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Abstract—Efficiently computing solutions to mixed-integer
optimization-based control problems, such as in model predic-
tive control (MPC) of hybrid systems, is extremely challenging
due to the exponential worst-case complexity. The practical
time-complexity of computing good control actions can be
reduced by using a combination of two solvers: a strong solver
that generates optimal or near-optimal closed-loop solutions
with a large number of iterations, and a weak solver that
converges quickly to suboptimal closed-loop solutions. In this
paper, we propose the use of deep neural networks to learn sub-
regions of the admissible state-space where replacing the strong
solver with the weak solver maintains constraint satisfaction
properties and does not result in a significant deterioration
of performance. We illustrate the practical time-complexity
reduction of the proposed solver selection mechanism on a
station-keeping problem for a satellite.

Index Terms—Learning-enabled model predictive control,
non-convex optimization, integer optimization, solver selection,
deep neural networks.

I. INTRODUCTION

Model predictive control (MPC) allows handling of per-
formance optimization and constraints by solving a con-
strained optimal control problem at each time step [1]. This
framework can be extended to hybrid dynamical systems [2]
that include both continuous and discrete decision variables,
providing a powerful model-based control design for a large
class of problems, for example: switched dynamical sys-
tems [3], discrete or quantized actuation [4], logic rules and
temporal logic specifications [5].

For a linear-quadratic objective, (piecewise) linear dynam-
ics and linear constraints, the optimization problem can be
formulated as a mixed-integer quadratic program (MIQP).
Mixed-integer MPC for hybrid dynamical systems needs
to solve this MIQP at every sampling time instant. Exact
optimization algorithms to find globally optimal solutions for
MIQPs are typically based on a variant of the branch-and-
bound (B&B) method [6]. Even though pre-solve [7] and
branching [8] techniques have been developed to improve
B&B algorithms, resulting in powerful software tools, e.g.,
GUROBI [9], mixed-integer programming problems are NP-
hard in general.

Given the combinatorial complexity of MIQPs, fast heuris-
tic approaches could be used to find feasible but typically
suboptimal solutions instead. Examples include rounding
schemes, the feasibility pump, approximate optimization al-
gorithms, or the use of machine learning [10], [11], [12].
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In this paper, we propose a framework where a fast
heuristic technique is used when possible, while relying on
an exact optimization algorithm when necessary. In what
follows, we refer to the exact optimization solver as a strong,
usually expensive, solver and the heuristics-based solver
as a weak, typically cheap, solver. We posit that one can
reduce the dependency on the expensive solver by identifying
disagreement regions: sub-regions in the search space where
the weak and strong solvers disagree, according to some pre-
defined logic or metric. If such a disagreement region is
identified, then this is where the strong solver is required: for
the rest of the feasible region, the weak solver can replace the
strong solver, since the two solvers are in agreement there.

In general, computing such a disagreement region analyti-
cally could be difficult as the geometries of such regions are
rarely well-behaved [13]. Therefore, we resort to supervised
learning approaches that have performed well in identifying
complex sets in control applications such as reachable and
invariant sets [13], [14], [15] or even control policies [16] for
nonlinear systems, without requiring complete knowledge of
the underlying dynamical system. This is a major advantage,
since the weak and strong solvers could be implemented in a
high-fidelity simulation environment where one cannot access
the internal mathematical representations. We propose the use
of efficient supervised learning algorithms that are capable
of inducing functions whose level sets can approximate the
complex geometries of disagreement regions. When the true
disagreement region is not large our practical complexity can
potentially be reduced from the complexity of the strong
solver to the complexity of the weak solver, with the added
inferential complexity of the learner which has to identify
which solver has to be queried. This motivates our use of
deep neural networks, since they are cheap to evaluate at
inference time, and they are capable of learning complex
sub-region boundaries [17], [18].

The rest of the paper is organized as follows. Section II
describes the MIQP-MPC problem and the weak and strong
solvers for this problem. The disagreement region and the
deep learning pipeline is described in more detail in Sec-
tion III, and some preliminary theoretical results are provided
in Section IV. We demonstrate the potential of the proposed
approach on a station-keeping problem in Section V and
provide our conclusions in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the MIQP problem formu-
lation and describe our proposed framework for reducing



practical complexity of MI-MPC via disagreement regions.

