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Abstract
Camera poses play a crucial role in stitching overlapped images captured by the camera to
achieve a broad view of interest. In this paper, we proposed a robust camera pose estimation
approach to stitching images of a large 3D surface of known geometry. In particular, given
a collection of images, we first construct matrices of relative camera poses, where each entry
is achieved by solving a perspective-n-point (PnP) problem over its corresponding pair of
images. We then jointly estimate camera poses by solving an optimization problem that
exploits the underlying rank-2 matrix of relative poses and the joint sparsity of camera pose
errors. Lastly images are projected to the 3D surface of interest based on estimated camera
poses for further stitching process. Numerical experiments demonstrate that our proposed
method outperforms existing methods in terms of reducing camera pose errors and improving
PSNRs of stitched images.
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ABSTRACT
Camera pose estimation plays a crucial role in stitching overlapped
images captured by a camera to achieve a broad view of interest. In
this paper, we propose a robust camera pose estimation approach
to stitching images of a large 3D surface with known geometry. In
particular, given a collection of images, we first construct a relative
pose matrix estimation of all image pairs from the collection, where
each entry of the matrix is calculated by solving a perspective-n-point
(PnP) problem over the corresponding pair of images. To continue, we
jointly estimate all camera poses by solving an optimization problem
that exploits the underlying rank-2 relative pose matrices and the joint
sparsity of camera pose errors. Finally, images are projected on to
the 3D surface of interest based on estimated camera poses for the
subsequent stitching process. Numerical experiments demonstrate
that our proposed method outperforms existing methods in terms of
both camera pose estimation and image stitching quality.

Index Terms— Camera pose estimation, low rank matrix, joint
sparsity, image stitching

1. INTRODUCTION

Image stitching techniques aim to fuse a collection of overlapped
images to achieve a broad view of an object or a scene of interest with
satisfactory resolution in applications such as Google earth mapping
[1], video stabilization [2], panoramic image construction [3], and
3D structure reconstruction [4], etc. In order to achieve the high
stitching precision required by numerous applications, it is necessary
to calibrate geometric distortions of collected images, and for this
camera pose estimation for each image is crucial, as tiny errors in
camera pose estimation may lead to evident distortion and visual
mismatch of the stitched image, and consequently restrict subsequent
applications. Therefore, it is of great importance and a daunting
challenge to obtain sufficiently accurate estimates of camera poses
for a given collection of images.

In recent decades, pairwise image alignment and stitching meth-
ods have been widely explored by using both feature-based and pixel-
based methods [2, 5, 6]. In particular, for feature-based methods,
images can be stitched one by one by aligning a new image to the pre-
vious image using SIFT-feature [7] matching points of this image pair.
Pairwise image stitching methods generally work well for a small
number of images with explicit matching points. However, it may fail
when the total number of images is large, and feature points are not
well matched, leaving outliers that cause an abnormal camera pose
error that will l propagate to subsequent camera pose estimates. The
accumulated pose error deteriorates the image stitching performance.
To solve this problem, global alignment approaches such as bundle
adjustment have been explored to promote globally consistency be-
tween all the images and improve the robustness of stitching [2].

This work was finished when Laixi Shi was an intern at MERL.

To estimate the camera pose for each target image to be stitched,
bundle adjustment considers feature matching points between the
target image and a bundle of its overlapping reference images instead
of just one reference image. Therefore, bundle adjustment shows
robustness by comprehensively exploiting the matching point with
all neighbors. However, the performance may still not be satisfactory,
especially when with high precision stitching is required, since even a
few matching point outliers can cause irreversible camera pose errors
that accumulate during the stitching process.

In this paper, we propose a robust camera pose estimation method
which accurately estimates camera poses even with abnormal pairwise
camera pose estimation errors, when a large collection of images are
being fused. Given a sequence of indexed images, we first estimate
the pairwise relative pose matrix, in which each entry corresponds
to a target and a reference image pair indexed by the row and the
column, respectively. For each overlapping image pair, the corre-
sponding entry is achieved by solving a perspective-n-point (PnP)
problem using feature matching points in the overlapped area, oth-
erwise the entry is non-observable. As a global alignment approach,
our proposed method aims to jointly estimate all camera poses based
on the partially observed relative pose matrix estimates, exploiting
the underlying rank-2 relative pose matrices and the joint sparsity of
the pose estimation errors [8].

