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Abstract
Understanding complex hand actions, such as assembly tasks or kitchen activities, from hand
skeleton data is an important yet challenging task. This paper introduces a hand graph-
based spatio-temporal feature extraction method which uniquely represents complex hand
action in an unsupervised manner. To evaluate the efficacy of the proposed representation,
we consider action segmentation and recognition tasks. The segmentation problem involves
an assembling task in an industrial setting, while the recognition problem deals with kitchen
and office activities. Additionally, for both segmentation and recognition models, we propose
notions of stability, which are used to demonstrate the robustness of our proposed approach.
We introduce validation loss stability (ValS) and estimation stability with cross-validation
(EtS) to analyze robustness of any supervised classification model. The proposed method
shows comparable classification performance with state of the art methods, but it achieves
significantly better accuracy and stability in a cross-person setting.
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ABSTRACT

Using hand skeleton data to understand complex hand actions, such
as assembly tasks or kitchen activities, is an important yet challeng-
ing task. This paper introduces an unsupervised hand graph-based
spatio-temporal feature extraction method. To evaluate the efficacy
of the proposed representation, we consider action segmentation and
recognition tasks. The segmentation problem involves an assem-
bling task in an industrial setting, while the recognition problem
deals with kitchen and office activities. For both tasks, we propose
novel notions of stability, loss function stability (LFS) and estima-
tion stability with cross-validation (ESCV), that are used to quantify
the robustness of achieved solutions. Our proposed feature extrac-
tion leads to classification performance comparable to state of the art
methods, while achieving significantly better accuracy and stability
in a cross-person setting. The proposed method also outperforms the
existing methods in the segmentation task in terms of accuracy and
shows robustness to any change in the input hyper-parameters.

Index Terms— Complex activity understanding, Spatio-temporal
hand graph, Unsupervised feature extraction, Graph signal process-
ing, Stability analysis.

1. INTRODUCTION

Understanding human activity plays a key role in many areas, such
as security, worker monitoring, and human-robot interaction. Devel-
oping efficient unsupervised representations for data used in human
activity analysis remains an interesting yet difficult problem because
of the complex nature of human actions. Human activities such as
assembly tasks [1] and food preparation [2] consist of a pre-defined
sequence of action units. Analysis of complex activities performed
using only hands is challenging due to the similarity of motions in
different action units, which makes them hard to distinguish, and lo-
calization of the motion to small areas of the body. Complex activity
analysis from a video is further complicated when tracking people in
a cluttered background [3].

The understanding of complex activity [4] requires a multi-level
analysis, starting with the extraction of low level body position in-
formation. Recently, low level extraction of detailed 2D/3D posi-
tions of the body joints, hands, and face has improved significantly
with the emergence of more accurate RGB-D capture devices, e.g.,
Kinect, and software, e.g., OpenPose [5], which can extract infor-
mation with low-latency and acceptable accuracy. Given this low
level information, a complete task can be divided into smaller sub-
tasks depending on the nature of the hand motion and the sub-tasks
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are then classified according to their semantic meaning. In this pa-
per, we focus on the problem of representation and processing of
low level position data so that it can be used for efficient activity
segmentation and recognition.

Multiple approaches for action understanding using full-body
skeleton data have been proposed in the last decade, including
co-occurrence feature learning [6], spatial-temporal graph convolu-
tional networks [7], and spectral graph skeletons [8]. Graph-based
approaches for human motion analysis [7, 9, 10] using skeleton
data have also gained popularity due to their simplicity and effi-
ciency. In particular, they can provide motion features without prior
knowledge of the task. While tasks involving whole body motion
have been studied, complex activity understanding using only hand
skeleton data has not been thoroughly explored yet. In [7, 11], a
neural network-based supervised approach was developed to model
dynamic hand skeleton motion and analyze complex activities.
However, to achieve good performance this model requires a signif-
icant amount of training data, which may not be available in some
scenarios. Moreover, such systems may be difficult to use in prac-
tice, as retraining and adaptation could be costly (e.g., if the system
is moved from one location to another).

