N[k+1,k+N ]. (12c)

satisfies (6), where (6d) is relaxed to (7). Thus, (12) addresses
Problem 1.a, for sufficiently high αout.

Off-nominal recovery controller synthesis: If a failure
indeed occurs at some time T ∈ N[k,k+N ], then the execution
of a control action, drawn from the following set at every
subsequent time step T + t with t ∈ N[0,M ], ensures the
desired level of probabilistic safety, Vt,eff = {u ∈ V|Bu ∈
Pt+1(Eact, Emeas,X \KeepOut)⊕{−Ayt+T |T }}. The effec-
tive control set Vt,eff , defined for t ∈ N[0,M ], is parameterized
by the current state measurement yt+T |T , the dynamics (2),
the limited control authority V , the sets Eact and Emeas,

and the robust control invariant sets with state measurement
uncertainty {Ot(Eact, Emeas,X \KeepOut)}Mt=0. Thus, the
use of (12c) instead of (6d) avoids the need for synthesizing
off-nominal controllers, while ensuring that a safe recovery
controller can be synthesized on-demand.

B. Tractable abort-safe motion planning under uncertainty

Next, we discuss tractable approaches to enforce the
chance constraints (12b) and (12c) for polytopic keep-out
sets. Motivated by existing work in stochastic obstacle
avoidance [11], we assume that the set KeepOut is a
polytope, with KeepOut = ∩i∈N[1,|KeepOut|]KeepOuti =

∩i∈N[1,|KeepOut|]{x|a>i x ≤ bi}. Consequently, we utilize
Boole’s inequality, quantile reformulation, and disjunctive
constraint enforcement [12] to propose a conservative but
tractable enforcement of the chance constraints (12b)–(12c).

1) Chance constraints for nominal operation (12b): From
Boole’s inequality, a sufficient condition for (12b) is

P{xt|k ∈ KeepOut} ≤ 1− αnom

N
, ∀t ∈ N[k,k+N ]. (13)

Since P{∩Ai} ≤ mini P{Ai} for any finite collection of sets
Ai, the following collection of disjunctive chance constraints
is sufficient to satisfy (13) (hence (12b)),

∀t ∈ N[k,k+N ], ∃i ∈ N[1,|KeepOut|],

P{xt|k ∈ KeepOuti} ≤
1− αnom

N
. (14)

Since xt|k is Gaussian, P{xt|k ∈ KeepOuti} =

Φ

(
bi−a>i µt|k√
a>i Σt|kai

)
, where µt|k and Σt|k are given by (4),

and Φ is the standard normal cumulative distribution. Using
the quantile reformulation [13] and disjunctive constraint
enforcement [12], we arrive at the following collection of
mixed-integer linear constraints that conservatively enforces
(12b) using auxillary binary variables δ nom

i,t and sufficiently
large constants κi,t,

a>i µt|k +
√
a>i Σt|kaiΦ

−1
(

1− αnom

N

)
≥ bi − (1− δ nom

i,t )κi,t, (15a)∑
i∈N[1,|KeepOut|]

δ nom
i,t ≥ 1, (15b)

for every t ∈ N[k,k+N ] and every i ∈ N[1,|KeepOut|].
2) Chance constraints for off-nominal operation (12c):

For safety under the off-nominal operation, we simplify (12c)
into a tractable collection of disjunctive chance constraints,
which we enforce similarly to (15).

Proposition 1. For a polytopic KeepOut,
P
{
yt|k ∈ O0(Eact, Emeas,X \KeepOut)

}
≥

max
i∈N[1,|KeepOut|]

P
{
yt|k ∈ O0(Eact, Emeas,X \KeepOuti)

}
.

Proposition 1 follows from the observation that
P{∪iAi} ≥ maxi P{Ai} for any finite collection of
sets Ai. Then, a nominal open-loop control sequence U



satisfies (12b), if

∀t ∈ N[k,k+N ], ∃i ∈ N[1,|KeepOut|],

P
{
yt|k ∈ O0(Eact, Emeas,X \KeepOuti)

}
≥ αout. (16)

In contrast to (12c), (16) simplifies the necessary com-
putation of the robust control invariant sets with state
measurement uncertainty required to solve (12). The sets
O0(Eact, Emeas,X \KeepOuti) in (16) are easier-to-compute
via (9) using existing computational geometry tools [14]. In
contrast, the set O0(Eact, Emeas,X \ KeepOut) in (12c) is
hard-to-compute via (9), since the set X \KeepOut is non-
convex.

