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Abstract

Nonlinear model predictive control (NMPC) has grown mature and algorithmic techniques
exist, e.g., based on sequential quadratic programming (SQP) methods, to handle relatively
complex constrained control systems. In addition, model predictive control for hybrid dy-
namics systems, including both continuous and discrete decision variables, can be imple-
mented efficiently based on state of the art mixed-integer quadratic programming (MIQP)
algorithms. This paper proposes a novel mixed-integer SQP (MISQP) optimization algorithm
as a heuristic search technique to find feasible, but possibly suboptimal, solutions for real-
time implementations of mixed-integer NMPC (MI-NMPC). Two particular variants of the
MISQP algorithm are described and motivated. Based on a preliminary software implemen-
tation, the real-time MISQP performance is illustrated for closed-loop MINMPC simulations
on a nontrivial vehicle control case study, featuring worst-case computation times below 30
milliseconds.
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Sequential Quadratic Programming Algorithm for Real-Time
Mixed-Integer Nonlinear MPC

Rien Quirynen® and Stefano Di Cairano

Abstract— Nonlinear model predictive control (NMPC) has
grown mature and algorithmic techniques exist, e.g., based on
sequential quadratic programming (SQP) methods, to handle
relatively complex constrained control systems. In addition,
model predictive control for hybrid dynamical systems, in-
cluding both continuous and discrete decision variables, can
be implemented efficiently based on state of the art mixed-
integer quadratic programming (MIQP) algorithms. This paper
proposes a novel mixed-integer SQP (MISQP) optimization
algorithm as a heuristic search technique to find feasible, but
possibly suboptimal, solutions for real-time implementations of
mixed-integer NMPC (MINMPC). Two variants of the MISQP
algorithm are described and motivated. Based on a preliminary
software implementation, the real-time MISQP performance is
illustrated for closed-loop MINMPC simulations on a nontrivial
vehicle control case study, featuring worst-case computation
times below 30 milliseconds.

I. INTRODUCTION

Model predictive control (MPC) allows enforcing con-
straints and optimizing a performance criterion by solving
a constrained optimal control problem (OCP) at each time
step [1]. This framework also applies to hybrid dynamical
systems that include both continuous and discrete decision
variables, providing a powerful model-based control design
for a large class of problems, e.g., including switched dynam-
ical systems [2], discrete or quantized actuation [3], motion
planning [4], logic rules and temporal logic specifications [5].
In case of nonlinear objective and constraint functions,
nonlinear MPC (NMPC) with discrete decision variables
requires the online solution of mixed-integer nonlinear pro-
gramming (MINLP) problems, which is known to be NP-
hard, in general [6].

In this work, we propose to solve mixed-integer optimal
control problems (MIOCPs) of the following form

N-1 N
. T

in Z le(zg, uk) + m(zn) + Z Cp W (la)

k=0 k=0

S.t. xg = .’i’t, (lb)

Tyl = wk(mk7uk) + Dkwk, Vk € Zévil, (1C)

0> hy(xk, ug) + Exwy, Yk € 2V, (1d)

OZ}LN(:L'N)+ENU)N, (le)

wy; €Z, YjeEZy, ke Zy, (1f)