A. MIQP Formulation for Mixed-integer MPC

We consider a class of dynamical systems represented by

xt+1 = Axt +But + a, (1a)
yt = Cxt +Dut, (1b)

where t is the time index, xt ∈ X ⊂ Rnx is the state variable,
ut,j ∈ Z, j ∈ It is an integer control action, ut,j ∈ R, j /∈ It
is a continuous control action, It denotes a set of indices,
a ∈ Rnx is an affine known term, and yt ∈ Rny is the
output of the system. The matrices A, B, C, and D have
appropriate dimensions. We solve a finite-horizon MI-MPC
problem from an initial condition x̂0 ∈ X of the form
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s.t. x0 = x̂0, x̂0 ∈ X, (2c)

xk+1 = Axk +Buk + a, k ∈ ZN−1
0 , (2d)

¯
yk ≤ Cxk +Duk ≤ ȳk, k ∈ ZN−1

0 , (2e)
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0 , (2f)

¯
yN ≤ ExN ≤ ȳN , (2g)

where the notation ZN
0 denotes the range of integers

0, 1, . . . , N , and the optimization variables are the state
X = [x>0 , . . . , x

>
N ]> and control U = [u>0 , . . . , u

>
N−1]>

sequences. For simplicity of notation, the set Ik denotes
the indices of the discrete control variables for each step
k ∈ ZN

0 of the prediction horizon. The Hessian matrices
in (2a) and (2b) are assumed to be positive semi-definite,
i.e., H � 0 and P � 0. The vector a is an affine term in the
model, and the vectors q, r, p define the linear component
of the cost. Note that the inequality constraints in (2e)
typically include simple bounds on some of the optimization
variables; for instance, in order to define binary optimization
variables. Also, the admissible state space X could be defined
within (2e).

B. Strong versus Weak Solvers for MIQPs

Our strong solver is based on an exact B&B optimization
algorithm, for example, as implemented in GUROBI [9]. The
use of advanced, pre-solve, branching and cutting plane tech-
niques [19] allows the strong solver to be computationally
efficient for many practical MIQPs. However, the worst-
case computational complexity scales exponentially with the
number of integer optimization variables in (2f).

Different heuristic techniques can be used to compute solu-
tions of (2) that are (approximately) feasible and suboptimal,
which could be used as a weak solver. For example, in the
numerical results of Section V, we rely on the approximate
solution of (2) in which part of the integer variables are
relaxed, that is, they are allowed to have real values. More

specifically, we can replace the integer-valued constraints
in (2f) to generate the relaxed problem
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s.t. x0 = x̂0, x̂0 ∈ X, (3c)

xk+1 = Axk +Buk + a, k ∈ ZN−1
0 , (3d)

¯
yk ≤ Cxk +Duk ≤ ȳk, k ∈ ZN−1

0 , (3e)

uk,j ∈ Z, j ∈ Ik, k ∈ ZM−1
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¯
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where M ≤ N and practically M � N such that the
computational cost for solving the resulting relaxed MIQP
in (3) is considerably lower than for solving (2). Note that
at least the first control input values u0 satisfy the integer
constraints when M ≥ 1 in the weak solver. Clearly, any
feasible solution to the MIQP in (2) satisfies the relaxed
integer-valued constraints in (3), although the optimal objec-
tive value of the MIQP in (2) will be greater than or equal
to the optimal objective value for the relaxed problem. Due
to state feedback, we expect that using the weak solver in
closed-loop can result in acceptable performance for some
initial values x̂0 in (3c) within X.

C. Disagreement region for closed-loop MI-MPC

In order to define the disagreement region, we define
two MPC control policies. The first MPC policy involves
iteratively solving (2) using the strong solver and applying the
first control input of the optimal solution at every time step
k. For a simulation horizon of T time steps, this generates a
trajectory of states and inputs ξS(x̂0, T ) := {xS

k+1, u
S
k}Tk=0

of the closed-loop system, initialized at xS
0 = x̂0. Another

MPC policy is implemented similar to the first, but involves
iteratively solving the relaxed MI-MPC problem (3) based
on the weak solver, which yields the trajectory ξW(x̂0, T ) :=
{xW

k+1, u
W
k }Tk=0, initialized at the same initial state xW

0 = x̂0.
We refer to a closed-loop trajectory ξS (or ξW) as in-

feasible if there exists any k ∈ ZT
0 such that any corre-

sponding constraint in (2) (or (3), respectively) is violated
at that time step k. Conversely, a trajectory is feasible if it
satisfies constraints for every k ∈ ZT

0 . With this definition
in mind, we select a simulation horizon T � N , and use
the corresponding closed-loop state and input trajectories to
partition the admissible state-space X into three regions.

