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Abstract
In many emerging Time Sensitive Networking (TSN) applications such as industrial control
and automotive, periodic traffic with end-to-end latency constraints is buffered with non-
mission-critical aperiodic traffic. As queueing delay is a central component of end-to-end
latency, we study the effect of aperiodic traffic on the queueing delay of periodic traffic via
characterizing the probability distribution of queue size and delay in an (M+D)/M/1 queue,
a queue with Poisson and periodic inputs, infinite waiting capacity and a single memoryless
server. Since obtaining the closed form distributions of the queue size and delay is intractable,
we approximate the behavior of the (M+D)/M/1 queue when the service and arrival rates
are close. We use a Markov chain with a quasitoeplitz matrix, enabling us to use an existing
technique to study this class of Markov chains. We determine the transition matrix of the
Markov chain, investigate the setting in which the approximation works well, and compute
the stationary distribution. We plot and compare the stationary distributions of queue size
and delay between the (M+D)/M/1 queue and our model; we observe that our model is a
favorable match.
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Abstract—In many emerging Time Sensitive Networking (TSN)
applications such as industrial control and automotive, periodic
traffic with end-to-end latency constraints is buffered with non-
mission-critical aperiodic traffic. As queueing delay is a central
component of end-to-end latency, we study the effect of aperiodic
traffic on the queueing delay of periodic traffic via characterizing
the probability distribution of queue size and delay in an
(M +D)/M/1 queue, a queue with Poisson and periodic inputs,
infinite waiting capacity and a single memoryless server. Since
obtaining the closed form distributions of the queue size and delay
is intractable, we approximate the behavior of the (M+D)/M/1
queue when the service and arrival rates are close. We use a
Markov chain with a quasitoeplitz matrix, enabling us to use
an existing technique to study this class of Markov chains. We
determine the transition matrix of the Markov chain, investigate
the setting in which the approximation works well, and compute
the stationary distribution. We plot and compare the stationary
distributions of queue size and delay between the (M+D)/M/1
queue and our model; we observe that our model is a favorable
match.

Index Terms—Time sensitive networking, queueing delay,
mixed traffic, (M+D)/M/1 queue, QoS.

I. INTRODUCTION

Time sensitive networking (TSN) is an emerging set of
technologies targeting real time applications such as industrial
control, industrial automation and automotive [1]. IEEE and
IEC are collaboratively developing TSN standards and profiles.
TSN builds timing, synchronization, and scheduling functions
on top of the IP stack to enable deterministic communication
across the network [2].

There are two classes of traffic in TSN networks in re-
gard to communication latency, TSN data and non-TSN data.
TSN data is time-triggered data with stringent constraints on
communication latency. Consider for example a closed-loop
(feedback) industrial control system made of controllers, actu-
ators, physical plants, and sensors. The sensors continuously
measure the state of an underlying process or plant by col-
lecting state variables, such as temperature and pressure, and
report these measurements to the controllers. The controllers
then compute the desired state and dispatch commands to the
actuators to respond accordingly. For real-time applications,
this collect-compute-command cycle must complete within a
millisecond [1], further constraining the end-to-end delay from
sensor to controller and from controller to actuator. Non-TSN
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Fig. 1. The multi-level queue abstraction of the network stack of a TSN
device. Periodic TSN packets generated at the application layer are buffered
with aperiodic non-TSN packets in a transport layer queue. TSN packets have
to traverse subsequent queues at lower layers until they are finally transmitted.

data, however, is non-time-critical traffic carried by best-effort
delivery services and is thus aperiodic. In the context of the
industrial control example, the controllers communicate with
devices not involved in the control loop, some of which are
physically outside the industrial premises. Since packets from
the two sources of traffic traverse the same network stack,
aperiodic traffic is buffered with periodic traffic, resulting in
increased queuing delay of periodic TSN traffic, and thus
increased end-to-end delay.

Another TSN application where periodic traffic is mixed
with aperiodic traffic is synchronization where a device with
a reference clock (master) synchronizes other devices (slaves)
by periodically exchanging an application layer handshake [3].
The slaves correct their clocks by estimating their offset from
the master clock and subtracting the propagation delay from
that offset, but other delays remain unaccounted for, namely
the queuing delay at the different layers of the IP stack.
With aperiodic data messages sharing the same buffer with
synchronization messages, queuing delay is only expected to
increase.