In this work, we systematically study hand graphs [12] and com-
plex hand motion in an unsupervised manner. We propose a Graph-
based Application-agnostic Feature eXtraction (GrAFX ) method for
complex action understanding using hand Motion capture (Mocap)
data. This feature extraction model is application agnostic and unsu-
pervised. Thus, our method can be used in any hand skeleton based
application, from hand action understanding to hand gesture recogni-
tion [13]. Our proposed graph-based method extracts temporal and
spatial information present in the hand activity sequence. We are
particularly interested in developing stable models [14], which are
always preferable since they maintain consistency in their perfor-
mance in varying datasets and conditions. While techniques to an-
alyze stability have been developed [15, 16], none of them provides
a metric that can be used to estimate stability for arbitrary machine
learning models, including state of the art methods based on neu-
ral networks. Additionally, while a estimation stability with cross-
validation (ESCV) has been proposed for problems such as a Lasso
based optimization [17], similar techniques have not been proposed
for classification.

The robustness of GrAFX in complex activity segmentation,
is measured with a dynamic time wrapping (DTW) based metric,
which measures the consistency of the output under small changes
in the hyper-parameters. Additionally, to analyze the stability of
GrAFX in classification, we propose two metrics that quantify the
variation in the loss function and the estimated probability of each
class as different training sets are used to build the model. We



demonstrate that our approach achieves better stability than state of
the art systems, leading to improved generalization across datasets.

There are three main contributions in this paper. First, we in-
troduce a spatio-temporal hand graph that can extract features that
generalize across a range of applications, without requiring prior
knowledge of the specific application. Second, we propose a DTW
based measurement for unsupervised temporal action segmentation
tasks, which can qualitatively analyze the performance across mul-
tiple subjects. Finally, we analyze the performance of our proposed
recognition system based on two novel notions of stability: valida-
tion loss stability (LFS) and estimation stability (ESCV).

We start by introducing novel spatio-temporal hand graphs and
studying their properties, including their computational efficiency.
Then the graph-temporal transform of [18] is applied for feature ex-
traction to graph signals defined on the constructed graphs. We pro-
vide an interpretation for the resulting representations, based on the
spectrum and basis of the constructed graph, which help us justify
their suitability for action recognition and segmentation tasks.

We present two sets of experiments. In Experiment 1, our goal
is to segment an activity into small sub-tasks without having prior
knowledge about the task. The stability of the complete system
is also provided in terms of different choices of hyper-parameters,
showing the advantages of an unsupervised system. In Experi-
ment 2, we perform an action recognition experiment on the FPHA
dataset [2] using only the hand position data. We provide a detailed
stability analysis for our classification model using GrAFX and
compare it to the state of the art LSTM model [19].

2. PROPOSED FEATURE EXTRACTION AND STABILITY
METRICES

2.1. Hand graph selection

In this paper, we extend the fixed undirected graph representation of
human hands of [12] to incorporate temporal graph connections. We
consider both the finger-connected hand graph GFH (21 nodes, 24
edges, see Fig. 1(a)) and the left-right hand graph GLRH (42 nodes,
46 edges, see Fig. 1(b)). The elementary basis vectors correspond-
ing to the spectrum of these spatial graphs can be used for feature
extraction. As shown in Figs. 2 and 3, it is possible to interpret
elementary basis vectors associated with different values of �, the
graph frequency. First, the basis vectors corresponding to the low-
est frequency in both figures capture the average of the signal. The
other two bases shown in Fig. 2, corresponding to medium frequen-
cies, capture different types of intra hand motion. In Fig. 3, the
basis corresponding to � = 0.12 captures the variation between the
thumb and the other fingers, � = 0.26 corresponds to the variation
in motion between hands, and � = 0.53 shows intra hand motion
variation.
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Fig. 1: (a) GFH for single hand, (b)GLRH for both hands.

Fig. 2: Example elementary frequency basis for GFH . Green dot:
positive value. Red dot: negative value. Blue dot: zero.

Fig. 3: Example elementary frequency basis for GLRH . Green dot:
positive value. Red dot: negative value. Blue dot: zero.

