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Kernel Regression for Energy-Optimal Control of Fully Electric Vehicles

Marcel Menner and Stefano Di Cairano

Abstract— This paper presents a control algorithm for elec-
tric vehicles (EVs) with multiple motors. The control algorithm
minimizes the EV’s energy usage by optimizing the efficiency
of its electric motors. The degrees of freedom exploited by the
control algorithm are the torque-split ratio between multiple
motors, the transmission gear ratio, as well as the velocity
profile of the EV. The algorithm uses kernel regression to
learn a pseudo-convex cost function for optimal control from
tabulated data of the electric motors’ efficiency maps. The
main advantages of the algorithm are its real-time feasibility
due to the pseudo-convex shape and its flexible approximation
capabilities. A simulation study shows how an EV with multiple
but different motors and a torque-split controller can efficiently
exploit the range of operation of the individual motors. The
proposed algorithm achieves energy savings of up to 20%
and 40% for the US06 and Urban Dynamometer Driving
Schedule (UDDS), respectively, by leveraging the strengths of
the different electric motors. Finally, we show that the energy-
optimal velocity profile varies for different EV specifications
as a result of their motor efficiencies. In particular, compared
to a profile with constant acceleration, the proposed kernel
regression algorithm achieves energy savings of up to 13%.

I. INTRODUCTION

Electric vehicles (EVs) are becoming increasingly popular
as they have the potential to decrease pollutant emissions of
automobiles and to be powered by renewable energy sources.
Improving the energy efficiency (and, in turn, an EV’s
range) make an EV cheaper to operate, more environmentally
friendly, and more attractive to a broader range of customers.
The efficiency of an electric motor (EM) is a function of its
operating point, i.e., the torque and the rotational speed [1].
As a result, for energy-optimal control of EVs, the EMs’
efficiencies as a function of their operating point need to
be considered. However, in order to exploit the varying
motor efficiencies, we need (i) degrees of freedom in the EV
architecture such that the overall range of operating point can
be best exploited and (ii) a fast control algorithm that can
utilize these degrees of freedom for energy-optimal control.
For example, an EV with one powerful motor and one weaker
motor can allocate the torque demand such that the weaker
motor is utilized for cruise conditions and the more powerful
motor is used for peak torque demands.

In this paper, we propose an algorithm for energy-optimal
control of EVs. The control algorithm exploits the available
degrees of freedom such as the torque-split ratio between
motors (for EVs with multiple motors), the transmission gear
(for EVs with continuously variable transmissions (CVTs)),
as well as the velocity profile to be tracked. The algorithm
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does not need all of these degrees of freedom to operate,
e.g., for EVs with four in-wheel motors, the torque-split
controller determines how much torque is to be exerted by
each motor and does not require a transmission controller.
The control algorithm uses tabulated data of motor effi-
ciencies in order to learn a cost function that can be used
for optimal control. In particular, we use kernel regression
to learn a differentiable and pseudo-convex cost function,
which includes both driving losses and losses caused by
motor efficiencies. The cost function includes both driving
modes using and regenerating energy. The pseudo-convex
shape and differentiability makes the optimization real-time
feasible, whereas the kernel function flexibility is important
to accurately represent the losses of the EV. Simulation
results show that an EV with two EM and one CVT can
save up to 20% and 40% for the US06 and UDDS driving
schedules, respectively, compared to a configuration with
only one EM and fixed gear. Furthermore, we show that an
additional 2%–13% of energy can be saved by optimizing
the velocity profile over a short horizon.

Related Work: Energy management strategies for hybrid
EVs have been studied in the literature, e.g., in [2]–[11],
where the main goal is to find a torque (or power)-split
strategy between an EM and an internal combustion engine
to optimally operate the vehicle. For example, [2] presents
a model-based strategy for the real-time power-split control
of parallel hybrid EVs. In [5], a model predictive controller
is used for energy management. In [6], a predictive model
for the driver behavior based on a Markov chain is used to
optimally allocate the power request. Further, [12] presents
a survey on utilizing driver predictions for energy manage-
ment. In [7] a method to solve the energy management
problem with engine start and gearshift costs is presented,
which is based on a combination of dynamic programming
and convex optimization. In [8], an engine on/off switching
strategy based on convex optimization is presented.