Low-rankness and sparsity have been widely studied in recent
years to exploit the low-dimensional structure of signals, such as
for image restoration [9], signal processing [10], video process-
ing [11–14], machine learning [15,16], and Euclidean distance matrix
reconstruction [17]. A well-known method promoting those prop-
erties is robust principal component analysis (RPCA) [18], which
recovers a low-rank matrix and a sparse error matrix from their su-
perpositioned observations. Inspired by RPCA, here we exploit the
low-rankness in an implicit way rather than using an explicit low-rank
constraint such as matrix nuclear norm. We also promote the joint
sparsity of relative pose errors and enable the estimation in the case of
partially observed matrices. Our main contributions are summarized
as:

1. We proposed a robust image stitching method with a formula-
tion promoting the underlying rank-2 matrices of relative poses
and the joint sparsity of camera pose errors, which exhibits
robustness even under abnormal camera poses.

2. We explored the general matrix reconstruction problem given
partial observations, when the matrix has specific underlying
structure. The proposed method is potentially applicable to
various other scenarios targeting a sequence of linearly related
estimations.

3. We conducted numerical experiments and demonstrated that
our method significantly outperforms existing methods.



2. ROBUST IMAGE GLOBAL STITCHING

2.1. Image Acquisition Model

In this work, we target the problem of stitching images of a large 3D
surface with known geometry. Without loss of generality, we consider
a collection of N images {Xn}Nn=1 covering a large surfaceU , with
each image overlapping with its neighbors. For instance, we consider
a huge painting surface U , as illustrated in Fig.1.

Fig. 1. Schematic diagram of image acquisition.

We consider a six-degrees-of-freedom (6-DoF) pin-hole camera
model in image acquisition [2]. Based on this model, each pixel
(xc, yc) in image Xn is projected from a point (xu, yu, zu) on the
3D surface U according toxcyc
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where R = Rx(θx)Ry(θy)Rz(θz) ∈ R3×3 is the rotation matrix
with three DoFs determined by Euler angles θx, θy , and θz , with
Rx(·),Ry(·), andRz(·) representing the rotation matrix around x,
y, and z axes, respectively [19]; T = [Tx, Ty, Tz]

> ∈ R3 is the
translation vector of the translations in x, y, and z directions; f is
the focal length of the camera; and v is a pixel-dependent scaling
factor to ensure that the projected pixel lies in the focal plane. We
note that the pose of the 6-DoF camera is determined by a vector
p = [θx, θy, θz, Tx, Ty, Tz]

> ∈ RK with K = 6.

2.2. Relative Camera Pose Matrices

For image stitching, an essential task is to estimate camera poses
{pn}Nn=1 for all images {Xn}Nn=1 in the collection such that the
projective transformation of surface points shown in (1) can be prop-
erly calibrated. To simplify notations, we concatenate camera pose
vectors {pn}Nn=1 as row vectors into a matrix P and denote the k-th
column (k-th dimension of all poses) vector of P as hk, i.e.,

P = [p1,p2, · · · ,pN ]> = [h1,h2, · · · ,hK ] ∈ RN×K . (2)

For each k-th parameter of the camera poses, we define a relative
camera pose matrix L(k) ∈ RN×N with each entry

L(k)(i, j) =hk(i)− hk(j),

for i, j = 1, 2, · · · , N ; k = 1, 2, · · · ,K, (3)

where hk(i) denotes the i-th parameter of hk, and L(k)(i, j), the
i-th row and j-th column entry of L(k), represents the k-th parameter
of the relative camera pose associated with the image pair Xi and
Xj . A key observation is that the matrix L(k) can be rewritted as

L(k) = hk1
> − 1h>k ∈ RN×N , (4)

where 1 is an N -dimensional vector with all entries equal to 1. It is
straightforward to verify that for any real vector hk 6= a1, where a
is a real scalar, we have

rank(L(k)) = rank(hk1
>) + rank(1h>k ) = 2. (5)

2.3. Camera Pose Estimation

Motivated by the aforementioned rank-2 property of the relative
camera pose matrices, we aim to recover camera poses from the
relative camera pose matrices by exploiting the low-rank structure.
To this end, we first construct an estimate of each relative camera
pose matrix L̃(k) ∈ RN×N .