From the application perspective, the total delay through the
network stack is the sum of delays across the individual buffers
at the different layers. While these buffers are typically mod-
eled by a sequence of queues (see Fig. 1). To the best of our
knowledge, there are no existing models for queues with both
periodic and aperiodic traffic. Incidentally, studying queuing
delays in TSN applications has led us to a more fundamental
queuing-theoretic problem: characterizing the probability dis-
tribution of delay in a queue that buffers periodic packets with
aperiodic packets. The simplest of such a queue would have a
single server and infinite capacity, i.e. no-blockages. Periodic
traffic can be modeled by a renewal process (interarrivals are
IID) with deterministic interarrivals, and aperiodic traffic by
a Poisson arrival process. Even though aperiodic traffic has
been shown to exhibit a heavy-tail distribution, we choose the



Poisson model for tractability; we also choose a memoryless
server for the same reason. This queue would be referred to
as (M +D)/M/1 in Kendall’s notation. To the best of our
knowledge, this queue has not been previously analyzed. In
the coming sections, we frame this paper within work on end-
to-end delay analysis and within queuing-theoretic frameworks
in general.

The paper is organized as follows. Sec. II frames this work
within related prior work. Sec. III introduces the queuing
model and derives a Markov-chain approximation. Sec. V
analyzes the stationary distribution of the queue size and
characterizes the delay. Sec. VI presents numerical results to
verify the model and analysis. Sec. VII concludes the paper.

II. RELATED WORK

This paper propose a queuing theoretic model to obtain the
probability distribution of queuing delay of real-time data, a
key component of end-to-end delay in TSN applications. Delay
models in data networks have been heavily researched [4].
Early work used a network of queues in tandem to model a
sequence of buffers at different nodes in the network or at
different layers of the network stack of a single node [5]. The
tandem queue model has thrived and continues to appear in
recent work, for e.g. work investigating queues with packet
delivery deadlines [6], and work investigating the end-to-end
delay across multiple hops in a wireless network [7]. Using
the tandem queue model to represent a sequences of nodes
abstracts the network stack within every node as a single
queue. Our paper follows this convention and describe the
network stack by a single queue. The tandem queuing model,
assumes Markov arrivals (e.g. Poisson) and Markov servers,
enabling the description of queue sizes as Markov chains
and making for a tractable analysis. We, however, assume a
superposition of Poisson and periodic arrivals.

When the size of a queue is a continuous-time Markov
chain, its distribution π can be analyzed tractably. If the
size is a non-Markov process, it is customary to look at
an embedded discrete-time Markov chain whose state tran-
sitions are aligned with those of the original, continuous-
time process [8]. The size distribution is then determined
in 2 steps: finding the transition matrix P of the embedded
chain, and solving the global balance equation π = πP [8].
While the first step is straightforward, the second is generally
challenging especially when the state space of the Markov
chain is infinite (finding an eigenvector of an infinite matrix).
There often are simplifying methods in some special cases,
e.g. the finite difference method, the Wiener-Hopf method,
and the Riemann-Hilbert factorization. If these methods fail
to apply, the fallback method is to recursively solve the
global balance equations. More complicated queuing models
consider different classes of packets grouped according to
priority, destination, service requirements, or routes through
the network. Every class has its own arrival process, and these
processes are mostly taken to be Poisson and independent
of one another. We consider two classes according to their
arrival processes: aperiodic data represented by a Poisson
process, and periodic data represented by a renewal process

with deterministic interarrivals. To the best of our knowledge,
the closest existing models are the G/M/1 queue where
the arrivals form a renewal process [4], and another queue
admitting a superposition of IID periodic streams of data
[9]. The size of the (M +D)/M/1 is not a Markov chain.
Additionally, its embedded Markov chain yields a set of
global balance equations that are intractable. Therefore, we
approximate the embedded Markov chain with another chain
that has a quasitoeplitz transition matrix. Markov chains with
quasitoeplitz transition matrices have been investigated in [10],
where the steady-state distribution is determined through its
probability generating function (PGF) by solving a Riemann
boundary value problem on the unit circle. Extensions to
transition matrices with block-repeating entries can be found
in [11] and [12]. We use the method described in [10] to find
the stationary distribution. We note that this approximation
is valid when the service rate is close to (but greater than)
the arrival rate. We verify the validity of this approximation
by plotting both the stationary distributions of queue size and
delay for the (M+D)/M/1 queue against those of our model
under different parameter combinations; the results show that
our model favorably matches the original queue.