To begin with, we define an infeasible region

X̄(T ) := {x̂0 ∈ X : ξS(x̂0, T ) infeasible}, (4a)

which comprise initial conditions from which closed-loop
trajectories generated by the strong solver are infeasible. We
also define a disagreement region

XD(T ) := {x̂0 ∈ X : ξS(x̂0, T ) feasible,

ξW(x̂0, T ) infeasible}, (4b)



that contains initial states from which only the strong solver
can generate feasible closed-loop trajectories, but the weak
cannot. What remains is the agreement region, given by

XA(T ) := {x̂0 ∈ X : ξS(x̂0, T ) and

ξW(x̂0, T ) are both feasible}, (4c)

where both solvers generate feasible closed-loop trajectories.
By construction, X = X̄(T ) ∪ XD(T ) ∪ XA(T ), and all sets
are mutually disjoint.

Remark 1. We have defined X̄(T ) as the region where
the closed-loop trajectory obtained using the strong solver
ξS(x̂0, T ) is infeasible. There may be some x̂0 ∈ X̄(T )
such that the weak solver trajectory ξW(x̂0, T ) is feasible.
Our focus is how to obtain the constraint satisfaction of the
strong solver (2) by using the weak solver (3) when possible,
assuming (2) is properly designed, and not on determining
which solver between (2) or (3) is to be used. Hence, we still
call x̂0 ∈ X̄(T ) as infeasible based on the infeasibility of the
strong solver, even when ξW(x̂0, T ) is feasible.

In the next section, we propose a supervised learning
framework that learns the infeasible, disagreement and agree-
ment regions in order to effectively decide when to use
the strong versus the weak solver at any initial condition
in the admissible state-space X. Switching from the strong
to the weak solver on-the-fly when possible is expected to
significantly curtail the practical complexity of implementing
the MI-MPC online.

III. MI-MPC WITH DISAGREEMENT LEARNING

A. Offline: Training the disagreement network

For training the disagreement network, we compute labels
for state samples extracted from the admissible state-space;
concretely, we extract Ns samples {x̂i0}

Ns
i=0 ∈ X. With

each sample used as an initial condition, the closed-loop
system is simulated forward for a simulation horizon of T
time steps, and the problem (2) is iteratively solved with
the strong solver at each time step to obtain ξS(x̂i0, T ). If
the closed-loop trajectory obtained is infeasible, then the
sample x̂i0 is labeled as infeasible. If the sample is feasible,
a second forward simulation is run from the same initial
condition x̂i0 with the weak solver, which yields ξW(x̂i0, T ).
If both trajectories are feasible, x̂i0 is labeled as agreement,
otherwise as disagreement. To summarize, the label for the
sample x̂i0 is given by

`(x̂i0) =


agreement if x̂i0 ∈ XA(T )

disagreement if x̂i0 ∈ XD(T )

infeasible otherwise.
(5)

The samples {x̂i0}
Ns
i=0 can be sampled uniformly over the

admissible state-space X, although prior work has demon-
strated the effectiveness of low-discrepancy sampling and
active sampling to reduce sample complexity [13]. Since
labeling is done offline, there is no strict restriction on real-
time feasibility or computational expenditure.

Once labeling is complete, we construct a classifier that
classifies any x̂0 ∈ X into one of the three categories de-
scribed in (5). While there are several techniques popularized
by the machine learning community to solve multi-class
problems, we employ deep neural networks (DNN) owing to
their flexibility in inducing complex decision boundaries and
their ability to handle a large number of samples [17]. This
quality is essential to implement this method for systems with
high-dimensional state-spaces. We refer to this disagreement
learning network as DISNET.