Recently, there has been increased interest in fully electric
vehicles, see, e.g., [13]–[18]. In [13], a control strategy to
maintain stability and improve handling of a four-wheel
independently actuated EV is presented. In [14], convex
optimal control is used to optimize the efficiency of a battery-
assisted trolley bus. Similarly to our work, [15] considers
motor efficiency maps for EVs, and uses an evaluation index
and a control logic. In contrast, here we use a kernel-based
model shaped as pseudo-convex function that can be used
for gradient-based optimization. In addition, we propose an
algorithm that uses the motor efficiencies for optimizing the
velocity profile. In [16], the problem of switching between
different drive modes of electric drive system is considered,



with the objective of optimizing the efficiency of electric
busses. In [17], independently-actuated wheels are utilized
for EV chassis control to improve passenger comfort. In [18],
particle swarm optimization with a torque-split strategy is
utilized to save energy for a dual-motor powertrain.

II. MATHEMATICAL COST FUNCTION MODEL

We present an algorithm that uses tabulated data to learn
a cost function used for optimal control. The algorithm uses
kernel regression and constraints that render the cost function
pseudo-convex. The rationale for using kernel regression is
that the resulting cost function is differentiable and offers
very flexible approximation capabilities. Further, the pseudo-
convex shape ensures that there is only one global optimum,
which is beneficial for gradient-based optimization.

Kernel regression is a non-parametric technique that is
intimately intertwined with Gaussian processes [19]. It is
a paradigm that learns a function/mapping, y = L(x), and
uses a set of training data,

X =
[
x1 x2 . . . xN

]
∈ Rnx×N (1a)

y =
[
y1 y2 . . . yN

]
∈ R1×N , (1b)

where a perfect function would yield yi = L(xi) for all
i = 1, ..., N , where N is the number of training data points.
We use y = L(x) = k(x,X)α+ α0 with

k(x,X) =
[
k(x,x1) k(x,x2) . . . k(x,xN )

]
, (2)

where k(·, ·) denotes a kernel function, and α and α0 are
the weights to be learned using the training data. Let

K(X,X) =


k(x1,X)
k(x2,X)

...
k(xN ,X)

 .
We learn the weights, α and α0, using the following opti-
mization problem

min
α0,α∈Rnx

∥∥(σ2I +K(X,X))α+ 1α0 − yT
∥∥2

2
(3a)

s.t. 〈∇xk(x,X)α,x− x?〉 ≥ 0 ∀x ∈ X , (3b)

where 1 = [1 1 . . . 1]T ∈ RN , 〈·, ·〉 denotes the inner
product, I is the identity matrix, and σ is used to account
for noisy training data. Eq. (3b) ensures that there is only one
global optimum, x?, by ensuring that the resulting function
is pseudo-convex for all x ∈ X , where the set X could be,
e.g., the operating range. Note that (3) requires the choice of
an optimum, x?. The optimization problem in (3) is convex
in α0 and α. The main idea in this work is to use the
kernel regression technique to learn a continuous function
from tabulated data (1). For example, we learn the motor
efficiency, η, as a function of motor speed, ω, and torque,
τ , with η = k([ω, τ ]T ,X)α+α0. The reader is referred to
[19] for more details on regression and kernels.

Remark 1: Throughout, we use the squared-exponential
kernel, k(x1,x2) = ν2 exp

(
− 1

2l2 ‖x1 − x2‖22
)
, where l is

the length scale and ν2 is the output variance. This kernel

offers the advantage of a vanishing gradient for x far away
from the training data, X .

Remark 2: We use normalized training data X ∈
[0, 1]nx×N and y ∈ [0, 1]1×N to avoid hyper-parameter
tuning for different scales. Throughout, we choose l = 0.1,
ν = 1, σ = 0.1. It is possible to perform hyper-parameter
optimization to improve the model fit, as in Bayesian opti-
mization [19].