For each hyperplane (ai, bi) of the KeepOut with
i ∈ N[1,|KeepOut|], it is easy to show that the sets
O0(Eact, Emeas,X \ KeepOuti) are polytopes for a poly-
topic input set V . We denote the set O0(Eact, Emeas,X \
KeepOuti) , ∩j∈N[1,Li]

{p>ijy ≤ qij}, where Li =
|O0(Eact, Emeas,X \ KeepOuti)| ∈ N, pij ∈ Rn, and
qij ∈ R. Using Boole’s inequality, the following disjunctive
constraints are sufficient to satisfy (16) (hence (12c)),

∀t ∈ N[k,k+N ], ∃i ∈ N[1,|KeepOut|], ∀j ∈ N[1,Li],

P{p>ijyt|k > qij} ≤
1− αout

Li
, (17)

where yt|k ∼ N (νt|k,Γt|k) by (4d). Similarly to (15), we
use mixed-integer linear constraints with auxiliary binary
variables δ off

i,t to conservatively enforce (12c),

p>ijνt|k +
√
p>ijΓt|kpijΦ

−1

(
1− 1− αout

N

)
≤ qij + (1− δ off

i,t )κ′i,t, (18a)∑
i∈N[1,|KeepOut|]

δ off
i,t ≥ 1, (18b)

for every t ∈ N[k,k+N ], every i ∈ N[1,|KeepOut|], and every
j ∈ N[1,Li]. Here, κ′i,t > 0 are sufficiently large constants.

We describe the complete mixed-integer optimization
problem as follows,

min.
U,δ nom

i,t ,δ off
i,t

Cost J as defined in (5)

s. t. δ off
i,t , δ

nom
i,t ∈ {0, 1}, µt|k, νt|k via affine

transformation (4b) and (4d) of U ∈ UN ,
Mixed-integer linear constraints (15)
and (18) in U , δ nom

i,t , and δ off
i,t .

(19)

for every t ∈ N[k,k+N ] and i ∈ N[1,|KeepOut|]. We select
the parameters αnom, αoff , αout, αact, αmeas ∈ (0, 1] such
that the overall safety probability is no smaller than the
user-specified threshold α ∈ (0, 1] as follows. Recall that
Theorem 1 requires αactαmeas ≥ αoff .

Proposition 2. For any user-specified safety probability
threshold α ∈ (0, 1], any nominal open-loop controller that
solves (19) with αnom ∈ [α, 1], αout ∈ (0, 1], αoff ∈ (0, 1],
and αnom + αoutαoff ≥ 1 − α, guarantees that all safety
objectives are met with probability no smaller than α.

Proposition 2 follows from the law of total probability,
Theorem 1 and (12b). Proposition 2 describes a balance of

safety violation risks between the nominal and off-nominal
scenarios. By requiring high αnom, we obtain more con-
servative nominal trajectories, while admitting more risky
maneuvers during the potential off-nominal operation. On
the other hand, reducing αnom increases the lower bound
on αoffαout in Proposition 2, which, in turn, restricts the
regions of the state measurement space Y from which safe
recovery is possible in the event of actuation failure. For a
user-specified safety probability α = 0.9, we can use αnom =
0.95, αoff = 0.96, αout = 0.99, and αact = αmeas = 0.98.

Convexification via scheduling: While commercial solvers
have brought in tremendous improvements in solving mixed-
integer programs, we may need to compute a suboptimal
solution for (19) to satisfy real-time requirements, or increase
the control horizon to accommodate the computation time
for solving mixed-integer programs online. Alternatively, we
may satisfy real-time requirements by convexifying (19).
Specifically, we select a feasible assignment of binary vari-
ables δ nom

i,t and δ off
i,t , which renders the trajectory opti-

mization problem (19) convex. Intuitively, the assignment
of the binary variables schedules the particular halfspace
of KeepOut that we must avoid at every time step. A
simple strategy is to expand the KeepOut set to one of
the hyperplanes KeepOuti† for some user-specified i† ∈
N[1,|KeepOut|], resulting in a convex quadratic problem,

minimize
U

∑
t∈N[k+1,k+N]

dist(µt|k,KeepOuti)
2 + λ‖U‖22

subject to µt|k, νt|k via affine transformation of U ∈ UN ,
∀t ∈ N[k,k+N ], a>i†µt|k +

√
a>
i†

Σt|kai†Φ−1
(

1−αnom
N

)
≥ bi† ,

∀t ∈ N[k,k+N ],

∀j ∈ N[1,L
i† ]

p>i†jνt|k +
√
p>
i†j

Γt|kpi†jΦ
−1
(
1− 1−αout

N

)
≤ qi†j .