Since it is impractical to assume that DISNET can provide
perfect accuracy when trained with finite samples, we try
to promote misclassifications in directions that are prefer-
able from a safety viewpoint. In particular, we use a cost-
sensitive categorical cross entropy function as the training
loss. Concretely, classifying a sample in the disagreement
region incorrectly with the agreement label is penalized
more heavily than a sample in the agreement region classified
as disagreement. This is because an initial condition that
is truly within XA(T ) misclassified to be within XD(T ) will
result in the strong solver being used to compute trajectories,
which will incur computational expenditure, but result in
desired closed-loop behaviour. Conversely, if an initial condi-
tion is truly within the disagreement region but DISNET as-
signs it to the agreement region, the weak solver will not
induce feasible closed-loop trajectories and will result in
constraint violations. Similarly, classifying infeasible samples
as disagreement is more harmful than classifying samples
within the disagreement region as infeasible. This is because
if an initial condition truly is infeasible, using the strong
solver (because it is misclassified to be within XD(T ))
will not result in useful trajectories, whereas labeling a
disagreement region sample as infeasible will trigger a fail-
safe mechanism that is typically in place for most practical
engineering systems. Any misclassification can result in loss
of optimality of operation, but DISNET errs on the side of
caution and promotes safety via asymmetry in the training
loss.

B. Online: Solver selection with DISNET-in-the-loop

Let the initial state during on-line operation be denoted
x0, and the state at the t-th time step be denoted xt. At
each time step t, we query DISNET to determine whether xt
is infeasible or belongs to XD(T ) or XA(T ). Accordingly,
the strong or weak solver is called to compute a sequence
of control actions for the prediction horizon length N .
Following the philosophy of MPC, we only implement the
first control action in the sequence obtained. Thus, the control
law has the form

u?(xt) =


uW0 (xt) if `(xt) = agreement,
uS0 (xt) if `(xt) = disagreement,
uS0 (xt) if `(xt) = infeasible,

(6)

where `(xt) is output obtained by evaluating DISNET for the
state xt, and uW0 (uS0 ) is the first control action computed by
the weak (respectively, strong) solver with the initial state
xt and a prediction horizon of length N . Pseudocode for



implementing the proposed MI-MPC with DISNET in the
loop is provided in Algorithm 1.

Algorithm 1 MI-MPC with Disagreement Learning
Require: Initial condition, x0

Require: Trained disagreement network, DisNet
Require: Exact (strong) solver, uS

Require: Approximate (weak) solver, uW

1: for t = 0 :∞ do
2: `t ← DisNet(xt) . evaluate DNN (fast)
3: if `t is agreement then
4: Ut ← uW (xt) . use weak solver (fast)
5: else if `t is disagreement then
6: Ut ← uS(xt) . use exact solver
7: else
8: if uS(xt) has feasible solution then
9: Ut ← uS(xt) . use exact solver

10: else
11: Ut ← ∗ . handle infeasibility
12: end if
13: end if
14: ut ← Ut[:, 0] . apply first control action
15: xt+1 ← Axt +But + a . collect updated state
16: end for

The use of the strong solver when a state is classified
as infeasible is a safety mechanism in case there is a
misclassification, and the state is actually in the disagreement
region; in such a case, the strong solver can actually compute
a feasible solution. If the strong solver cannot compute a
feasible solution (that is, the state is indeed in the infeasible
region), then a fail-safe mechanism specific to the application
is deployed to avoid catastrophic failure. Since it is typical for
state-of-the-art MIQP solvers to attain feasibility information
more quickly compared to the optimal solution, this approach
is practical as the system will not remain in an unsafe mode
of operation for very long when the state is infeasible.

The next result is immediate for characterizing the prob-
ability of Algorithm 1 yielding a feasible future closed-loop
trajectory, at each time step.

Proposition 1. Consider a generic time t such that xt /∈
X̄(T ). Then, by applying Algorithm 1, the probability πf that
xt+1 /∈ X̄(T ), that is, that there exists a feasible trajectory
of length T from t+ 1, is at least

1− P [`(xt) = agreement|xt ∈ XD(T )]P [xt ∈ XD(T )] .

Proposition 1 follows from the fact that the strong solver
is used unless `(xt) = agreement. Hence, the weak solver
is used incorrectly only if `(xt) = agreement but actually
xt ∈ X̃D(T ). The purpose of considering two different
solvers and a classifier to solve the MI-MPC problem, is to
reduce the computational effort while maintaining a feasible
trajectory. Indeed, even if the classifier requires additional
computational time online, we design a learner such that the
time for obtaining a classification plus the time to find an
optimal solution with the weak solver is considerably lower

than the time required by standard methods that consider only
a strong solver. The smaller the volume of the disagreement
region (which is problem-dependent), the more the potential
speedup of on-line computations.