where ZZ denotes the range of integers a,a+1,...,b, x3 €

R™= are real-valued states, u;, € R™" are real-valued controls
and wy, € Z™ are integer decision variables. Therefore, the
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optimization variables include all states X = [z ,...,2%]"
control inputs U = [ug,...,u)_,] and integer variables
W = [wg,...,wl] . In the MIOCP, (la) defines the
cost, the initial state value z; is set by (1b), (lc) are the
discrete-time system dynamics, (1d)-(le) are the inequality
constraints, and (1f) imposes the integrality constraints.
The MIOCP (1) is a non-convex MINLP, i.e., the optimiza-
tion problem is non-convex even after relaxing the integrality
constraints in (1f), e.g., due to the nonlinear system dynamics
in (1c). As discussed in [7], global optimization algorithms
for MINLPs often require convexity of the objective and con-
straint functions. For example, BONMIN [8] is a global solver
for convex MINLPs and becomes a heuristic for non-convex
MINLPs. Even though global optimization algorithms exist
for non-convex MINLPs, e.g., using relaxations of factorable
problems [9], they are usually computationally very ex-
pensive and hence generally not yet practical for real-time
implementations of mixed-integer NMPC (MINMPC) [6].
In this paper, we instead focus on approximate or heuristic
techniques to find feasible but (possibly) suboptimal so-
Iutions of (1) to enable real-time MINMPC applications.
Global algorithms for convex MINLPs can be used to find
approximate solutions to non-convex MINLPs, e.g., using
outer approximation or hybrid branch-and-bound (hB&B)
methods [8]. Recent work in [10] proposed a variant of the
hB&B algorithm for real-time MINMPC based on convex
MINLPs. Specifically for non-convex MINMPC, a variant
of the real-time iterations (RTI) algorithm has been proposed
based on outer convexification in combination with rounding
schemes in [6]. However, when inequality constraints depend
directly on the discrete decision variables as in (1), the
latter approach requires solving mathematical programs with
vanishing constraints, which are particularly challenging.
Sequential quadratic programming (SQP) methods form
a popular technique to solve nonlinear programs (NLPs),
e.g., within a B&B method for MINLPs [11]. A mixed-
integer SQP (MISQP) algorithm was proposed in [12], [13]
for general MINLPs, based on the solution of mixed-integer
quadratic programming (MIQP) subproblems and a trust
region method. Even though MIQPs are still A/P-hard in
general, state of the art algorithms can efficiently solve a
large range of MIQPs, e.g., using B&B-type methods [14],
[15]. In addition, more recently, tailored methods have been
developed for warm starting, early termination and pre-solve
techniques in B&B methods for MIQP-based MPC of linear
or piecewise-linear systems [16], [17].
The MISQP method in [12], [13] requires the use of
a trust region radius for both continuous and integer op-
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timization variables, and it relies on the assumption that
integer variables have a smooth influence on the MINLP,
i.e., incrementing an integer variable by one leads to a small
change of function values. However, the latter assumption
is generally not true for the MIOCP (1) of interest, as for
example, it may include binary variables that have a large
influence on the optimal control trajectories. In the present
paper, based on our assumption of linear dependency on
integer variables in (1), without loss of generality, we do
not require the smoothness assumption from [12], [13] and
we propose instead a novel variant of the MISQP algorithm,
including a line search or trust region method applied only
to the continuous optimization variables.

The paper is organized as follows. Section II introduces
our proposed MISQP heuristic framework and presents the
theoretical motivation. Section III proposes two particular
variants of the MISQP algorithm, and Section IV describes
the real-time feasible software implementation. Section V
illustrates the closed-loop performance for an MINMPC case
study, and Section VI concludes the paper.

II. MIXED-INTEGER SEQUENTIAL QUADRATIC
PROGRAMMING (MISQP)

We rely on the following two assumptions.

Assumption 1: The MIOCP is formulated as in (1), where
integer variables wj enter linearly in the objective (la),
equality (1c) and inequality constraints (1d)-(1e).

Assumption 2: The nonlinear functions I (-), m(-) in the

cost (1a), ¢ (-) in the discrete-time dynamics (1¢) and hg(+),
hn () in the inequality constraints (1d)-(le) are assumed to
be C?, i.e., twice continuously differentiable.
Assumption 1 will be important for our proposed MISQP
approach but it can be imposed without loss of generality,
since any MIOCP can be written in the structured form (1),
possibly by defining auxiliary optimization variables. As-
sumption 2 is common in the literature to describe con-
vergence results for standard SQP methods in constrained
nonlinear optimization, e.g., see [18], [19].

Let us introduce the following compact notation for the
MIOCP in (1) that needs to be solved

P(y,z) := min f(y)+c' z (2a)
Y,z

st. glyy+Dz =0, (2b)

h(y)+ Ez <0, (2¢)

zj € Z, Vi ez, (2d)

where y € R™ and z € Z" denote the continuous and
integer optimization variables, i.e.,

T T T T}T

Y=1[Tg, Uy s UN_1, TN ! T]T.

, 2=[wy,..., Wy 3)
Based on Assumption 1 and 2, we know that the integer
optimization variables z enter linearly in the cost (2a) and
constraints in (2b) and (2c¢), and that the nonlinear functions

f(-), g(+) and h(-) in (2) are C? functions, respectively.