III. QUEUE MODEL

Consider an infinite-capacity, single-server queue with an
exponential service distribution of rate µ . Also consider an
arrival process A(t) that is the superposition of a homogeneous
Poisson point process AS(t) with density λ and a periodic point
process AT (t) with period T , i.e.

A(t) = AS(t)+AT (t). (1)

We adopt Kendall’s notation and refer to this queue as
(M + D)/M/1. The processes AS(t) and AT (t) are renewal
processes, i.e. the interarrival times of each process are positive
and IID random variables; interarrival times of AS(t) are
exponential of rate λ and interarrival times of AT (t) are deter-
ministic and equal to T . The stationary distribution of queue
size for queues with renewal inputs has been analyzed, closed-
form expressions of the distribution have been determined for
both a Poisson input a and periodic input, and a near-closed-
form expression for a renewal input with arbitrary (general)
distribution has been outlined [13]. The input process A(t)
that we consider, however, is not a renewal process [14], so
these results do not apply. Additionally, to the best of our
knowledge, there is no prior work on the (M+D)/M/1 queue,
and no general recipes to analyze the behavior of a queue with
Poisson and generally-distributed arrivals.

Now, let Q(t) be the size of the queue (the number of
packets) at an arbitrary time t. Consider the discrete-time
process Qn representing the size of the queue right before
the tn, i.e. Qn =Q(tn−0). The process Qn is a Markov chain
as it can be described by the following recurrence relation:

Qn+1 = f (Qn +1), (2)



where f (i) is the size of an M/M/1 queue at time T when it
initially has a size of i. The transition from an initial size of
i to a size of j = f (i+1) after T time units has a probability

qi j = e−(λ+µ)T ρ
j−i−1

2 I j−i−1(2T
√
λµ)

+ e−(λ+µ)T ρ
j−i−2

2 I j+i+2(2T
√
λµ)

+ e−(λ+µ)T (1−ρ)ρk
∞∑

k= j+i+3

ρ−k/2I j(2T
√
λµ).

(3)

By defining

ui j = e−(λ+µ)T ρ
j−i−1

2 I j−i−1(2T
√
λµ) (4)

and

vi j = e−(λ+µ)T ρ
j−i−2

2 I j+i+2(2T
√
λµ)

+ e−(λ+µ)T (1−ρ)ρk
∞∑

k= j+i+3

ρ−k/2I j(2T
√
λµ),

(5)

the transition matrix of Qn can accordingly be expressed as
the sum of an infinite Toeplitz matrix U = [ui j], a matrix with
constant diagonals, and an infinite Hankel matrix V = [vi j], a
matrix with constant skew diagonals. With the current structure
of the transition matrix, the problem of determining the
stationary distribution appears to be intractable. Eliminating
the Hankel matrix can serve our purpose, as the stationary
distribution for a Markov chain with an infinite Toeplitiz
transition matrix can in many cases be determined through
its probability generating function (PGF).

IV. APPROXIMATION

We now turn to approximating the Markov chain Qn with
a Markov chain with a more structured transition matrix. This
allows us to characterize the stationary distribution and thus
the distribution of queueing delays.

Let tn be the epoch of the nth periodic arrival, i.e. tn = nT .
Let An and Bn be random variables representing the number
of arrivals and potential departures in the interval (tn, tn+1).
We use the term “potential”, in line with convention [13] and
[8], to indicate that there might not be Bn actual departures
if Bn is greater than the number of customer just after tn.
Since the length of (tn, tn+1) is T , An and Bn are Poisson
random variables with rate parameters λT and µT . We aim to
approximate Qn by the discrete-time process Xn = X(tn− 0)
given by the recurrence relation

Xn+1 =

{
Xn +1+An−Bn if Xn +1+An−Bn > 0,
0 if Xn +1+An−Bn ≤ 0.