Remark 2. In this paper, we selected our disagreement
metric to be based on feasible regions induced by the two
solvers. However, this approach can be generalized to other
criteria for disagreement: for instance, one could select a
disagreement region based on whether the first control action
of a strong and weak solver are equal or not1.

IV. PRELIMINARY STUDY OF THEORETICAL
GUARANTEES

While perfectly learning XD and XA will rarely happen
in practice, assuming perfect learning allows us to provide
some insights into the closed-loop behavior. In particular,
this section explains how the control law (6) can result in
recursively feasible trajectories, and asymptotic stability.

For brevity, let us rewrite the constraints (2e), (2f) respec-
tively by

gc(xt, ut) ≤ 0, (7a)
ut,j ∈ Z, ∀j ∈ It. (7b)

We start with conditions for achieving recursive feasibility.

Theorem 1. Let T → ∞, and XD(∞) and XA(∞) be
perfectly learned. If at time t, xt ∈ XA(∞) ∪ XD(∞), then
the closed-loop system (6)–(1) satisfies (7) for all t1 ≥ t.

Proof: We prove the statement by induction, starting
from xt ∈ XA(∞) ∪ XD(∞). By the definition of XD(∞),
xt ∈ XD(∞) only if there exists a closed-loop trajectory
ξS(xt,∞) that satisfies (7) for all t1 ≥ t. Thus, if xt ∈
XD(∞) then the control law uS0 (xt) ensures that (7) is
satisfied and xt+1 /∈ X̄(∞), i.e., xt+1 ∈ XA(∞) ∪ XD(∞).
By the definition of XA(∞), xt ∈ XA(∞) only if there
exists a closed-loop trajectory ξW (xt,∞) that satisfies (7)
for all t1 ≥ t. When T → ∞, this means that XA(∞)
is forward invariant under the control law uW0 (xt). Thus,
if xt ∈ XA(∞), then due to such invariance and the
control law (6), (7) is satisfied and xt+1 ∈ XA(∞). Thus,
if xt ∈ XA(∞) ∪ XD(∞), (7) is satisfied and xt+1 ∈
XA(∞) ∪ XD(∞), from which the same argument can be
repeated.

In practice, we can construct XA(∞) and XA(∞) ∪
XD(∞) by considering trajectories of finite duration T̄ . Since
for any T , XA(T + 1) ⊆ XA(T ), the sequence {XA(T )}T is
non-increasing and bounded, and hence it converges under
fairly standard assumptions [20]. The following result is
stated for XA(∞) yet it is immediate to apply also for
XA(∞) ∪ XD(∞).

Proposition 2. Let T̄ ∈ Z∞0 be such that XA(T̄ + 1) =
XA(T̄ ), where we assume again exact reconstruction from
available data. Then, XA(∞) = XA(T̄ ).

1Empirical results showed that the agreement regions using this criterion
had relatively small volumes.



Proof: First, XA(T̄ ) ⊇ XA(∞) since if x ∈ XA(∞), the
closed-loop trajectory is feasible for all future steps, which
means that it is feasible for any finite number T̄ of steps,
i.e., x ∈ XA(T̄ ).

Next, we show that, under the stated assumptions, if x ∈
XA(T̄ ) then x ∈ XA(∞). Since XA(T̄ ) = XA(T̄ + 1), there
exists a feasible trajectory ξW(x, T̄ + 1) = {xW

k+1, u
W
k }

T̄+1
k=0 .

Taking all the elements of ξW(x, T̄ + 1) but the first one,
we obtain the feasible trajectory of length T̄ , ξW(xW

1 , T̄ ).
Thus, xW

1 ∈ XA(T̄ ), but since then xW
1 ∈ XA(T̄ + 1), which

means that there exists ξW(xW
1 , T̄ + 1) feasible. Appending

ξW(xW
1 , T̄ + 1) to the first element of ξW(x, T̄ + 1), we

obtain the feasible trajectory of length T̄ + 2, ξW(x, T̄ + 2),
proving that x ∈ XA(T̄ + 2). Since we can repeat these
steps an arbitrary number of times, x ∈ XA(∞). Therefore,
XA(T̄ ) ⊆ XA(∞) and from the previous inclusion, we obtain
XA(T̄ ) = XA(∞).