A. MIQP Subproblem for MISQP Algorithm

We propose an MISQP algorithm to solve the MINLP
in (2) by solving a sequence of MIQP approximations,

Pmiqp (yk 5 Zk) =

1
§AyTB(yk) Ay+V, f(y") Ay

min
Ay, Az
+c' (28 + Az) (4a)
)
st gly®) + G—Z(y’“)Ay + D (2" + Az) = 0, (4b)
oh
h(y®) + a—y(y’“)Ay +E (2" 4+ Az2) <0, (40)
2+ Az €7, Vj € 77, (4d)

given the current solution guess (y*, z*) at the k" iteration,
and where B(y*) = 0 is a positive definite matrix that
approximates the Hessian of the Lagrangian [20]. Integer
feasibility is imposed at each MISQP iteration due to
the integrality constraints in (4d). In addition, the linear-
quadratic objective approximation in (4a) and the constraint
linearizations in (4b) and (4c) depend only on the continuous
optimization variables y, due to Assumption 1.

Let us define a merit function for the MISQP algorithm,
using the standard ¢; penalty function to quantify constraint
satisfaction applied to the MINLP (2)

¢(y; 2,p) = Fy, 2)+p |Gy, 2)l1+p Y max (Hi(y, 2),¢),
7’ 5)

where p > 0 is the penalty parameter value, € > 0 is a small
positive value and

Fly,z) = f(y)+¢'z,
G(y,2) =g(y) + Dz,

are the compact notation for the objective and constraints.
Our proposed merit function in (5) does not directly incor-
porate the integrality constraints (2d), since they are imposed
exactly by each MIQP approximation in (4d). The ¢; merit
function in (5) is not differentiable but a directional derivative
exists, which is sufficient for our purpose. The aim of the
MISQP algorithm is to decrease the merit function along the
search direction in order to ensure convergence.

(6)
H(y,z) = h(y) + E z,

B. Descent Property of MIQP Search Direction

The step search direction (Ay, Az), computed by solving
the MIQP in (4), is not necessarily a descent direction for a
merit function of the original MINLP in (2), due to the non-
convexity of the integrality constraints in (4d). However, we
will show that Ay is a descent direction for a merit function
of the NLP that is obtained in (2) when fixing the values
of the integer optimization variables to zF+! = 2% + AzF,
The latter property is important, since it can be used by line
search or trust-region methods to guarantee progress with
respect to the merit function.

Lemma 1: Given the solution (Ay*, Az*) to problem
Pmiqp(yk,zk) in (4), the step direction Ay* is equal to



the step direction Ay that is the solution to problem
Prniqp(y*, 28F1), where 251 = 2% + AzF,

Proof: This result follows directly from z entering
the MINLP (2) linearly, such that (Ay*,0) is the solution
to problem Ppiqp(y*, 2¥11) if (Ay*, A2*) is the solution
to problem Puiqp(¥¥, 2¥) in (4) and 2FT1 = 2K 4 Ak
Specifically, the optimal values for Ay from the MIQP in (4)
do not depend on the values for z*. [ ]

Based on the result in Lemma 1, it can be shown that
the following descent property holds for the MIQP search
direction and the ¢; merit function in (5).

Theorem 1: The MISQP step direction Ay*, computed as
the solution to problem Ppiqp(y*,2"%) in (4), is a descent
direction for the merit function ¢(y; 251, p) in (5), i.e., for
a sufficiently large parameter value p > 0,

Vyo(y*; 25 p) T AYF <. (7

Proof: Let us show this result for the proposed MISQP

algorithm, considering an equality constrained MINLP (2),

even though it can easily be extended to the inequality

constrained case, e.g., by using a slack reformulation as
in [20]. For this case, the ¢; penalty function reads as

o5 2,p) = Fly, 2) + p Gy, 2)[1.- (8)

Following the standard SQP result in [20, Theorem 18.2],
the directional derivative can be shown to read as

V(" 2 p) TAYF =V F(yF 2P T Ay

—ollewt,
Based on the optimality conditions for the MIQP in (4)
B A = 210N = 9, () .
%‘Z(y’“)Ay’“ = —G(y", "), "
the following inequality can be derived from (9)
V(" M ) TAYE < Ay B(yF) Ayt (1)

= (p = IN*"lso) 1GG*, =)

It follows from (11) that Ay* is a descent direction for
the merit function ¢(y; z*1, p) if Ay*F # 0, the Hessian
approximation B(y*) = 0 is positive definite and the penalty
parameter value p > ||\ . [ ]

C. MISQP Convergence and Heuristics

As pointed out in [12], [13], it is important to stress that
one cannot prove convergence of an MISQP algorithm to
the global solution of the MINLP (2). Instead, we propose a
novel heuristic MISQP algorithm based on the descent prop-
erty described in Theorem 1. Assuming that the sequence
of values for the integer optimization variables converges
to a fixed set of values, i.e., 25 — Z based on a sequence
of updates zFt1 = 2zF + AzF where AzF corresponds to
the MIQP solution in (4), then the following result for the
convergence of the continuous variables y holds.