(6)

The process Xn is a Markov chain, as the next state is a
function of the current state and other random variables that
are independent of current and past states. There is one caveat
to (6): The order of arrivals and departures matters; if all
departures follow all arrivals, or if arrivals and departures are
interleaved, then (6) holds. This approximation is reasonable
under two considerations: (1) The Poisson arrival rate λ is
close to but less than the service rate µ , and (2) the period

of periodic arrivals T is small enough so that there could
practically be at most one arrival and at most one departure. In
other words, there is the following tradeoff: T should be high
enough so that λ≈ µ , but T should be small enough so that
An ≤ 1 and Bn ≤ 1 with a high probability. We give a short
mathematical discussion. Suppose we are given λ and T and
want to choose the best µ so that P [An ≤ 1 and Bn ≤ 1]≈ 1.
The stability of the queue, however, requires that µT >λT +1.
This allows us to define the difference x = µT −λT − 1 > 0
and the function

φλ(x) = P [An ≤ 1 and Bn ≤ 1] (7)

= (x+2+λT )(1+λT )e−2λT−1−x (8)

which has its maximum at x = 0 by noting that ex = 1+ x+
o(1). This implies that the Markov chain Xn best approximates
Qn when µT ' λT +1. We verify our claim in Sec. VI.

Poisson interarrivals and exponential service times allow us
to write the recurrence relationship of (6) that gives the evolu-
tion of the queue state in terms of the difference of two Poisson
random variables, An for arrivals and Bn for departures. This
is possible only because of the memoryless property of the
exponential distribution which allows us to express the number
of arrivals and services in a given observation window as a
function of the length of that window. To extend our model
to general (arbitrary) interarrival and service distributions, a
different embedded Markov chain ought to be considered.

V. DELAY CHARACTERIZATION

The first step toward characterizing the delay in a queue is
determining the stationary distribution of its size.

A. Stationary distribution

We proceed to determine the transition matrix P = [pi j],
where pi j = P [Xn+1 = j | Xn = i]. We have

pi j =

{
P(An−Bn = j− i−1) if j > 0,
P(An−Bn ≤−i−1) if j = 0.

(9)

The difference An−Bn is a difference of two Poisson random
variables and it has the known Skellam distribution, hence we
can write

pi j =


e−(λ+µ)T

(
λ
µ

) j−i−1
2

I j−i−1(2T
√
λµ) if j > 0,

e−(λ+µ)T ∑∞
m=i+1

(
λ
µ

)−m
2

Im(2T
√
λµ) if j = 0,

(10)

where Im(·) is the modified Bessel function of the first kind
and integer order m.

Now we show that the transition probability pi j is a function
of the difference i− j when j> 0. Let ρ= λ/µ be the standard
utilization parameter, and hk = pi,i+k the probability of adding
k packets to the queue, then

hk = e−(λ+µ)T ρ
k−1

2 Ik−1(2T
√
λµ). (11)

and h−k = pi,i−k the probability of removing k > 0 packets
from the queue. Using the fact that I−k(x) = Ik(x) for integer



order k, the probability of removing k > 0 packets from the
queue pi,i−k equals

h−k = e−(λ+µ)T ρ−
k+1

2 Ik+1(2T
√
λµ). (12)

The probability of transitioning to the empty state from state
i, pi,0, is equal to

h∞i =

∞∑
m=i+1

h−(m−1) =

∞∑
k=i

h−k =

−i∑
k=−∞

hk. (13)

Finally, the transition matrix

P =



h∞0 h1 h2 h3 h4 . . .
h∞1 h0 h1 h2 h3 . . .
h∞2 h−1 h0 h1 h2 . . .
h∞3 h−2 h−1 h0 h1 . . .
h∞4 h−3 h−2 h−1 h0 . . .

...
...

...
...

...
. . .


. (14)

A Markov chain is regular if some power of its transition
matrix has only positive entries. Since P has only positive
entries, Xn is regular. Therefore, it has a unique steady-state
distribution π determined by the fixed-point equation

π = πP, (15)

i.e. π is the probability mass function (PMF) of X , X∞.
To guarantee that π is a probability vector, the following
constraint must be added:

∞∑
k=0

πk = 1. (16)

Additionally, Xn has a quasitoeplitz transition matrix, i.e. there
is an i∗ ≥ 0 such that for all i≥ i∗

pi j =

{
h j−i if j > 0,∑−i

k=−∞ hk if j = 0.
(17)

Comparing the entries of P in (14) to (17), we observe that we
can take i∗ = 0. To find π, we follow the procedure described
in [10] which we outline next.