In practice, XA(T̄ ) that satisfies the assumptions of Propo-
sition 2 is an invariant set [20], specifically, the region where
MPC is recursively feasible, which, under fairly standard
assumptions, is bounded [1]. The properties XA(T + 1) ⊆
XA(T ) can also be used as a quick, necessary yet non-
sufficient, test on whether the reconstruction is correct or
more data is needed, and on where such additional data
may be needed. Next, we consider asymptotic stability, under
assumptions on the properties of uS0 (xt), uW0 (xt).

Theorem 2. Let xe be an equilibrium for (1) in the interior
of XA(∞). Let (1) in closed-loop with uW0 (xt), be asymp-
totically stable on xe with domain of attraction XA(∞),
and (1) in closed-loop with uS0 (xt) be convergent to xe with
domain of attraction XD(∞) ∪XA(∞). Then (1) in closed-
loop with (6) is asymptotically stable on xe with domain of
attraction XD(∞) ∪ XA(∞).

Proof: The constraints (7) are satisfied for x ∈ XA(∞)
by (6)–(1), XA(∞) is invariant for (6)–(1), and there exists
a ball with radius ρ > 0, centered at xe such that B(xe, ρ) ⊆
XA(∞). Due to the control policy (6), for x ∈ XA(∞),
the closed loop (6)–(1) is equal to the closed loop (1) and
uW0 (xt).

Since (1) in closed-loop with uS0 (xt) is convergent on xe,
there will be a finite time t̃ such that xt̃ ∈ B(xe, ρ) ⊆
XA(∞), and hence there will be a finite time `(xt̄) =
agreement. Due to the invariance of XA(∞), `(xt) =
agreement for all t ≥ t̄, and hence the closed-loop (6)–
(1) is asymptotically stable on xe with domain of attraction
XD(∞) ∪ XA(∞).

Remark 3. While achieving convergence of (1) in closed-
loop with uS0 (xt) is relatively simple, c.f. [2], achieving
asymptotic stability of (1) in closed loop with uW0 (xt) is
difficult, since (2f) is enforced only at the first M ≤ N
steps, which causes prediction errors for steps M+1, . . . , N .
However, methods based on enforcing a control Lyapunov
function as constraint on the first step of the prediction
horizon, e.g., see [21], [22], can be applied to this end.

V. CASE STUDY: SATELLITE STATION KEEPING

We illustrate the proposed approach based on numerical
simulation results for a case study of MI-MPC for satellite
station keeping [23]. The MIQPs in (2) and (3) are solved
using Gurobi, and PyTorch 1.8.1 is used for construct-
ing DISNET, on a Python 3.8 base.

A. MI-MPC Problem Formulation

The case study is based on a real-world application, the
control of a satellite in a circular low-Earth orbit 400 km
from Earth’s surface. We consider a re-centering maneuver
in which the satellite, previously drifting due to perturbations
such as 3rd-body gravity, drag, and solar pressure, is re-
centered in its station keeping window around its orbit. The
station keeping window defines the hard constraints on the
satellite actual position relative to its target orbit:

−100 ≤ px ≤ 100 and − 100 ≤ py ≤ 100,

where px and py are the orbital plane relative coordinates in
the Hill’s frame, that is, the frame moving on the satellite tar-
get orbit. The Hill’s frame (px, py)-axes are the radial (along
the orbit radius) and in-track (along the orbit path) axes,
respectively. The satellite should be kept inside the station
keeping window for its mission to be successful. The dynam-
ics are obtained from the linearized HCW equations as [23]
ṗx

ṗy

v̇x

v̇y

 =


0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0



px

py

vx

vy

+


0 0
0 0

1/m 0
0 1/m

[Fx

Fy

]
,

(8)
where the state vector x ,

[
px py vx vy

]>
includes the

relative positions and corresponding velocities, Fx and Fy

denote the thrust forces along the Hill’s frame axes, m is
the satellite’s mass and n denotes the orbital frequency. Our
problem is a simplification of [4], where only the orbital
plane dynamics are considered and the attitude dynamics are
neglected. Therefore, we control a simpler propulsion system
with two on/off gimbaled thrusters along the py-axis, one
towards the positive and one towards the negative direction.