2.2. Graph-based Application-agnostic Feature Extraction
(GrAFX )

The input data is represented by a matrix X, containing observations
on each of the N joints for each of the T time instants. The obser-
vation at each joint contains the 3 dimensions of the corresponding
motion vector at that joint. Each dimension is considered separately.
Our proposed feature extraction is based on a separable transform as
in [18], leading to the separable graph temporal Fourier transform
(SGTFT):

F (X;G) =  GX T (1)

where T is a normalized discrete Fourier transform (DFT) matrix
of size T ⇥ T and  G is the N ⇥ N left eigenvector matrix of the
Laplacian matrix LG of G. Using the properties of the Kronecker
product (⌦), SGTFTcan be written as F (X;G) = ( G ⌦ T )X =
 JX where  J =  G ⌦ T . The Laplacian matrix of J can be
expressed as LJ = IT ⌦ LG � LT ⌦ IN so that:

LJ = (�T ⌦�G)(⇤T �⇤G)( T ⌦ G) = �J⇤J J (2)

where �T =  �1
T and �G =  �1

G . The columns of  J , denoted
by uk, form a spectral basis for graph signals residing on G, so that
any xi can be written as a unique linear combination of uk as xi =
N⇥TP
k=1

↵k,iuk, where

↵k,i = x>
i uk. (3)

Let xi be the motion vector present in each node (joint) of the graph
(hand) and ↵k be a vector of length equal to the dimension of data at
each joint (e.g., length three if motion at each joint is in 3D). Thus,
↵1,i, ↵2,i, ..., ↵N⇥T,i is a unique representation of the signal over
a window of length T . Since these ↵ features do not depend on a



specific application, we call them graph-based application-agnostic
features. At any given time window, we form a graph signal where
to each node of the hand graph we associate a motion vector with the
corresponding motion of that joint. In this paper we apply GrAFX
in two applications: unsupervised action segmentation and action
recognition.

2.3. Unsupervised Activity Segmentation using GrAFX

2.3.1. Offline segmentation

For offline segmentation (experiment1), the hand skeleton data se-
quence is divided into smaller windows {w1, w2, ..., wM}, where
each window is represented by a feature vector computed using
GrAFX . We use Expectation maximization (EM) [20] Gaussian
mixture model based clustering for segmentation. Given the target
number of actions, C, we define C clusters, and assume that the
features of each cluster follow a different Gaussian mixture model.
EM is then used to get the best set of parameters for those mixture
models representing the subtasks.

In each iteration, the EM algorithm maximizes the likelihood
and re-estimates the parameter values until it reaches the conver-
gence criteria. After clustering, each window obtains a class label
from the set {1, 2, ..., C}. When there is a change in class label,
in between two consecutive windows wt and wt+1, we consider the
end of window t as a good segmentation instance. Since each win-
dow is assigned to a cluster, the system is sensitive to the start and
end of each window. To reduce the impact of window position, we
use overlapping windows. However, this may result in two labels
being assigned for for a given time interval. If an interval gets two
different labels, the label with a higher likelihood is chosen as the
current label.

2.3.2. Qualitative analysis of the performance

Consider a scenario where we do not have any prior knowledge about
tasks performed by the subjects, but we have an example of those
same tasks completed by an expert. Then, using the segmentation
results (Section 2.3.1), we can rank how well each subject has com-
pleted the task by measuring the similarity of their work with that
of the expert. To quantify the similarity between two unequal length
data sequences of different subjects, we use dynamic time warping
(DTW) [21] where dtw(Ai, Bj) between sequence A with length i
and sequence B with length j is defined as:

dtw(Ai, Bj) = dist(Ai, Bj)+

min(dtw(Ai�1, Bj), dtw(Ai, Bj�1), dtw(Ai�1, Bj�1))
(4)

We are given data sequences from an expert, ex (a reference
sequence), and two subjects, s1 and s2, with respective lengths Lex

, Ls1 , Ls2, where Lex < Ls1 < Ls2. We compute dtw(ex, s1)
and dtw(ex, s2) We use a normalized DTW so that a distance can be
computed when LA 6= LB :

dtwnorm(ALA , BLB ) =
dtw(ALA , BLB )

max(LA, LB)
(5)

To compare dtwnorm(ex, si) across subjects (si), we apply min-max
normalization [22] to each sequence, which removes biases in the
range of values in the data.