First, we introduce the PGFs

Π(z) =
∞∑

k=0

πkzk, z ∈ Γ
+
, (18)

H(z) =
∞∑

k=−∞

hkzk, z 6= 0, (19)

where Γ is the unit circle {|z|= 1}, Γ+ is the interior
{|z|< 1}, and Γ

+
is the disc {|z| ≤ 1}.

We define the operator {·}+ by its action on a Laurent
series f (z) =

∑∞
k=−∞ fkzk as

{ f (z)}+ =

∞∑
k=0

fkzk.

When only f (z) is given, then the coefficients { fk } can be
determined by Cauchy’s integral formula. Accordingly,

fk =
1

2πi

∮
γ

f (z)
zk+1 dz, (20)

where γ is a simple counterclockwise contour encircling z = 0
lying within the convergence region of f (z). We also define

R(z) =
1−H(z)
1− z−1 (21)

and

R+(z) = exp
(
−{ lnR(z)}+

)
(22)

= exp

− ∞∑
k=0

akzk

 . (23)

Finally, [10][eq. (40)] gives Π(z) whenever H ′(1)< 0 as

Π(z) =
R+(z)
R+(1)

. (24)

We can extend the continuity of R+(z) at z = 1 by defining

R+(1) = lim
z→1

R+(z)

= exp

− ∞∑
k=0

ak

 .
The function H(z) is the PGF of a Skellam random variable
shifted by 1, and it is given as

H(z) =
∞∑

k=−∞

e−(λ+µ)T ρ
k−1

2 Ik−1(2T
√
λµ) zk (25)

= z
∞∑

m=−∞
e−(λ+µ)T Im(2T

√
λµ)

(
z
√
ρ
)m (26)

= z exp
(
λT z+µT z−1− (λ+µ)T

)
, (27)

where the last equation is due to the fact that the generating
function of Im(t) is exp((t + t−1)z/2) for z 6= 0. Its derivative

H ′(z) =
λT z2 + z−µT

z
exp
(
λT z+µT z−1− (λ+µ)T

)
,

(28)

and the constraint that H ′(1)< 0 translates to the constraint

µ > λ+
1
T

(29)

which is exactly the stability condition of the queue. To
determine R+(z), we need to determine { lnR(z)}+, and the
first step is selecting an appropriate contour γ along which to
integrate lnR(z)/zk+1 according to (20). We write R(z) as

R(z) =
z(1−H(z))

z−1
. (30)

To determine where lnR(z) is analytic, we look at two potential
singularities of R(z) and lnR(z), z = 0 and z = 1. According to
(19), H(z) has an essential singularity at z = 0 because hk 6= 0
for all k< 0; thus 1−H(z) also has an essential singularity at
z = 0. Therefore, lnR(z) is not analytic at z = 0. Since hk is a
PMF, H(1) = 1, but H ′(1)< 0 6= 1. In other words, 1−H(1) =
0, but

d(1−H(z))
dz

∣∣∣
z=1
6= 0, (31)



so that 1−H(z) has a simple zero at z = 1 while R(z) does
not. Therefore, lnR(z) is analytic at z = 1. Since, additionally,
H(z) is analytic on the unit circle Γ, we can take γ to be Γ,
which enables us to express the coefficients {ak } of the series
in (23) as an inverse discrete-time Fourier transform (DTFT),
namely

ak =
1

2π

2π∫
0

ln

(
1−H(eiΩ)

1− e−iΩ

)
eikΩ dΩ. (32)

Using the McLaurin series expansion of the exponential func-
tion in (23), we compute

R+(z) =
∞∑

n=0

(−1)n

n!

