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Abstract
Physics-informed simulation models of heating, ventilation, and cooling (HVAC) systems play
a critical role in predicting system dynamics and enabling analysis, control, and optimiza-
tion of buildings and equipment. The predictive performance of these simulation models are
strongly linked to calibration mechanisms: algorithms that systematically select parameter
values that optimize a given calibration-cost map (e.g., L-2 error). Poorly selected parame-
ter values typically result in large deviations between measured building data and simulated
data, limiting the utility of the simulation model in subsequent design. State-of-the-art cal-
ibration methods explore the parameter space by computing numerical gradients that are
susceptible to measurement noise or employing population-based search mechanisms that re-
quire exorbitant data. To improve robustness and curtail data requirements, one can ‘learn’
or approximate the calibration-cost map and subsequently leverage the topology of the ap-
proximated function to find good search directions despite noisy measurements. Concretely,
we employ machine learning to construct a calibration-cost map to direct model calibration
for systems with joint dynamics of buildings and HVAC equipment. The learner explores
subregions of the parameter space with high uncertainty and queries the model only where
collecting simulation data yields useful information. This leads to lower simulation data-
requirements compared to widely used calibration mechanisms.
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Abstract
High-fidelity simulation models of coupled building
and HVAC dynamics are typically expressed using
grey-box simulators. These simulators comprise sys-
tems of differential algebraic equations, typically in-
formed by physics, that need to be calibrated to real-
world data. In this paper, we describe a framework
for calibrating simulation model parameters using
scalable Bayesian optimization (BO). BO uses prob-
abilistic learners to approximate objective functions
and leverages statistical information to efficiently ex-
plore and exploit the parameter space. This approach
typically requires fewer simulations than Monte-Carlo
methods or population-based algorithms, without re-
lying on gradient information. To render the Bayesian
framework tractable in high-dimensional parameter
spaces, we also provide a scalable BO framework
employing sparse Gaussian process regression. We
demonstrate that our proposed approach can simulta-
neously calibrate 17 parameters (including radiative
emissivities, heat transfer coefficients, and thickness
of walls/floors) of a Modelica model of joint building
and HVAC dynamics with >85% accuracy, and 13 of
those 17 with > 90% accuracy.

Key Innovations
• A novel model calibration algorithm is proposed

based on Bayesian optimization that can be ap-
plied to simulation models with internal dynam-
ics and representations that are partially (grey-
box) or completely (black-box) unknown.

• The problem of joint calibration of building and
HVAC dynamical models is considered.

• The algorithm uses probabilistic machine learn-
ing methods to learn a calibration-cost function
with unmodeled building/HVAC dynamics.

• The model calibration mechanism is gradient-
free and works with few model simulations by
exploiting uncertainty quantification.

• The proposed method is also modified to per-
form with a large number of parameters and data
points using sparse Gaussian processes.

Practical Implications
We use a timeout in the simulator to stop the simula-
tion after 300 s of CPU time, and exclude that param-

eter combination from the training set of the learner
and the admissible parameter space. We chose 300 s
as our time-out because we noticed that only certain
poor choices of parameters resulted in increased stiff-
ness of the underlying dynamical equations and re-
quired over 2000 s to simulate, eventually ending in
oscillatory outputs. To reduce wastage of simulation
time, we timed out at 300 s, since good choices of
parameters resulted in simulations terminating suc-
cessfully within 200 s. Of course, if we simulated for
longer, or for other models, one would have to care-
fully select this time-out based on empirical evidence
regarding how long good simulations take.

Introduction
Simulation models of heating, ventilation, and cool-
ing (HVAC) systems play a critical role in predict-
ing system dynamics and enabling analysis, control,
and optimization of buildings and equipment (Kim
et al., 2016). Key advantages of these physics-based
modeling approaches are that their structure and
parameter values are often available from construc-
tion documents, and that the information encoded in
their mathematical structure tends to demonstrate
accurate predictive properties in comparison to more
generic model structures. These predictive capabili-
ties often come at the cost of increased nonlinearity
and numerical stiffness, which can make these models
difficult to solve and calibrate.
Calibration mechanisms are strongly linked to the
predictive performance of a physics-based model for a
given building. Initial parameters obtained from ta-
bles of physical properties or architectural drawings
may deviate from the actual materials or geometry
used in the built environment, while other model pa-
rameters (e.g. heat transfer coefficients) may only be
derived from correlations or empirical observations.
The parameter values that most accurately represent
observed data must therefore be systematically iden-
tified by algorithms that optimize a given calibration-
cost map, such as the well-studied coefficient of vari-
ation of root-mean squared error.
Calibration-cost functions often present numerical
challenges because they are to be quite nonlinear,
their sensitivities vary locally, and are seldom convex
or differentiable with respect to the calibrated param-