Proposition 1: If an index k exists for which zFt! =

2k = 7 for all k > k, and there exists at least one set

of values § for which G(7,z) = 0 and H(y,z) < 0, then
the MISQP method converges to a local minimizer (y*,Z%)
of the MINLP (2) for fixed integer values z = Z, i.e., y* is
a local minimizer for the continuous program P(y,z).
Proof: The latter proposition follows directly from
Theorem 1 and the convergence analysis of standard SQP
methods [20], using line search or trust-region globalization
techniques, applied to the continuous nonlinear program
P(y,z) in (2) for fixed integer values. [

The proposition is based on two main assumptions, namely
that the sequence of integer values converges z¥ — % and
that a feasible solution exists for the continuous nonlinear
program P(y,Zz) in (2). Therefore, our proposed heuristic
MISQP algorithm works well when an integer feasible
solution guess zF*1 = zF + AzF to the MIQP in (4) is
likely to result in a feasible nonlinear optimization problem
P(y,z**1). In this case, one could enforce the integer
variables to remain fixed in the subsequent MISQP iterations
in order to quickly find a feasible, but possibly suboptimal,
solution guess for the original MINLP in (2). A similar
strategy of (temporarily) fixing the integer variables was used
in [13] to prevent cycling in the algorithm.

Remark 1: If a problem P(y,Z) is detected to be infea-
sible, additional constraints could be added to the MIQP
approximation in (4) to avoid revisiting the integer solution
Z in subsequent MISQP iterations. An example of such a
cutting strategy for MINLPs can be found in [13]. However,
this is outside the scope of the present paper.

Remark 2: Similar to the discussion in [20] for standard
SQP methods, one can show that the merit function (5) is
exact, i.e., a local minimizer (y*,%) of the MINLP (2), for
fixed integer values z = Z, is a local minimizer of ¢(y;z, p)
for a sufficiently large penalty value p > p*.

ITII. MISQP ALGORITHM IMPLEMENTATION

In this section, we present two alternative implementations
of the MISQP algorithm that are based on standard line
search and trust-region methods, as can be found in [20],
adapted to our proposed MISQP framework for MINLPs.

A. Line Search MISQP Method (MISQP-LS)

Based on the descent property in Theorem 1, a line search
method computes a step size o € (0, 1] in order to update
the continuous optimization variables y*+1 = y* + o*Ay*,
for which the sufficient decrease condition holds

o(y" + P AYF; T p) < oyt 2 p)
+afn V(Y"1 p) TAYE, n e (0,1),

which is based on the Armijo condition for unconstrained
optimization [20]. A full step update for the integer opti-
mization variables, i.e., zFt! = 2% + Az¥ is used to satisfy
the integrality constraints (2d) at each MISQP iteration. Al-
gorithm 1 describes the resulting line search MISQP method
that aims at finding a feasible, but possibly suboptimal,
solution to the MINLP in (2). As discussed in Section II-
C, Algorithm 1 includes a heuristic that enforces the integer
variables to remain fixed after a particular number Np;iqp

(12)



Algorithm 1 Line Search MISQP Method for MINLP (2).

Algorithm 2 Trust-Region MISQP Method for MINLP (2).

1: Input: Initial guess (y°,2°), 7,8 € (0,1) and €0 > 0.
2: k<« 0.

3. while ||7(y*, 2%)|| > €101 do

4: if £ > Npigp then

5 Solve QP (4) for fixed Az = 0 to compute Ay*.
6: else

7: Solve MIQP in (4) to compute (Ay*, AzF).

8: end if

9: Update integer variables z*+1 < 2K 4+ Ak,

10: Compute p to ensure (7) and o < 1.

11: while (12) not satisfied do

12: o¥ «— Bak for g € (0, 7).