For each entry L̃(k)(i, j), we calculate the relative camera pose
between the i-th image and the j-th image (reference) using a pairwise
image stitching method. With the 3D surface geometry prior and the
pose of the reference image, it can be modeled as a perspective-n-
point (PnP) problem using SIFT matching feature points [5, 20–24].
For those image pairs that are not overlapped, due to unavailability
of matching feature points, their corresponding entries in L̃(k) are
missing. Therefore, we introduce a binary matrix M ∈ RN×N

indicating the observability of entries in L̃(k), whereM(i, j) = 1 if
L̃(k)(i, j) is observable, otherwise M(i, j) = 0. Considering that
matching point outliers may lead to abnormal pose estimation errors,
we model the observed noisy relative pose matrix as

L̃(k) = L(k) + S(k), for k = 1, · · · ,K, (6)

where S(k) ∈ RN×N represents sparse pose estimation errors. To
introduce our proposed approach, we first vectorize all observed
entries (according toM ) of L̃(k), S(k) and L(k) respectively as

l̃(k) = vec({L̃(k)(i, j)|M(i,j)=1}) ∈ R|M|,

s(k) = vec({S(k)(i, j)|M(i,j)=1}) ∈ R|M|,

l(k) = vec({L(k)(i, j)|M(i,j)=1}) ∈ R|M|. (7)

where l̃(k), s(k), l(k) are with the same element order, and |M | is the
cardinality of the nonzero entries inM .

Recalling (4), we can express l(k) as

l(k) = Ahk, (8)

with
A = [· · · ,αi,j , · · · ]> ∈ R|M|×N , (9)

where (i, j) ∈ {(i, j) : M(i, j) = 1}. Vector αi,j ∈ RN has
all-zero entries except that αi,j(i) = 1 and αi,j(j) = −1. Concate-
nating those of all the K parameters, we denote

L̃ = [l̃(1), l̃(2), · · · , l̃(K)] ∈ R|M|×K ,

S = [s(1), s(2), · · · , s(K)] ∈ R|M|×K ,

L = [l(1), l(2), · · · , l(K)] = AP ∈ R|M|×K .

Considering that different parameters of the camera pose (such
as rotation angle θx and transition Tx) are of different magnitude
ranges, we introduce a vector w = [w1, w2, · · · , wK ]>, where
wk = N−1∑N−1

i=1 |L̃(k)(i,i+1)| , to normalize the magnitude ranges. Con-

sequently, the camera pose estimation problem is formulated as

min
S,P

1

2

∥∥∥(L̃−AP − S)W∥∥∥2
F
+ λ ‖SW ‖2,1 , (10)



where W = diag{w} is a diagonal matrix whose diagonal is w,
‖·‖F denotes the Frobenius norm, ‖ · ‖2,1 denotes the `2,1 norm

of a matrix defined as ‖Q‖2,1 =
∑I

i=1

√∑J
j=1 [Q(i, j)]2 for any

matrixQ ∈ RI×J [8], and λ is the regularization parameter.
Note that (10) is similar to the well-known RPCA [18] which de-

composes the observation matrix into a low-rank matrix and a sparse
noise matrix. Nevertheless, here we implicitly impose low-rankness
rather than use an explicit low-rank constraint such as nuclear-norm
minimization. In addition, we promote joint sparsity across the noise
of different parameters of each pose using the `2,1 norm. It is inspired
by the observation that when one parameter of a camera pose is not
well estimated, all other parameters exhibit large errors with high
probability.

To solve (10), we utilize the alternating minimization method
by alternately updating S and P until its stopping criteria is satis-
fied. The sub-problem with respect to P is a standard least-squares
problem, which can be solved by

P (t) =A†
(
L̃− S(t−1)

)
, (11)

whereA† denotes the pseudo-inverse ofA, and superscripts (t) and
(t− 1) represent the number of iterations during the process.