(20)

C. Computation of Eact and Emeas

From Theorem 1, we must choose Eact and Emeas such
that (10) is satisfied. Additionally, we require that Eact

and Emeas are convex and compact for the computation
of O0(Eact, Emeas,X \ KeepOuti). Since wt and γt are
Gaussian random vectors, we choose Eact and Emeas as
ellipsoids, E = {Σ 1

2 z + µ | ‖z‖ ≤ r} where µ and Σ are
the mean and covariance matrices of w and γ respectively,
and r > 0 is obtained from the chi-distribution’s quantile
function. See [7] for more details.

D. How conservative is the proposed approach?

We conclude this section by briefly discussing the var-
ious points in the algorithm design, where we introduced
conservativeness for the sake of tractability. A main source
of conservativeness is the use of an inner-approximation
to the stochastic viability sets with state measurement un-
certainty (Theorem 1 and Proposition 1) for the sake of
tractability. Another source of conservativeness is the use
of Boole’s inequality to enforce joint chance constraints
(12b) and (12c). The use of piecewise-affine approximation
of the quantile function instead of fixed risk allocation can



TABLE I
RESULTS OF ABORT-SAFE RENDEZVOUS TRAJECTORY OPTIMIZATION

Mixed-integer QP (19) Convex QP (20)
Time to stopping criterion 25 minutes 30 minutes

Cost J 27714.93 28211.07
Maneuver ∆V 4.84 m/s 4.97 m/s

Computation of O (offline) 1263.74 minutes 0.12 minutes
Computation of U (online) 112.29 seconds 0.57 seconds

reduce the conservativeness from Boole’s inequality [15].
When convexification (20) is used in place of the mixed-
integer program (19), we incur additional conservativeness
in the nominal trajectory since the scheduling of the keep-
out constraints is now fixed. However, the convexification
significantly reduces the computational effort.

IV. NUMERICAL EVALUATION

We apply the proposed approach to achieve active safety
on a rendezvous example with the keep-out set KeepOut =
[−500, 500] × [1000, 1000] × R2 (units in meter, uncon-
strained in velocity space). The discrete-time CW dynamics
(2) have mean motion ω =

√
µe/Rc with Rc = 7228.1

km, deputy’s mass md = 300 kg, a sampling time of
∆t = 30 seconds, a nominal actuation set U = [−1, 1]

2 N,
and an off-nominal actuation set V = {0} × [−1, 1] N. We
used a planning horizon of N = 60 (30 minutes), a safety
horizon M = 120 (1 hour), trade-off parameter λ = 100,
and set the desired rendezvous safety probability α = 0.9.
We set w and γ as zero-mean Gaussian random vectors
with covariance matrices Σw = diag(0.001, 0.001), Σγ =
diag(0.003, 0.003, 0, 0), and the initial state measurement
y0 = [1000, 5000, 0, 0].

We used an Intel i7-4790K CPU with 4 GHz clock
rate and 32 GB RAM running MATLAB 2020a for the
computations. We used SReachTools [16] and YALMIP [17]
to setup the stochastic optimal control problems (19) and
(20), GUROBI [18] and ECOS [19] as the backend solvers,
and MPT3 [14] to implement the recursion (9).

Figure 2 shows the nominal and off-nominal trajectories
from six failure times T ∈ {0, 10, . . . , 50} via Monte-Carlo
simulation. We stopped the simulation whenever the nominal
trajectory is within a ball of radius 1250 m around the origin.
We found the desired probability specifications were satisfied
in every simulation. We also notice that the solution to (19)
effectively utilizes its ability to schedule the keep-out halfs-
paces to come closer to the keep-out set within the planning
horizon. Table I reports the time to stopping criterion, the
resulting costs, the maneuver ∆V = (∆t/md)

∑N−1
k=0 ‖uk‖,

and the computation times, and illustrates the benefits of
offline computation and convexification for Problem 1.

V. CONCLUSION

We present an abort-safe rendezvous trajectory optimiza-
tion method that accounts for actuation uncertainty, mea-
surement uncertainty, and the possibility of actuation failure.
We generate a safe nominal rendezvous trajectory with
high likelihood guarantees of safety, while ensuring that the

Fig. 2. Monte-Carlo validation (showing 20 out of 500 simulations) of
the abort-safe rendezvous trajectories computed via (19) (left) and (20)
(right). We mark the nominal rendezvous trajectory (blue), the off-nominal
trajectory (cyan) after propulsion failure at time T ∈ {0, 10, 20, 30, 40, 50}
(red dots) after which actuation is limited ut ∈ V ⊂ U for t ≥ T , the set
KeepOut in grey, the halfspace selected for convexification KeepOuti†
in orange, and the dotted circle marks the stopping criterion.

recovery is possible using limited available actuation in the
event of actuation failure. We utilize stochastic reachability
to bypass the need for the synthesis of off-nominal, state-
measurement-based recovery controllers.
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