2.4. Activity Recognition using GrAFX

2.4.1. Proposed Stability Metrics for Activity Recognition

Activity recognition is performed using GrAFX to extract spatio-
temporal features from the hand skeleton data. A temporal window
is defined to capture the local temporal variation of the data, fol-
lowed by a mean pulling algorithm to obtain a 1D feature vector per
window. Then SVM [23] is used for classification. Stability analysis
can be used to determine the sensitivity of the output of the system
to input variations. In this paper, we use three different measures of
stability.

First, leave-one-out cross-validation stability (LOOCS) is de-
fined as:

 LOOCS =
�acc

|µacc|
(6)

where µacc and �acc denote the mean and standard deviation of the
accuracy over different test settings. Here,  LOOCS is computed in
a cross-subject setting, i.e., we train with all subjects but one, and
test on the subject we left out.

We also quantify Loss function stability (LFS). While training
any classification model, the main goal is minimizing the loss func-
tion while tuning the parameters. So, it is crucial to observe the
variation in the loss function for a specific validation set when the
training set is changed. To quantify this, we measure validation loss
stability for each validation set and compute the average. Assume
there are M validation sets {vs1, vs2, ..., vsM} and for each vali-
dation set there are N training sets {tsi1, tsi2, ..., tsiN} where i de-
notes the corresponding validation set. For each validation set, we
compute N validation losses {V Li

1, V Li
2, ..., V Li

N}. Let µV Li and
�V Li denote the mean and standard deviation of the validation loss
value over different test settings. Thus we define LFS,  LFS, as:

 LFS =
1
M

MX

i

�V Li

|µV Li |
(7)

While computing the validation loss (e.g., cross-entropy loss in
LSTM or hinge loss in SVM), we only consider the estimated score
or the probability of the true class, but for a stable model, the prob-
abilities of the other classes should be close as well for a particular
validation set and varying training set. Inspired by the concept of
estimation stability [17], we introduce estimation stability (ESCV).
Let the predicted probabilities of a model for each class be denoted
by pci , where c and i denote the class index and validation sample
of ith validation set respectively. For each class, we compute  c by
taking the ratio of the standard deviation and the absolute mean of
the class probability. Finally, ESCV,  ESCV, is the average over all
the class and different validation set.

 ESCV =
1

MN

NX

c=1

MX

i=1

 c
i (8)

3. EXPERIMENTAL RESULTS

3.1. Datasets

USC Toy Assembling Dataset: Das et al. [12] introduce a toy as-
sembling dataset, where each subject assembles a GoPiGo3 1 robot
base kit according to a specific set of instructions. This task had
three main sub-actions: assembling, combining, and checking. 11

1https://www.dexterindustries.com/store/
gopigo3-base-kit/



Table 1: Segmentation Accuracy for USC Dataset [12]

Features Motion
Vectors GH [12] GrAFX

segacc 62.15% 79.58% 86.12%

subjects participated in the task and each performed the task three
times. The 2D hand skeleton key points for each subject were ex-
tracted by OpenPose at 30 frames per second.

First-Person Hand Action Benchmark: Garcia et al. [2] pro-
posed a first-person dynamic hand actions (FPHA) where subjects
interact with 3D objects. This dataset contains 1,175 action videos
belonging to 45 different action categories involving 26 different ob-
jects, in 3 different scenarios, kitchen, office, and social, and per-
formed by 6 subjects. In our experiments, we only use the right-hand
pose annotations data.