 ∞∑
k=0

akzk

n

, (33)

where the inner sum { lnR(z)}+ can further be further ex-
pressed as the series

∞∑
k=0

b(n)k zk, (34)

with b(n)0 = an
0, when a0 6= 0, and the sequence {b(n)k } can be

determined recursively through the relationship

b(n)k =
1

ka0

k∑
j=1

(n j+ j− k)a j b(n)k− j . (35)

Plugging in the expression of R+(z) in (24), we conclude that

πk =
1

R+(1)

∞∑
n=0

(−1)n

n!
b(n)k . (36)

B. Delay Distribution

We can now determine the delay D of a packet which equals
the waiting time plus the service time. Let {Sn } be a set of
IID exponential service times, we can express D through its
cummulative distribution function

FD(t) = P

X+1∑
n=1

Sn ≤ t

 (37)

=

∞∑
k=0

πk
µk+1

k!
tke−µt (38)

by using the law of total expectation.

VI. NUMERICAL RESULTS

In this section, we compare the probability of queue size
and delay for six queues with identical service processes:

1) An (M+D)/M/1 queue described by the process Qn as
in Sec. III. This is the reference with which we compare
the rest of the queues.

2) Our Markov-chain approximation Xn.
3) An M/M/1 queue with an arrival density λ. This queue

has only a Poisson input.
4) An M/M/1 queue with an arrival density λ+1/T .
5) A D/M/1 queue with arrivals of period T . This queue

has only a periodic input.

6) A D/M/1 queue with arrivals of period T/(1+λT ).
We expect that the queue size probability curves for the
M/M/1 queues have a tight spread against probability curve
of the (M +D)/M/1 benchmark when T →∞, and this is
indeed the case. Similarly, we expect and can verify through
simulation that the probability curves for the D/M/1 are close
to benchmark curve when λ→ 0. The queue size probabilities
πM

k and πD
k for an M/M/1 queue with an arrival density λ

and a D/M/1 queue with an arrival period T have very simple
closed-form expressions [8],

πM
k = (1−ρ)ρk, (39)

πD
k =

{
0 if k = 0,
(1−δ )δ k−1 if k ≥ 1.

(40)

where ρ= λ/µ as defined earlier and δ satisfies the equation

δ = e−µT (1−δ ). (41)

We similarly define ρ′ and δ ′ for an arrival density of
λ+ 1/T and an arrival period of T/(1+ λT ), respectively.
These are only two corner cases where the simple closed-
form stationary distribution expressions can be used to ap-
proximate the stationary distribution of the more complicated
(M+D)/M/1 queue. When the two sources of traffics are of
the same order, we turn to our model for an approximation.
Accordingly, we consider 3 (T,λ,µ) parameter combinations
with x = µT −λT −1 = 0.05, 0.09, and 0.1.

Fig. 2 shows the probability of queue size for six queues.
We observe that our model matches the benchmark more
accurately as the difference x tends to 0, which agrees with
the claim that we made earlier in Sec. III. In other words, the
stationary distribution of our model favorably matches that of
the (M+D)/M/1 queue when µT ' λT +1. We also observe
that our chosen M/M/1 and D/M/1 queues fail to match the
benchmark behavior, which is the expected outcome for the
chosen parameter combinations.

Fig. 3 demonstrates the probability of delay (in the unit of
service rate time) for (M +D)/M/1 queue and our Markov-
chain approximation Xn. Our Markov chain model showing a
good match with the (M+D)/M/1 queue.

VII. CONCLUSION

We have proposed a Markov chain model to approximate
the behavior of an (M+D)/M/1 queue under high utilization,
i.e. when the ratio of arrival rate to service rate is high. For an
analytical handle on queue size and delay, we determined the
stationary distribution of queue size from which the distribu-
tion of delay could be readily determined. This approximation
is valid under high utilization because the probability of having
at most one Poisson arrival and at most one departure every
period is high, albeit far from 1. This motivates truncating
the distribution of arrivals and that of departures per period,
leading to a band transition matrix and a potentially more
tractable analysis. With a model to study a queue with periodic
and aperiodic inputs, we have characterized the queueing delay
of time-sensitive traffic which is a central component of end-
to-end latency.



(a) T = 1.1, λ = 9, µ = 10 (b) T = 1, λ = 4, µ = 5.1 (c) T = 0.1, λ = 10, µ = 20

Fig. 2. The stationary distribution of queue size for the 5 queues and our Markov chain model.

(a) T = 1.1, λ = 9, µ = 10 (b) T = 1, λ = 4, µ = 5.1 (c) T = 0.1, λ = 10, µ = 20

Fig. 3. The distribution of delay (waiting time plus service time).
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