III. ENERGY-OPTIMAL CONTROL STRATEGY

We consider the longitudinal motion model of an EV,

mak = −Fdrag(vk)− Froll(vk) + 1
rwheel

Tk (4a)

Fdrag(vk) = 1
2cdragAdragρairv

2
k (4b)

Froll(vk) = sign(vk)crollmg, (4c)

where m is the mass, ak and vk are the acceleration and
velocity at time step k, respectively, Fdrag(vk) and Froll(vk)
are the aerodynamic drag and rolling resistance, respectively,
croll is the roll coefficient, cdrag is the drag coefficient, Adrag

is the frontal area, g is the gravity, and ρair is the air density.
The axles’ inertia and road grade may also be included. The
total wheel torque is Tk and the wheel radius is rwheel, where
Tk and the EV velocity are related to the torques and the
speeds of the nEM motors by

Tk = q1
kτ

1
k + q2

kτ
2
k + . . .+ qnEM

k τnEM

k (4d)

vk = rwheel

q1
k
ω1
k = rwheel

q2
k
ω2
k = . . . = rwheel

q
nEM
k

ωnEM

k , (4e)

where qik is the gear ratio between motor i and the wheels,
and τ ik and ωik ≥ 0 are the torque and speed of motor i.

In this paper, we consider power losses that originate from
aerodynamic drag and from rolling resistance, as well as
power losses due to efficiencies of the EMs,

LEV(vk, zk) = vk(Fdrag(vk) + Froll(vk)) (5a)

+

nEM∑
i=1

LEMi(ω
i
k, τ

i
k), (5b)

where LEV is the total loss of the EV, LEMi is the loss of
motor i as a function of the motor’s states, ωik and τ ik, and
zk = [ω1

k τ
1
k ω

2
k τ

2
k . . . ωnEM

k τnEM

k ]T ∈ R2nEM . The motor
losses LEMi(ω

i
k, τ

i
k) ≥ 0 are a function of the motor speed

and torque, ηi(ωik, τ
i
k) ∈ [0 1], with

LEMi(ω
i
k, τ

i
k) =

{
ωikτ

i
k

(
1

ηi(ωi
k,τ

i
k)
− 1
)

if τ ik ≥ 0

ωikτ
i
k

(
ηi(ωik, τ

i
k)− 1

)
else.

(6)

However, since motor efficiencies are often in the form of
tabulated data rather than a continuous function, we learn
ηi(ωi, τ i) and LEV in (5) using kernel regression, which is
outlined in the following.

Remark 3: For simplicity, we do not consider EVs driving
in reverse. Hence, ωik ≥ 0 and vk ≥ 0. However, we allow
the EMs to regenerate energy, i.e., τ ik < 0.



A. Energy-Conscious Velocity Profile Optimization Problem

In this paper, we want to minimize the losses in (5) subject
to the constraints on the vehicle dynamics in (4),

min
vk,ak,zk

NVP∑
k=0

LEV(vk, zk) (7a)

s.t. vk+1 = vk + Tsak ∀ k = 0, ..., NVP (7b)
cprofile,eq(vk, ak) = 0 (7c)
cprofile,ineq(vk, ak) ≤ 0 (7d)
motion model (4) (7e)

cEM,eq(ωik, τ
i
k) = 0 ∀ i = 0, ..., nEM (7f)

cEM,ineq(ωik, τ
i
k) ≤ 0, (7g)

where NVP is the horizon of the velocity profile optimiza-
tion, (7c) and (7d) encode specifications for the velocity
profile, and (7f) and (7g) encode constraints on the EMs.
Eq. (7) is a predictive control problem to be implemented in
receding horizon fashion similar to model predictive control.
While (7) may be a highly nonlinear problem, we can
make a simplifying assumption that significantly reduces the
computational requirements.