Thus, the forces are defined by four control inputs

Fx = Fmax

(
F+

x − F−x
)
, (9a)

Fy = Fmax

(
F+

y − F−y
)
, (9b)

where F+
y , F

−
y ∈ {0, 1} are binary variables, F+

x , F−x are
continuous variables and Fmax = 0.4 denotes the maximum
thrust value. The gimbal ranges result in the (approximated)
thrust triangle [4] constraints

−γ1F
i
y ≤ F i

x ≤ γ1F
i
y, for i ∈ {+,−}, (10a)

0 ≤ F+
y + F−y ≤ 1, (10b)

where γ1 = sin(π/32) is the maximum deflection of the
thruster gimbals, and (10b) imposes that at most one thruster
is fired at any one time, for power considerations. In addition
to the input constraints, the MI-MPC problem formulation
includes the following state constraints

−100 ≤ px, py ≤ 100, −0.2 ≤ vx, vy ≤ 0.2, (11)



Fig. 1. Illustration of the MI-MPC state evolution for satellite station
keeping around the origin, based on either the strong or weak solver (see
Section II).

and the objective function reads as

1

2

N−1∑
k=0

(
x>k Qxk + u>k Ruk

)
+

1

2
x>NP xN , (12)

where the matrix P denotes the solution to the discrete-time
algebraic Riccati equation.

In Figure 1, we show the closed-loop MI-MPC trajectories
for the relative position of the satellite, where the origin is
the desired satellite position along the orbit. The depicted
area in the figure corresponds to the station keeping window,
in which the satellite should be kept. The diagonal weighting
matrices in (12) are

Q = diag(0.001, 0.001, 1, 1), R = diag(1, 1, 1, 1), (13)

in order to penalize the thrust forces and velocities more
strongly than the position of the satellite, since this re-
duces fuel consumption and hence increases the satellite
lifespan [23]. Thus, our design of the MI-MPC controller is
focused on satisfying the constraints with minimal use of the
on/off thrusters. For this particular case study, we use M = 1
for the MI-MPC formulation in (3), such that the weak
solver, in the worst case, needs to enumerate only 3 possible
assignments to the binary variables F+

y , F
−
y ∈ {0, 1} to

satisfy the constraints in (10).

B. Disagreement Learning: Architecture and Training

As described before, we use DISNET to identify the agree-
ment, disagreement, and infeasible regions. DISNET takes
the state vector of the satellite as input, and generates three
logits, one for each of X̄, XA and XD. The architecture
comprises four (hidden) fully connected layers with Leaky
ReLU activation functions to prevent vanishing gradients.
The fully connected layers have 4096, 1024, 256 and 64 units,
respectively.

We use the Adam optimizer to train DISNET with a
cost-sensitive cross entropy as the training/validation loss

function. For the reasons discussed in Section III, the cost
function has weight 10× higher on the logit corresponding
to the disagreement region. That is, we heavily penalize mis-
classifying states in the disagreement region. In order to avoid
over-fitting and to obtain better generalization properties, the
fully connected layers are equipped with dropout. The train-
ing data set consists of 75, 000 unique labeled samples drawn
randomly from the admissible state-space (11), of which 20%
are used for validation; for more details on labeling, see Sec-
tion III-A. We notice a significant imbalance between the data
points within each class: in particular, far fewer samples lie in
the disagreement region (only 6k out of 75k) than in the other
regions. To counteract this, we employ a weighted sampler
(torch.utils.data.WeightedRandomSampler) in
the mini-batch selection to obtain a more balanced distribu-
tion of points in each mini-batch.

Finally, it is known that several parameters need to be
tuned in deep learning. In this case study, we performed a
grid-search to select the optimal values of the batch size
and of the learning rate in the optimizer. The grid-search
consists in training the classifier for a grid of values and
select the set of parameters that result in the lowest value
of the validation loss function. The grid we considered is
generated by the values [16, 32, 64, 258, 1024, 4096] for the
batch size and [10−2, 5× 10−3, 10−3, 10−4] for the learning
rate. The best mini-batch size and learning rate we obtain
are 64 and 10−3, respectively. All the simulations consisted
of 2000 epochs, and we save the weights that correspond to
the lowest loss value on the validation set over all epochs.