13: end while

14: YRt ok 4 oFAyF and k <+ Kk + 1.
15: end while

of MISQP iterations. If the value N4, = oo, then the
integer variables are updated as zFt! = z* + Az, based
on the MIQP solution of (4) at each MISQP iteration. The
termination condition in Algorithm 1 is based on the norm
of the Karush-Kuhn-Tucker (KKT) residual, |r(y*,2%)],
excluding the integrality conditions in (2d) that are satisfied
at each MISQP iteration.

B. Trust-Region MISQP Method (MISQP-TR)

A second approach is the trust-region MISQP method,
where at each step we solve the MIQP subproblem

Al;igz (4a) (13a)
s.t.  (4b) — (4d), (13b)
|IMAy|l, < di, (13¢)

including additional constraints on the size of the update step
Ay in (13c), where dj, > 0 is the trust-region radius, M = 0
denotes the scaling matrix, and p € [1,00]. In what follows
p = 00, i.e., we use the co-norm. The ratio R of actual to
predicted reduction, which plays a critical role in standard
trust-region methods [19], is defined as

R, = SW5 ) — oyt + Ayt p)
¢6p(0§ Zk+1 P) - Q%p(Ayk; Zh+L P) ’

where ¢(-) denotes the merit function in (5) and gb(gp()
denotes the linearization-based merit function as follows

1
0ap(Ay; 2, p) = 5 Ay By") Ay + Vy f(y") " Ay

(14)

15)

oG
+p HG(y’“,Z) + a*(y’%) Ay
Y 1

OH;
+p Zmax (Hl(ykvz) + Ty(yk,z) Ay,é) .

Algorithm 2 describes the resulting trust-region MISQP
method. The trust-region radius update can be performed in
many different ways, see [18], [19]. Unlike standard trust-
region SQP methods, including the MISQP algorithm in [12],

1: Input: Initial guess (y°,2°), values 0 < 11 < 72 < 1,
0<m §72<1§73,0<d<8andd06 [Q,E]

2: k<« 0.

3: while ||r(y*, 2F)| > €01 do

4: if £ > Nhiqp then

5 Solve QP (13) for fixed Az = 0 to compute AyF.
6: else
7: Solve MIQP in (13) to compute (Ay* AzF).
8: end if
9: Compute ratio Ry in (14).
10 if R; > 1, then > Accept step
11: Yt — yF + Ay and 2P — 2F 4 AR
12: else > Reject step
13: YRl yF and 2P — 2k
14: end if

Trust-region radius update:
15: dk+1 — dy,.
16: if Ry < n; then
17: di41 < max (1| MAy*||,, d). > Shrink
18: else if | M Ay*|, < 71 dj then
19: di+1 < max (ye d, d). > Shrink
2. else if Ry, > 72 and ||[MAy*||, = dj, then
21: dp41 < min (73 dk,a). > Grow
22: end if

23: end while

Algorithm 2 aims at shrinking the trust-region radius if the
inequality constraint (13c) is inactive at the MIQP solution,
ie, |[MAy*|, < y1dy < dj. The latter modification
enforces a desirable property of the trust-region MISQP
method in Algorithm 2 that tight inequality constraints
IMAy|, < di in (13c) can be used to solve the MIQP
more efficiently, as discussed also below.

For simplicity of presentation, Algorithm 1 and 2 assume
that the MIQP/QP subproblem at each iteration is feasible,
which can be guaranteed by introducing slack variables and
an exact penalty function in the objective [12], [13].

C. Discussion on MISQP Variants for MINLPs

Algorithm 1 and 2 each have their own advantages and dis-
advantages as MISQP-type heuristics to approximately solve
the MINLP in (2). In the line search MISQP of Algorithm 1,
each MIQP solution is used to try and reduce the merit
function, which is desirable under the assumption that the
computational cost for the MIQP solution is large compared
to that of the line search. However, the computational cost
of solving the MIQP at each iteration of Algorithm 1 can
still be relatively large due to its combinatorial nature, even
when the optimal solution to (4) corresponds to the trivial
solution Az = 0. For example, branch-and-bound methods
may spend the majority of their time proving that a particular
solution is globally optimal [14].