B. Sequential Procedure for Energy-Optimal Control

In order to solve (7) with the limited computing capabil-
ities of automotive-grade microcontrollers, we assume that
the EM dynamics are fast compared to the vehicle dynamics.
This implies that (7f) and (7g) do not affect the resulting
velocity profile. Then, we solve (7) by a sequential approach
that consist of a transmission controller, a torque-split con-
troller, and a velocity profile optimizer. The three modules
are detailed in Section III-B.1–III-B.3 and control the EMs
as follows. First, the velocity profile optimizer generates an
energy-optimal torque and speed profile. Second, the torque-
split controller uses the torque and speed profile to compute
an optimal torque-split ratio between the EMs. Third, the
transmission controller uses the torque-split ratio as well as
the vehicle speed in order to compute the optimal gear ratios.
The learning procedure for the three modules is reversed due
to dependencies, e.g., for learning the optimal torque-split
ratio, the optimal gear ratios for specific torques are used.

1) Transmission controller: If the EV has a CVT, the gear
ratio is optimized (for each CVT) based on a given torque
and speed demand, τ ik and ωk, i.e.,

qik = arg max
q̃

ηi
(
q̃ωik, τ

i
k

)
. (8)

We learn ηi(ωi, τ i) using the kernel-based regression method
in Section II with the training data

xj =
[
ωj τj

]T
, yj = ηj ,

where ωj , τj , and ηj are the data points from the EM’s
efficiency map. We need to impose “≤” rather than “≥” in
(3b), due to maximizing the efficiency rather than minimiz-
ing losses. Additionally, we choose x? = [ω?j τ?j ]T with
{ω?j , τ?j } = arg maxj η(ωj , τj), i.e., the operating point
of maximum efficiency in the training data, and impose

α0 = 0, which implies that the efficiency η → 0 for ω, τ
faraway from the EM’s operating range by the properties of
the squared exponential kernel.

Remark 4: This step is unnecessary for EVs without a
CVT. For transmissions with fixed gears, this step consists
of choosing the gear ratio, which yields the highest efficiency
for the specific power demand.

2) Torque-split controller: We use the efficiencies that
result from (8) to determine the optimal torque-split ratio
between multiple motors, given torque and wheel speed
demand for the EV, Tk and ωk in (4). The result is a function
that provides the optimal allocation of torque demand among
the EMs, given an overall torque and vehicle speed demand,[

τ1
k τ2

k . . . τnEM

k

]
= TSΩ,T (ωk, Tk), (9)

where TSΩ,T is a function that outputs the torque-split ratio
by interpolating ωk and Tk using the training data Ω =
{ω̄1, ω̄2, . . . , ω̄nΩ

} and T = {τ̄1, τ̄2, . . . , τ̄nT
}. We obtain the

function TSΩ,T using the following training procedure. First,
we create the training set Ω and T using evenly-spaced data
points. Then, for every combination ω̄j , τ̄j we compute the
energy-optimal torque-split ratio using ηi in (8) for all EM
i = 1, . . . , nEM. This procedure is done offline and hence
does not need to be real-time feasible.

Remark 5: This step is unnecessary for EVs with one EM.
3) Velocity profile optimization: For this step, we use (4)

in order to express the cost function (7a) in terms of the
vehicle velocity and acceleration,[

ωk
Tk

]
=

[
1

rwheel
vk

rwheel(mak + Fdrag(vk) + Froll(vk))

]
. (10)

This allows us to consider the nonlinear vehicle dynamics
through the cost function and removes the need to enforce
nonlinear constraints. Thus, we obtain

min
vk,ak

NVP∑
k=0

LEV(vk, ak) (11a)

s.t. vk+1 = vk + Tsak ∀ k = 0, ..., NVP (11b)
cprofile,eq,k(vk, ak) = 0 (11c)
cprofile,ineq,k(vk, ak) ≤ 0 (11d)

with cost function

LEV(vk, ak) = vk(Fdrag(vk) + Froll(vk)) + LEM(vk, ak),

where LEM(vk, ak) comprises all drivetrain losses and the
loss function in (11a) differs from (7a) by virtue of its inputs.
Finally, we learn the cost function in (11a) using the method
in Section II with the training data

xj =
[
vj aj

]T
,

yj = vj(Fdrag(vj) + Froll(vj)) + LEM(vj , aj),

where LEM(vj , aj) is obtained by sequentially solving (10),
(9), and then (8). Additionally, we choose x? = [vj aj ]