3.2. Experiment 1: Segmentation Results

Fig.4 shows the similarity between each subject and the expert,
where iteration 1 for subject 11 was used as the expert reference
(Sex = s11, iter1). We compute dtwnorm between each data se-
quence and Sex. Lower values of dtwnorm correspond to greater
similarity to the expert, implying better performance. Note that each
subject performed the task three times, and it can be seen that their
performance improved with each attempt, as shown in Fig. 4, with
10 out of 11 subjects achieving their best results in the third attempt.
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Fig. 4: dtwnorm for each data sequence considering s11 as expert.

Let segmentation accuracy (segacc) be defined as the ratio of
number of windows clustered correctly to the total number of win-
dows. Table 1 summarizes segacc computed using different features
extraction methods. It is clearly seen that GrAFX performs the best.

To evaluate the robustness of our algorithm, we repeat the
similarity-based ranking of subjects under different conditions
where we vary parameters such as window-size (chosen with values
2/3/4/5/7 secs) and number of subtasks. After segmenting each data
sequence, the distance from the expert is computed using (5), then
we select the top ranking user, i.e., the one with smallest distance to
the expert data. Out of 33 subjects, the same subjects were in the top
3 ranking 46% of time for varying window size, and 76% of time
when considering top 15 rankings.

3.3. Experiment 2 : Recognition results

To evaluate the performance of the hand graph in an action recogni-
tion task, we use the FPHA dataset. To compare our results with the
LSTM based action recognition mentioned in [2], we use similar ex-
perimental settings with train:test dataset ratios of 1:3, 1:1 and 3:1 at

Table 2: Recognition accuracy of FPHA dataset

Protocol LSTM [2] GH [12] GrAFX
1:3 58.75 48.63 62.39
1:1 78.73 63.3 79.14
3:1 84.82 72.46 84.93

Cross-person 62.06 61.55 73.67

Table 3: Recognition accuracy of FPHA in train:test=1:1 protocol

Algorithm Accuracy Algorithm Accuracy
JOULE-pose [24] 74.60 Gram Matrix [25] 85.39

HBRNN [26] 77.40 TCN-16 [27] 76.28
TF [28] 80.69 TCN-16 + TTN [11] 80.14

Lie Group [29] 82.69 GtH 79.14

sequence level. The second protocol consists of a 6-fold ’leave-one-
person-out’ cross-validation, i.e., each fold consists of 5 subjects for
training and 1 for testing. In this set, the training and testing set do
not share the same subjects taking care of and subjective bias.

As we can see clearly from the Table 2 GrAFX with spatio-
temporal connection outperforms GH [12] with only spatial connec-
tion in terms of accuracy. While comparing with the LSTM, our
proposed method outperformed by 5% for the cross-person setting,
which is a more realistic scenario in practice. GrAFX shows com-
parable performance to the state of the art method in a 1:1 train test
setting as shown in Table 3. Though the feature extraction of GrAFX
is unsupervised, the proposed features uniquely capture the action
characteristics rather than any person specific information. In con-
trast, while LSTM, being a data-driven method, performs poorly in
the cross person setting.

Table 4 summarizes the stability analysis (Section 2.4) of these
two classifications models. Though the accuracy of the proposed
model and LSTM is comparable in some cases, GrAFX outper-
forms LSTM in cross-person setting both in accuracy and stability.

Table 4: Stability analysis of the classification models

Method  LOOCS  LFS  ESCV

LSTM 0.106 0.129 1.106
GrAFX 0.0267 0.0455 0.0372

As an additional comparison, we use principal component anal-
ysis [30], a data driven approach, to extract features followed by a
SVM [23] for classification. This method achieves comparable per-
formance in stability with the proposed method, but lacks in terms
of performance, with an average accuracy of 45%.

4. CONCLUSION

In this paper, we propose a spatio-temporal hand graph-based
application-agnostic feature extraction method for hand motion
analysis. To evaluate the performance of this method, we choose
two complex activities, an unsupervised segmentation task and a
supervised classification task. We introduce DTW based stability
metric to measure the robustness of the segmentation algorithm
and LOOCS, LFS, ESCVto analyze the robustness of GrAFX in
classification. GrAFX achieves better stability as compared to the
state-of-the-art algorithms.
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