The trust-region MISQP method of Algorithm 2 includes
the additional constraints on the step size |MAy||, for the
continuous optimization variables in (13c). State of the art



MIQP solvers can use the latter constraints to considerably
reduce the search space for the integer optimization variables,
e.g., using domain propagation in the pre-solve routine to
fix variables before solving the MIQP or before solving the
relaxed problem in any tree node [15]. In Section V, we
compare both MISQP variants and their performance based
on numerical simulation results.

IV. REAL-TIME MIXED-INTEGER NMPC

In this section, we discuss how the proposed MISQP
framework in Algorithm 1 and 2 can result in real-time
feasible implementations of MINMPC.

A. MISQP Software Implementation

First, we briefly describe the MISQP software implemen-
tation that is used in the numerical results of Section V.
The efficient evaluation of nonlinear functions and their
derivatives, for the preparation of the MIQP/QP subproblem,
is based on algorithmic differentiation (AD) and C code
generation in CasADi [21]. Each MIQP is solved using
a branch-and-bound method, including warm starting and
pre-solve techniques in [16], and using the active-set based
interior point method in ASTIPM [22] to solve QP relaxations,
both of which have been designed specifically for real-time
MPC in embedded platforms. In addition, early termination
and infeasibility detection for ASTIPM is implemented based
on our recent work in [17].

B. Real-time MISQP Algorithm

SQP methods are popular for the implementation of
NMPC, due to their desirable warm starting properties [1].
In addition, based on the realization that NMPC requires
the solution of a parametric optimization problem at each
sampling instant, tailored continuation methods exist for
NMPC that adapt the solution guess to the most recent
state estimate in real time. For example, the real-time itera-
tion (RTI) algorithm was originally proposed in [23], based
on a single SQP iteration at each control time step.

Warm started from the solution at the previous control time
step, it can be expected that the proposed MISQP algorithm
relatively quickly finds good feasible solutions to the MIOCP
in (1). Under strict timing constraints, and motivated by the
RTT algorithm in [23], one could perform a single iteration
of Algorithm 1 or 2 at each sampling instant of MINMPC.
Instead, in the present paper, we aim to let Algorithm 1 or 2
converge to a feasible solution of the MIOCP (1), potentially
restricting the number of MIQP solutions at each control time
step. For example, when setting Nyiqp = 1, Algorithm 1
and 2 become heuristics that compute an integer solution
guess z!' based on the MIQP in the first MISQP iteration,
warm started from the solution at the previous control time
step, and then solve the resulting nonlinear program P (y, z!)
by a sequence of relatively cheap QP solutions.

In Section V, we illustrate the performance of the result-
ing MINMPC implementations for different choices of the
parameter value Ny,iqp in Algorithm 1 and 2.

C. Alternative Smooth NLP Relaxations

In what follows, we compare our proposed MISQP meth-
ods against BONMIN [8], which is a global solver for convex
MINLPs but it becomes a heuristic for non-convex MINLPs.
In addition, we compare against two alternative implementa-
tions based on the solution of a smooth NLP at each control
time step, using the state of the art Ipopt solver [24]. The
first approach solves the NLP that results from relaxing the
integrality constraints in (1f) at each MINMPC time step,
e.g., wg; € {0,1} is relaxed as wy; € [0,1] C R. A
rounding strategy can be used in order to ensure integer
feasibility [6]. The second approach solves an NLP that
enforces the integrality constraints in (1f) based on smooth
nonlinear equality constraints. For example, a binary variable
wg,; € {0,1} can be reformulated as

wi; (1 —wg;) =0, wg; €0,1]CR.  (16)

As discussed in [6, Section 2.2.5], the latter approach could
be improved by using a homotopy technique at the cost of
solving multiple NLPs at each MINMPC time step.

V. MINMPC CASE STUDY: VEHICLE CONTROL

We illustrate the performance of the proposed MISQP
heuristic algorithm for a vehicle control case study based
on real-time MINMPC, using a piecewise-affine (PWA)
approximation of the tire force model as in [25].