T =
[0 0]T in (3), which is an obvious choice as the vehicle’s
losses are LEV(0 m/s, 0 m/s2) = 0. Fig. 1 shows examples
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Fig. 1. Contour plot of electric vehicle losses, as function of vehicle velocity and acceleration. The levels are at 300 W increments. The EV has two EMs
with maximum power 150 kW and 50 kW. Left: No CVTs. Middle: 50 kW motor with CVT. Right: 150 kW motor with CVT. The differences between the
loss functions show that the configuration of the EV, i.e., multiple motors and/or CVTs, impacts the control decisions for optimizing energy consumption.

of the cost in (11a) as functions of the EV’s velocity and
acceleration for different EV architectures.

Remark 6: For driving tasks with a completely fixed
torque and speed demand, we do not need to solve (11).
However, for energy efficiency, it still makes sense to com-
pute the optimal torque-split ratio, as well as the optimal
gear ratios for the EMs, which we will show in Section IV.

4) Overall learning and control procedure: Algorithm 1
summarizes the offline training and the online application
of the proposed control algorithm. First, we learn ηi(ωi, τ i)
in (8) using data from the motor’s efficiency map. Second,
we learn the torque-split function in (9) using (8). Finally,
we learn the function LEM in (11a) using the mapping in
(10), the torque-split function in (9), and (8). For control,
the order is reversed. First, we solve (11) for the optimal
velocity and acceleration profile, which are used to compute
the required wheel speed and torque with (10). Next, the
wheel speed and torque are used to determine the optimal
torque-split ratio with (9). Finally, given the allocated torque
for each EM, we determine the optimal gear ratios with (8).

Algorithm 1: Training and control procedure

1 Offline Training;
2 Learn ηi, ∀i = 1, ..., nEM, with method in Section II;
3 Learn TSΩ,T in (9);
4 Learn LEV in (11) with method in Section II;
5 Online Energy Optimization;
6 Solve (11);
7 Obtain ωk, Tk from (10);
8 Determine torque-split ratio from (9);
9 Determine transmission gear from (8);

IV. RESULTS

We consider a passenger EV with longitudinal dynamics
(4), with the parameters in Table I. For clarity of presentation,
we consider EV configurations with two motors, nEM = 2.
Furthermore, we model all transmissions to not incur any
losses, i.e., 100% efficiency. However, the method in this

TABLE I
VEHICLE PARAMETERS

Type Symbol Value
EV mass (incl. weight of motors) m 1500 kg
+ CVT mass + 100 kg per CVT

Wheel radius rwheel 0.3 m
Roll coefficient croll 0.01
Drag coefficient cdrag 0.3
Frontal area Adrag 0.3 m2

Air density ρair 1.225 kg/m3

Gravitational force g 9.81 m/s2

paper can easily incorporate any number of EMs, e.g., four
in-wheel motors, and other drive-train losses, e.g., in a CVT.

Electric motor model: We use the motor specifications
provided in the QuasiStatic Simulation (QSS) toolbox [1].
In order to study a range of different motor specifications,
we scale the torque values of the efficiency table. This choice
of motor data makes the results in this paper reproducible.
Furthermore, the data are sufficient to illustrate and analyze
the algorithm in this paper.

A. Fixed Torque and Speed Demand — Driving Schedules

First, we show how much energy can be saved by ex-
ploiting the degrees of freedom in the motor control using
the algorithm in this paper. In particular, we investigate
energy savings of multiple EMs and CVTs with a torque-split
strategy. For reproducibility and comparability, we use two
commonly-used driving schedules, UDDS and US06 [20].