The subproblem of S can be solved by row-dependent soft-
thresholding as

S
(t)
i,: = (L̃−AP (t))i,:�max

0, 1− λ∥∥∥(L̃−AP (t))i,:W
∥∥∥
2

 ,

(12)
where the subscript (i, :) denotes the i-th row of the corresponding
matrix, � stands for the element-wise product. The overall algorithm
is summarized in Alg. 1.

Algorithm 1: Robust Camera Pose Estimation

Input: Constructed relative pose matrix estimation L̃, the
maskM , andA.

Initial S(0) = 0, P (0) = 0, parameters λ, ε, and iter;
for t← 1 to iter do

Update P (t) ← solve (11) with S(t−1);
Update S(t) ← solve (12) with P (t);

if
∥∥∥P (t) − P (t−1)

∥∥∥
F
≤ ε then break;

end
Output: P̂ ← P (t).

It is clear that when λ = 0 and S = 0, Alg. 1 is reduced to the
least-squares method for camera pose estimation

P̂LS = A†L̃. (13)

2.4. Image stitching

Note that any global rigid translation on camera poses leads to the
same relative camera pose matrix L [25]. To avoid ambiguity, we
take the first camera pose as a noiseless reference, with other camera
poses calculated from the output P̂ of Alg. 1 as follows

p̂n = P̂>n,: − P̂>1,: + p1, for n = 1, ...N. (14)

Once we obtain estimated camera poses {p̂n}Nn=1, we project all
N images to the 3D surface U according to (1) to construct the final
stitched image using interpolation.

3. NUMERICAL EXPERIMENTS

3.1. Experimental Settings

To examine our proposed joint sparsity and rank-2-based global stitch-
ing approach, we simulated a sequence ofN = 50 images {Xn}Nn=1

of size 500×600 captured by a camera at different poses using model
shown in (1), as illustrated in Fig. 1. To ensure a full coverage of
the huge painting surface U , the camera moves in a linear-scan pat-
tern, capturing overlapped images, with each image covering a small
portion of the whole surface. Because of the random perturbation of
poses during image collection, camera poses must be estimated in the
stitching process.

To estimate camera poses, we compare four different methods:
(1) pairwise method, (2) bundle adjustment method, (3) least-squares
method, and (4) our proposed method.

For the pairwise method, we utilize a SIFT-feature-based
perspective-n-point (PnP) method [26,27] to sequentially estimate all
camera poses with prior knowledge of the 3D scene geometry. For the
bundle adjustment baseline, we expand SIFT-feature matching points
by including all those between the target image and its overlapping
neighbors. Specifically, when stitching the i-th image, we consider
the set of neighbors Gi = {g|g < i, |g − i| ≤ 25} for feature
matching points construction1. For the least-squares method and
our proposed method, the mask M is given according to the valid
number of overlapping neighbors by

M(i, j) =

{
1 if |i− j| ≤ 25, i 6= j

0 otherwise .
(15)

The hyper-parameter in (10) is tuned as λ = 0.01 for this specific
application.

3.2. Experimental Results

To illustrate our observation with missing data, in Fig. 2 (a) we illus-
trate one partially observed relative pose matrix L̃(4) ∈ RN×N as an
example, where the white area in the square matrix corresponds to the
missing values. For comparison, in Fig. 2 (b) we show the underlying
ground truth matrix L(4) that we desire to recover. Since L(4) is a
rank-2 matrix, we can clearly observe similar patterns in rows, and
also in columns. Furthermore, Fig. 2 (c) and (d) are the estimated
relative pose matrices L̂(4) via the least-squares baseline and our
approach respectively. Although both estimates exhibit patterns of
low-rankness, the result using our proposed method preserves the
true pattern with high fidelity regardless of the interference of large
relative pose observation errors in Fig. 2 (a).

To verify the joint sparsity of pose errors using the pairwise
stitching method, we present two ground truth noise matrices S(4)

and S(3) in Fig.3 (a) and (b) respectively. The two plots imply
that the pattern of the sparse errors with respect to different pose
parameters are consistent, which confirms our model assumption.
Due to space limit, we only show one estimated sparse error matrix
Ŝ(4) in Fig.3(c) and note it accurately recovered the ground truth

1Although we could also use neighbors G′i = {g| |g − i| ≤ 25} for
the bundle method, we utilize Gi instead of G′i because Gi gives the bundle
method better results.