A. Vehicle Control Problem Formulation

We use a single-track vehicle model that includes the posi-
tion (p*, p¥), the longitudinal velocity v*, lateral velocity v¥,
yaw angle 1 and yaw rate ¢ as states, i.e., ny = 6. The
inputs to the vehicle model are the front and rear wheel
speeds wy, w, and the tire-wheel angle 4, i.e., n, = 3. The
single-track model lumps together the left and right wheel
on each axle, and the resulting nonlinear system dynamics
are described in detail in [26]. The slip angles «; and slip
ratios \; are defined as

y X
n) a= Tt e g,

% i ( 17)
For simplicity, the longitudinal tire forces are modeled as
the linear functions F}* = CX\; based on the longitudinal
stiffness C¥ and the slip ratio A; for front and rear tires,
i € {f,r}. Similar to the PWA model based on experimental
tire friction data in [25], we use a PWA approximation of a
nonlinear Pacejka curve for the lateral tire force with respect
to the slip angle «;:

a; = —arctan <

di7_j —|—Oiy’7j04i, if a; € —[&i,j,aw-_l), Vj € 77,
F =4 dio+C)yai,
di,j +C1-):j04i7

lf (673 € [*ai_yo,aho),
if a; € [ai,j,l,am-), V] € Z?,
(18)
with 27 + 1 regions or modes and slip angle values @, ¢ <
© < W1 < @, for i € {f,r}. Similar to [25],
we further use a PWA approximation with only 3 regions,
ie., n = 1, to represent negative saturation, linear region
and positive saturation of the lateral tire force. The use



of the PWA tire model in (18) considerably reduces the
nonlinearity of the OCP formulation, but it requires the use
of binary decision variables and results in an MIOCP of
the form in (1). This hybrid system is used as benchmark
example for the proposed MINMPC implementation, and
it is outside the scope of the present paper whether the
MINMPC outperforms an NMPC controller based directly
on the Pacejka curve [26].

B. Convex-Hull Problem Formulation

We introduce a convex-hull formulation for the
PWA model in (18) to obtain tight convex relaxations
of the resulting MIOCP as discussed, e.g., in [2].
We first define the continuous optimization variables
S Q50,...,0;, € R and the binary optimization
variables b; _p,...,bi0,...,b;n € {0,1} for each of the
2n + 1 regions of the PWA model in (18). The lateral tire
force can then be defined as

Qj —ny - -

n
y b . y L
F) = E di b + G5 i,

j=—n

19)

where b; ; = 1 if slip angle «; ; = o lies in the 4™ region,
otherwise b;; = 0 and «;; = 0. Therefore, each of the
variables is constrained as follows

b < oy < —yj-1bi—j, VjEZT, (20a)
—®i0bio < a0 < @b, (20b)
@ij_1bi; < iy < @by, VieZY, (20¢)

where the sum of binary variables b; ; € {0,1} is equal to
one and the slip angle definition from (17) reads as

Z bi; =1, Z oy ; = —arctan (v;) .

j=—n j=-n :
C. Open-loop MIOCP: Convergence MISQP Algorithm

The resulting MIOCP is of the form in (1), based on an
explicit 4"-order Runge-Kutta discretization of the nonlinear
single-track vehicle dynamics, with 3 fixed integration steps
in each control interval of 7 = 100 ms, and using a standard
least squares tracking stage cost in (la) as follows

2n

le(zp,ur) = ||lok — $ref,k||?g + lug — wrer || Ry (22)

corresponding to tracking of a lane change reference trajec-
tory similar to the OCP formulation in [26]. The auxiliary
variables F; and «;; for i € {f,r} and j € Z", are
included in the continuous control inputs, n, = 7 + 4n.
The integer decision variables in (1) consist of the binary
variables b; ; fori € {f,r} and j € Z™ ., ie., ny =2+4n.
The MIOCP constraints include simple bounds on the control
inputs and on the lateral position of the vehicle, as well as the
additional constraints in (19)-(21). We use a control horizon
length N = 10 in the MIOCP (1), resulting in a total of
176 continuous and 66 binary decision variables.

Figure 1 shows the number of iterations and computation
times for solving the resulting MIOCP, based on the proposed
MISQP-LS and MISQP-TR methods in Algorithm 1 and 2,

respectively. These results were obtained by solving the
open-loop MIOCP for 200 randomly generated initial state
values Z; in (1b). Figure 1 presents both the average (solid
lines) and worst-case (dashed lines) computation times for
the proposed MISQP algorithm with Ny, = oo (on the
left) and Nyiqp = 1 (on the right). It can be observed from
Figure 1 that both algorithms, using either the line search or
trust-region method, result in a similar number of MISQP
iterations for this MIOCP example.