Impact of torque-split controller: Fig. 2 illustrates a com-
parison of EV architectures without a CVT but with two
EMs, whose maximum powers sum up to 200 kW, i.e., the
maximum power of motor 1 is P1 = 200 kW−P2. It shows
that a suitable choice of EMs with a torque-split controller
can exploit the range of operation of the individual motors
more efficiently and save up to 18% when driving the US06
and 30% for UDDS, compared to an EV with one EM with
maximum power of 200 kW. Intuitively, it makes sense to
have an EV with one less powerful motor, which operates
efficiently under cruising conditions, and one more powerful
motor to be used for higher torque demand. Here, we found
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torque demand, EM 1 for high-torque demand, and both EM 1 with EM 2
for peak torque demand.

that an EV architecture with a 170 kW and a 30 kW motor
works well for both UDDS and US06. Fig. 3 illustrates how
the energy-optimal control algorithm in this paper splits the
torque demand between the two motors.

Impact of torque-split and CVT controller: Fig. 4 shows
the combinations of a two EM architecture with and without
CVTs. Energy savings are displayed in reference to an
EV with one motor without CVTs. The most promising
architecture is a two-EM architecture with a CVT connected
to the weaker motor. Intuitively, this makes sense as the
vehicle operates at low-torque demand for the majority of
time, e.g., cruise conditions. Adding a second CVT to the
more powerful motor does not yield an advantage, because
the added weight makes the EV less efficient overall. The
peak savings are around 39% and 20% for UDDS and US06
cycles, respectively. For comparison, we also included the

0 20 40 60 80 100
0

10

20

30

40

50

UDDS

Maximum power P2

E
ne

rg
y

Sa
vi

ng
s

[%
]

Two EMs (200 kW−P2, P2):
No CVTs EM1 with CVT

EM2 with CVT EM1&2 with CVT

0 20 40 60 80 100
0

10

20

US06

of 2nd Motor [kW]
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constant in gray and result from operating the EV at maximum efficiency.

maximum hypothetical energy savings that the EV would
achieve if it could operate its motor with maximum efficiency
at all times, ηopt = maxω,τ (η(ω, τ)).

B. Velocity Profile Optimization

Next, we consider the joint velocity profile optimization
and EM control problem. Compared to the results in Sec-
tion IV-A, this provides an additional degree of freedom in
the form of the velocity profile that can be used to further
reduce the energy consumption of the EV.

In order to illustrate the algorithm in this paper, we present
two acceleration tasks, in which the EV accelerates from the
initial velocities 10 km/h and 20 km/h to reach 60 km/h and
100 km/h, respectively, within 30 s. Indeed, it is beneficial
not to simply use a constant acceleration profile, but take
motor efficiencies into consideration instead. In order to ob-
tain a fair comparison, we constrain the average velocity such
that the distance traveled over 30 s is the same. We use Ts =
0.5 s, NVP = 60, and the constraints for the velocity profile
optimization in (11), cprofile,eq(vk, ak) = vNVP

− vend = 0,
and cprofile,eq(vk, ak) = vend−v0

2 − 1
NVP

∑NVP

k=1 vk ≤ 0,
where the former constrains the end velocity and the latter
constrains the average velocity. Other constraints for the
velocity profile optimization can be easily included.

Table II summarizes energy savings for the velocity profile
optimization. The energy savings are computed in reference
to a constant acceleration profile, which also uses the torque-
split and the CVT controller (Lines 7–9 in Algorithm 1) so
that the saved energy is entirely achieved by the modulation
of acceleration. Fig. 5 shows the velocity profiles resulting
from the four EV architectures. It shows that the energy-
optimal velocity profile depends on the configuration. For
example, for the EV without a CVT, it is optimal to first
accelerate using the more powerful EM 1 (see left plot 0–
8 s; right plot 0–9 s), then switch to the less powerful EM 2
(see left plot 8–26 s; right plot 9–22 s), and switch back to