(a) Partially observed L̃(4) (b) Ground truth L(4)

(c) L̂(4) via LS (d) L̂(4) via Ours
Fig. 2. Examples of relative camera pose matrices. (a) Partially
observed matrix using PnP method, (b) Underlying rank-2 ground
truth, (c) Recovered matrix via the least-squares method, and (d)
Recovered matrix via our proposed approach.

S(4) shown in Fig.3(a), which illustrates that our proposed approach
enables abnormal pose error detection.

(a) S(4) (b) S(3) (c) Ŝ(4) via Ours

Fig. 3. Example sparse error matrices of relative camera pose matri-
ces. (a) Sparse error matrix S(4) = (L̃(4) −L(4))�M , (b) Sparse
error matrix S(3) = (L̃(3) −L(3))�M , and (c) Recovered sparse
pose error matrix Ŝ(4) using our proposed method.

To quantitatively analyze the performance of camera pose es-
timation, we compute the (average) relative estimation error e =
1
K

∑K
k=1

‖l(k)−l̂(k)‖2
‖l(k)‖2

of different methods, where l̂(k) is the recon-

struction of l(k). We display the relative errors with respect to the
image number N in Fig. 4, which shows that under random abnor-
mal camera pose estimation errors, the camera pose errors of both
pairwise and bundle methods gradually accumulate across images. In
comparison, although the least-squares method maintains the relative
error to a lower level, our proposed method reduces the error even
more. The robustness of our method to abnormal pose estimation
error is achieved by promoting the joint sparsity of the noise matrix.

Using the estimated camera poses, we project images on the 3D
surface and interpolate the projected pixels to get the final image of
the large surface Û . Fig. 5 shows (a) the ground truth image, (b) the
stitched image using the least-squares method (best baseline), and
(c) the image using our proposed method for comparison. Fig. 5
demonstrates that both the least-squares method and our proposed
method achieved visually satisfying quality compared to the ground
truth. However, when we zoom into a small area, a lot of artifacts
are observed in the stitched image using the least-squares method, as
shown in Fig.5(e) compared to the ground truth shown in Fig. 5(d).
Our proposed method significantly reduces these stitching artifacts as
shown in Fig.5(f).

Fig. 4. The relative error of reconstructed relative pose matrix as the
number of images N increases.

(a) True image U (b) Û via LS (c) Û via Ours

(d) Local area of (a) (e) Local area of (b) (f) Local area of (c)

Fig. 5. Comparison of images between (a) ground truth U , (b)
stitched image via the least-squares method, and (c) stitched im-
age via our proposed approach. Images (d), (e), and (f) are the same
local area of (a), (b), and (c), respectively.

To further evaluate the performance of different stitching meth-
ods, we compute the relative error of relative camera poses and the
Peak-Signal-to-Noise Ratios (PSNR) of their stitched images Û , as
shown in Table. 1. It is clear that our proposed method outperforms
other baselines, achieving a much smaller relative camera pose es-
timation error and a much larger PSNR of the stitched image, by
exploiting joint sparsity and low-rankness properties.

Pairwise Bundle LS Ours
Relative pose error 0.948 0.968 0.140 0.037
PSNR of Û (dB) 19.23 20.94 26.68 30.29

Table 1. Relative errors of the relative camera pose matrices and
PSNRs of stitching results Û using N = 50 images.

4. CONCLUSION

We propose a robust camera pose estimation method for stitching a
large collection of images of a 3D surface with known geometry. To
address the issue of accumulating camera pose error using existing
methods, we constructed a partially observed relative pose matrix
for each parameter of camera poses, and decompose it into a rank-
2 matrix of relative camera poses and a sparse matrix of camera
pose errors by exploiting the joint sparsity of camera pose errors in
estimating camera poses. Numerical experiments with simulating
images captured by a camera with random pose perturbations causing
abnormal pair wise image pose estimation errors demonstrate that
our proposed method is capable of yielding robust camera pose esti-
mates and significantly better stitching results than popular baseline
methods.
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