107" 107!
(> MISQP-LS (N, =) = MISQP-LS (N

~MISQP-TR (N =oc)

m\qp:1)

-~ MISQP-TR (N, =1)

CPU time [s]
3

CPU time [s]
<

10°

MISQP iter [-] MISQP iter [-]

Fig. 1. Computation times for each MISQP iteration to solve the open-loop
MIOCP for 200 randomly generated initial state values Z;: including both
average (solid lines) and maximum (dashed lines) timing results.

However, as discussed also in Section III-C, it can be
observed on the left hand of Figure 1, corresponding to
Nmigp = o0, that both the average and worst-case com-
putation times decrease over subsequent MISQP iterations
due to the overall decreasing trust-region radius based on
Algorithm 2. The worst-case computation time is more or
less constant over subsequent iterations of the MISQP-LS
method in Algorithm 1 when Np,iqp = 00. When Nyiqp = 1
in Algorithm 1 and 2, the first MISQP iteration requires
the solution of an MIQP and all subsequent iterations are
based on QP solutions, such that the computation times are
considerably smaller for all iterations after the first one.

D. Closed-loop MINMPC Simulation Results

Finally, let us illustrate the closed-loop performance of the
MINMPC controller, using our proposed MISQP heuristic,
compared against BONMIN [8] and Ipopt [24] based on
the relaxed NLP solution as described in Section IV-C.
In addition to the number of MISQP iterations and total
computation time per control time step, we are interested
in the closed-loop cost defined as follows

Cost = Z (”xk - xref,k”z) + Huk — Uref,k |?%) )

k

(23)

as the control performance metric. Table I shows the closed-
loop simulation results for the MINMPC-based controller to
track a single lane change reference trajectory on a snow-
covered road surface at a vehicle speed of 12 m/s.

The proposed MISQP algorithm results in the best closed-
loop control performance for this particular case study, as



TABLE I
CLOSED-LOOP SIMULATION RESULTS FOR MINMPC TO TRACK A LANE CHANGE REFERENCE ON A SNOW-COVERED ROAD SURFACE AT A VEHICLE
SPEED OF 12 M/S, USING EITHER THE PROPOSED MISQP ALGORITHMS OR THE STATE OF THE ART BONMIN [8] AND IroprT [24] SOLVERS.

BONMIN IPOPT MISQP (Nmigp = 00)  MISQP (Nmigp = 1)
‘ MINLP ‘ NLP using (16) NLP relax ‘ LS TR ‘ LS TR
Iterations (mean/max) [-] - - - 1.9/3.0 2.1/4.0 1.9/3.0 2.1/4.0
Total closed-loop cost [-] 3.023 2212 2.087 1.222 1.222 1.222 1.222
CPU time (mean/max) [ms] | 1233.5/7762.4 187.4/588.2 165.0/237.7 | 19.2/74.5 18.5/81.2 | 8.2/27.8 7.8/26.3

can be observed from Table I based on the closed-loop cost.
In addition, both the average and worst-case computation
times are reduced greatly due to the MISQP algorithms
compared to the BONMIN solver and even to Ipopt to solve
the relaxed NLPs as described in Section IV-C. Unlike the
open-loop MISQP convergence results in Figure 1, it can be
observed from Table I that both Algorithm 1 and 2 result in
a very similar closed-loop performance, due to the effect of
warm starting the solver from one control time step to the
next as discussed in Section IV-B.

Unlike the implementations using either the BONMIN or
Ipopt solvers, the proposed MISQP method allows a real-
time feasible MINMPC implementation with sampling time
of Ty = 100 ms. In addition, setting Nyiqp = 1 reduces
the worst-case computation times even further below 30 ms,
which would allow a sampling time of 50 ms that is desirable
in real vehicle experiments [25], [26].

VI. CONCLUSIONS AND OUTLOOK

This paper presents an approach for real-time feasible
implementation of mixed-integer nonlinear model predic-
tive control (MINMPC), based on mixed-integer sequential
quadratic programming (MISQP). A theoretical motivation
is provided for the proposed MISQP framework, and two
algorithmic variants are presented. Based on a preliminary
software implementation, the performance of the MISQP
algorithm is illustrated for a vehicle control case study using
a piecewise-affine tire model. Since the proposed MISQP
approach is a heuristic algorithm, its convergence cannot be
always guaranteed, but it has shown good performance and
robustness in simulations, and we plan to further validate it
on challenging real-world control applications.
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