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Abstract
We propose an MBRL algorithm named Monte Carlo Probabilistic Inference for Learning
COntrol (MC-PILCO). MC-PILCO is a policy gradient algorithm, which uses GPs to model
the system dynamics, but it overcomes PILCO’s limitations by relying on a particle-based
method to compute long-term predictions, instead of using moment matching.
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I. INTRODUCTION

Reinforcement learning (RL) [1]] has shown the potential to
provide an automated framework for learning different control
applications from scratch. However, model-free RL (MFRL)
algorithms might require a massive amount of interactions with
the environment to solve the assigned task. This data ineffi-
ciency puts a limit to RL’s potential in real-world applications.
A promising way to increase data-efficiency is model-based
reinforcement learning (MBRL), which uses data to build a
model of the environment and exploit it to plan control.

However, MBRL methods are effective only if their mod-
els resemble accurately the environment. Hence, the use of
stochastic models becomes necessary to capture uncertainty.
Gaussian Processes (GPs) [2] have been commonly used in
RL precisely for their capacity to handle uncertainty [3].
PILCO (Probabilistic Inference for Learning COntrol) [4] is a
successful MBRL algorithm that uses GPs and gradient-based
policy search to solve different control problems [5].

In PILCO, long-term predictions are computed analyti-
cally, approximating the distribution of the next state with
a Gaussian distribution by means of moment matching. This
approximation allows computing the policy gradient in closed
form. However, it also introduces two relevant limitations.
(i) Moment matching can model only unimodal distributions.
This fact, besides being a potentially incorrect assumption on
the system dynamics, introduces relevant limitations related
to initial conditions. (ii) The computation of the moments
is shown to be tractable only when considering Squared
Exponential (SE) kernels. The latter limitation might be very
restrictive, as GPs with SE kernel show poor generalization in
points that have not been seen during training [6].

We propose an MBRL algorithm named Monte Carlo
Probabilistic Inference for Learning COntrol (MC-PILCO).
MC-PILCO is a policy gradient algorithm, which uses GPs
to model the system dynamics, but it overcomes PILCO’s
limitations by relying on a particle-based method to compute
long-term predictions, instead of using moment matching.

II. PROBLEM FORMULATION

Consider the discrete-time system described by the (possibly
stochastic) unknown transition function f(-,-),

Ti41 = f(mt,ut),
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where, at each time step ¢, x; € R% and u; € R% are,
respectively, the state and the inputs of the system. The cost
c(x;) defines the penalty for being in state x;. Inputs are
chosen according to a general-purpose policy function 7y :
x +— u, parameterized by @ € R% . The objective is to find
the set of parameters that minimizes the expected cumulative
cost over a finite number of time steps 7, i.e.,

T

J(0) = Eq, [e(x)],

t=0

(D

starting from an initial state distributed according to p(xg). We
assume to have access to (noisy) measures of the full state.

III. MC-PILCO

The proposed algorithm, MC-PILCO, consists of the suc-
cession of several trials; i.e. attempts to solve the desired task.
Generally speaking, each trial involves the following phases:

e Model Learning: the data collected from all the previous
interactions are used to train a model of the system
dynamics (at the first iteration data are collected applying
a sequence of exploratory actions, e.g. random controls);

e Policy Optimization: the policy is optimized in order to
minimize an estimate of the cost J(8). Model predictions
are used to estimate gradient Vg.J and policy parameters
6 are updated following a gradient-descent approach.

e Policy Execution: the optimized policy is applied to the
system and the data are stored for model improvement.

A. Gaussian Processes for Model Learning

Given a set of state-action pairs collected during the inter-
actions with the system, it is possible to use GP regression to
train a probabilistic model that approximates f(-). A common
strategy is to model the evolution of each state dimension
with a distinct zero mean GP. Let us indicate with 2(*) the
i-th component of the state, for i € {1,...,dz}. The i-
th GP takes x; as input, and predicts a:gl — xil). Let us
denote with D the data set of state-action pairs, the GPs
provide a closed form expression of p(x;y1|xe, ue, D), the
posterior distribution of the estimated state at time ¢ 4 1. The
GPs are completely characterized by their kernel functions
that represent our belief on the a priori covariance. With
respect to this, PILCO is restricted to use only the SE kernel,
due to the moment matching approximation it makes for
computing the policy gradient. MC-PILCO does not need this
kind of assumptions, hence we can adopt also more structured
functions, as polynomial and semi-parametrical kernels.



B. Particle-based Policy Optimization

The predictive model is now employed to optimize the
policy parameters 8 following a particle-based policy gradient
strategy. MC-PILCO computes J(6), an approximation of
J(0) in (1) exploiting the distribution p(@;4+1|x, us, D).
After that, it updates 8 with a gradient-based procedure.

The computation of J(@) entails the simulation of the
effects of wg on M independent state particles by cascading
the one-step-ahead stochastic predictions for 7' time steps.
In particular, let wgm), for m = 1,..., M, represent the
position of the M state particles. They are all initialized by
sampling from the distribution p(xg). Then, at each time step
t the policy mg selects the next control actions uim) for
every particle. We adopted, as policy, a RBF network with
saturated output, but one can use any kind of differentiable
function. Finally, the state of the M particles at the next
time step, ¢ + 1, are obtained by forward sampling from
p(azgfﬂwgm),uﬁm),l)) with m = 1... M. This procedure
is iterated for 7' time steps, obtaining M different particle
trajectories {{z{™}M_}T  that simulate the results of the
policy. The sample mean of the costs incurred by the particles
provides an estimate of the expected cumulative cost, namely

. 1 &
J(0) = — c (w(m)) . 2
(9) ; i m; : )
The computational graph resulting from (2) allows us to
compute Vg.J(8), i.e., the gradient of .J(0) w.r.t. 8, by means
of backpropagation, exploiting the reparametrization trick
to propagate the gradient through the stochastic operations.
Finally, a stochastic gradient descent algorithm, e.g. Adam
(8], can use the estimated gradient to update 6.

Note how this particle-based strategy for computing the
gradient does not make any approximation regarding the
long-term state distributions, as it does PILCO with moment
matching. This is the reason why MC-PILCO can handle any
kernel and can also model multimodal distributions.

IV. EXPERIMENTAL RESULTS

Initially, we tested MC-PILCO on a simulated cart-pole
system, where it outperformed two state-of-the-art GP-based
MBRL algorithms, such as the aforementioned PILCO, and
Black-DROPS [9]. Fig. [T] reports the result obtained in 50
different runs of the experiment, in terms of median cumulative
cost per trial (with confidence intervals). MC-PILCO achieves
the best data efficiency and consistency in finding the optimal
policy.

After that, we also applied the algorithm to the two real
systems depicted in Fig. 2l More precisely, we modified the
original formulation of MC-PILCO to take into account the
inevitable necessity of performing state estimation, during
both the model learning and policy optimization phases. Our
method managed to learn from scratch how to control both
systems. Details about the experimentsﬂ can be found in [[10].

A video is available at https://youtu.be/--73hmZYaHA,
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Fig. 1. Median and confidence interval of the cumulative cost per
trial obtained with PILCO, Black-DROPS and MC-PILCO.

Fig. 2. Real setups: (left) Furuta pendulum, (right) ball-and-plate.
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