C. Closed-loop Simulation Results

Next, we describe the results obtained with the proposed
method in closed-loop simulations of the satellite orbit con-
trol application. We report the performance of the disagree-
ment learning network using the confusion matrix2 depicted
in Fig. 2. The confusion matrix is generated using an unseen
test dataset comprising 100,000 labeled samples drawn from
a different distribution than the training data.

Fig. 2 shows that DISNET correctly estimates the classes
for 94.61% of the test data set; see element (4,4) of the con-
fusion matrix. We note that the classification of the infeasible
and the agreement regions are learned most accurately (see
elements (1,4) and (2,4)) and that almost no test samples
are misclassified in between these two regions (see elements
(1,2) and (2,1)). This is quite intuitive because the infeasible
region and the agreement region do not intersect for this
example, so they are nonlinearly separable. As expected, the
boundary of XD is hardest to identify, and this is where
most misclassification errors occur (see elements (2,3) and
(3,2)). It is interesting to note that our cost-sensitive training
loss results in more agreement samples being classified as
disagreement than vice-versa, which is desirable from a
safety perspective, since (2) admits a solution in XA, while
(3) is infeasible in XD. The section for vx = vy = 0 of

2The confusion matrix is a convenient representation that shows the
classification accuracy comparing the predicted classes against the actual
classes in a matrix-type visualization.



Fig. 2. Confusion matrix for DISNET on the test data set. The confusion
matrix is the top left 3×3 submatrix, the 4th column and row represent the
sum of the statistics per row and per column, respectively.

the regions in consideration for this case study is shown in
Fig. 3, whose boundary is the station keeping window.

Fig. 3. Partition of the station-keeping window when the satellite relative
velocity in Hill’s frame is zero. The green outer region is the infeasible
region, the middle is the disagreement region, and the innermost blue depicts
the agreement region.

From Figure 3, we deduce that during online implementa-
tion, the number of times the strong solver is queried will be
limited, especially in a neighborhood near the origin. This
is corroborated in Figure 4, where we compare the com-
putational performance of the proposed algorithm with the
MI-MPC running only the strong solver. We have performed
1000 simulations starting from initial conditions taken in
the test dataset, for T = 1000 time-steps. The median of

the exact MI-MPC simulation time is around 32s over 1000
solver calls, whereas our proposed approach takes < 10s,
thus saving more than 68% of the computation time, which
is relevant in a spacecraft where power, including that for
computers, must be saved as much as possible.

For longer simulation times, the savings increase even
further in the cases where the satellite enters the agreement
region and remains there. However, this is not always the
case, as illustrated in Figure 5. For this initial condition
(the black square), the exact and proposed MI-MPC induce
different trajectories. Encouragingly, there are no constraint
violations in either case. The proposed MI-MPC closed-loop
trajectory switches between strong (exact) and weak (approx-
imate) solvers. This might seem in conflict with Figure 3, but
one should consider that Figure 3 shows the section for zero
relative velocities, while the solver switching in Figure 5
occurs at different velocities, for which the disagreement
region has different shape. In fact, Figure 5 demonstrates
how complex the disagreement region can be, thus explaining
why high-dimensional function approximators (such as deep
neural networks) are needed to represent it.

Fig. 4. Comparison of computational time incurred by an MI-MPC with
strong solver vs. our proposed method.

VI. CONCLUSIONS

In this paper, we developed an algorithm for reducing the
practical complexity of mixed-integer MPC by partitioning
the admissible state-space into regions where an exact mixed-
integer solver can be replaced by a faster sub-optimal solver
without incurring constraint violations (with high probabil-
ity). A deep neural network, DISNET, is trained off-line to
characterize the partitioning into sub-regions and it is queried
on-line to decide which solver to employ at the current
time to solve a finite-horizon optimal control problem. A
simulation example demonstrates the complexity reducing
potential of the proposed method. Future work will consider
updating the learned sub-regions on-the-fly and derivation of
probabilistic guarantees on closed-loop performance with the
more practical consideration of imperfect learning.



Fig. 5. Comparison of a sample closed-loop trajectory from the same initial
condition generated by an exact MI-MPC and the proposed MI-MPC. The
strong solver is called at the ‘?’ state samples, and the weak solver is called
at the ‘◦’ state samples.
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