TABLE II
ENERGY SAVINGS - OPTIMIZED VELOCITY PROFILE

Motor 1 Motor 2 Accelerate in 30 s
170 kW 30 kW initial – end velocity Energy Savings

Fixed gear Fixed gear 10 – 60 km/h 5.4%
20 – 100 km/h 5.2%

CVT Fixed gear 10 – 60 km/h 13.0%
20 – 100 km/h 7.3%

Fixed gear CVT 10 – 60 km/h 1.5%
20 – 100 km/h 4.6%

CVT CVT 10 – 60 km/h 1.5%
20 – 100 km/h 4.4%
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Fig. 5. Velocity profile resulting from optimization.

the more powerful EM 1 (see left plot 26–30 s; right plot
22–30 s). Using the velocity profile computed in Line 6 in
Algorithm 1 rather than a constant acceleration profile, the
EV can save 1.5–13% depending on the EV configuration.

Remark 7: The computation times for the velocity profile
optimization using cost functions as in Fig. 1 ranged from
0.02 s to 0.1 s, which is well below the 0.5 s sampling time
used here. The computation times for the torque-split and the
transmission controller are around 1 ms. We used a gradient-
descent solver and backtracking line search implemented in
MATLAB with no code optimization and hence with major
possible improvements. We used a MacBook Pro with 2 GHz
Quad-Core Intel Core i5 and 32 GB 3733 MHz RAM.

V. CONCLUSION

This paper presented an algorithm for energy-optimal
control of EVs with multiple motors and/or CVTs. The
control algorithm uses kernel regression in order to learn
a pseudo-convex cost function from motor efficiency data. It
is implemented in a sequential three-steps control algorithm.
First, a energy-optimal velocity profile is generated. Second,
the optimal torque-split ratio between the multiple motors is
computed using the velocity profile. Third, the optimal gear
ratio is computed using the torque-split ratio and the velocity
profile. The method offers low computation times due to
the pseudo convexity. Simulation results using the UDDS
and US06 driving schedules show energy savings potential

up to 20–40% compared to an EV with one specific EM.
Furthermore, simulation results of an acceleration task show
that energy-optimal velocity profile optimization can save up
to an additional 13% energy.
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[12] Y. Zhou, A. Ravey, and M.-C. Péra, “A survey on driving prediction
techniques for predictive energy management of plug-in hybrid electric
vehicles,” Journal of Power Sources, vol. 412, pp. 480–495, 2019.

[13] R. Wang, H. Zhang, and J. Wang, “Linear parameter-varying controller
design for four-wheel independently actuated electric ground vehicles
with active steering systems,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 4, pp. 1281–1296, 2014.

[14] A. Ritter, P. Elbert, and C. Onder, “Energy saving potential of a
battery-assisted fleet of trolley buses,” IFAC-PapersOnLine, vol. 49,
no. 11, pp. 377–384, 2016.

[15] L. Gang and Y. Zhi, “Energy saving control based on motor efficiency
map for electric vehicles with four-wheel independently driven in-
wheel motors,” Advances in Mechanical Engineering, vol. 10, no. 8,
pp. 1–18, 2018.

[16] Y. Gao, W. Wang, and Y. Li, “Optimization of control strategy for dual-
motor coupling propulsion system based on dynamic programming
method,” in 2019 3rd Conference on Vehicle Control and Intelligence
(CVCI), 2019.

[17] D. Chen, C. Danielson, and M. Iezawa, “Improving passenger comfort
by exploiting hub motors in electric vehicles: Suspension modeling,”
in Dynamic Systems and Control Conference, vol. 84287, 2020.

[18] Q. Zheng, S. Tian, and Q. Zhang, “Optimal torque split strategy of
dual-motor electric vehicle using adaptive nonlinear particle swarm
optimization,” Mathematical Problems in Engineering, pp. 1–21, 2020.

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[20] United States Environmental Protection Agency, “Dynamome-
ter Drive Schedules.” https://www.epa.gov/vehicle-and-fuel-emissions-
testing/dynamometer-drive-schedules. Accessed: 2021-01-01.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2021-132.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