eters. Measured data is also often corrupted by en-
vironmental and process noise, limiting the effective-
ness of gradient-based methods. Population-based,
gradient-free searches are scalable and effective, but
incur high computational expenditure as they require
an exorbitant number of simulations (Garrett and
New, 2015; Asadi et al., 2019), which may not be suit-
able for stiff dynamical models that require long sim-
ulation times. Solely relying on dynamical estimators
such as Kalman filters can also limit calibration per-
formance due to multi-rate dynamics and poor gen-
eralizability of linearized models typically used to de-
sign these estimators (Bortoff and Laughman, 2019;
Alam et al., 2018).
Coupled interactions between the HVAC system and
the building envelope must also be accounted for dur-
ing calibration. Although calibration of each of these
models is often performed independently, many vari-
ables contain information about both the envelope
and the HVAC system. The calibration of the joint
system thus has the potential to yield more accu-
rate parameters. The calibration of this joint model
is more challenging because of the large number of
states and parameters, as well as the fact that the
joint system often has dynamics over a wider range
of time constants than the subsystem models, imply-
ing that the algorithms should be able to perform
in both data-frugal and data-abundant (equivalently,
data-poor and data-rich) settings.
Machine learning techniques can be used to approx-
imate a calibration-cost map to direct model cal-
ibration for systems with joint dynamics of build-
ings and HVAC equipment. The learner explores
subregions of the parameter space with high un-
certainty and queries the model only where collect-
ing simulation data yields useful information. In-
telligent sampling leads to lower simulation data-
requirements compared to widely used calibration
mechanisms (Bamdad et al., 2020). Bayesian calibra-
tion frameworks (Heo et al., 2015b; Tian et al., 2016;
Berger et al., 2016) are particularly useful in this con-
text because they provide uncertainty quantification
capabilities, as they not only incorporate prior knowl-
edge one might have of the system at hand, but also
provide confidence envelopes around the nominal pre-
dictions specifying its degree of certainty without re-
quiring a large amount of data (Li et al., 2016). The
most widely used Bayesian algorithms for calibrat-
ing dynamical models and energy models fall under
the umbrella of Markov chain Monte Carlo (MCMC)
methods (Chong and Lam, 2017; Menberg et al.,
2017; Chong et al., 2019). While these methods pro-
vide demonstrably excellent solutions for building en-
ergy calibration with few unknown parameters, they
suffer from three major limitations: they typically
require a large number of iterations for ‘burn-in’ and
exhibit slow convergence in high-dimensional param-
eter spaces (Menberg et al., 2017), they require pre-

conditioning steps such as sensitivity analysis which
is itself computationally expensive, and they require
learning of multi-input multi-output maps via prob-
abilistic learning methods to replace the emulator.
In our work, we demonstrate that our proposed GP-
based Bayesian optimization method requires few it-
erations to converge, does not require prior sensitiv-
ity analysis since it automatically determines rele-
vance of parameters within the training phase, and a
multi-input one-output map is learned (which reduces
learning complexity) since we only seek to approxi-
mate the calibration-cost function rather than replac-
ing the more complex underlying physics-informed
model, thereby preserving fidelity.
Gaussian processes have been previously been shown
to be particularly effective for calibration of building
energy maps (Zhang et al., 2013; Gengembre et al.,
2012; Tresidder et al., 2011). In all these case stud-
ies, however, the dynamics of the underlying system
are not considered, and the number of parameters
and/or parameter uncertainty is small enough such
that convergence happens within 150 iterations. As
pointed out by Østergård et al. (2018), the compu-
tational stability and efficiency of GP-based meth-
ods scale poorly when the number of iterations of the
calibration algorithm is large. Sparse Gaussian pro-
cesses (SGPs) are crucial for overcoming this impor-
tant limitation (Quiñonero Candela and Rasmussen,
2005; Bauer et al., 2016).

Methods
An overview of the proposed calibration framework is
presented in Figure 1.
Black-box model calibration
We denote by

y0:T =MT (θ)

a general model of the joint building and HVAC dy-
namics, parameterized by θ ∈ Θ ⊂ Rnθ . The admis-
sible set of parameters Θ is assumed to be known at
calibration time; for instance, Θ could denote a set
of upper and lower bounds on parameters, obtained
from physics or practical experience. The output vec-
tor y0:T ∈ Rny×T contains all measured outputs from
the building system obtained over a time period [0, T ].
Note that a particular advantage of our proposed
work is that we do not require an underlying mathe-
matical description of the dynamics at design time.
That is, MT (θ) could be a completely black-box
model, where simulatingMT (θ) forward with a fixed
(and admissible) set of parameters θ yields a vector
of outputs

y0:T :=
[
y0 y1 · · · yt · · · yT

]
,

with each output measurement yt ∈ Rny .
This assumption implies that our method is appli-
cable to a wide range of models proposed in the



Figure 1: Schematic diagram of the proposed Bayesian optimization based calibration method.

literature. For instance, consider the commonly
used (Chong et al., 2019; Heo et al., 2015a) building
energy model

yt = η(xt, θ) + δ(xt) + ε(xt),

where η denotes the energy prediction, δ is the model
discrepancy, and ε is the observation error. Clearly,
by recursively simulating this model from t = 0 to
t = T , one can obtain a representation that conforms
to our abstracted model MT (θ). Another example
could be a state-space description (Guo et al., 2021)
of the joint dynamics such as

ẋb = fb(xb, xe, ub, wb, θb),

ẋe = fe(xe, xb, ue, we, θe),

y = h(xb, xe, ub, ue, vb, ve)

can be used by defining θ := [θb, θe] and integrat-
ing from [0, T ] to yield a model of the form MT (θ).
Here x, u, w, and v denote states, inputs, process
noise, and measurement noise, respectively, and the
subscripts b and e correspond to the building and
equipment, respectively.
For performing data-driven model calibration, we re-
quire measured output data y?0:T from the true sys-
tem. Concretely, our objective is to obtain the op-
timal set of parameters θ? such that the modeling
error y?0:T − MT (θ?) is minimized (in some sense).
To this end, we propose a calibration-cost function
J ≡ J(y?0:T ,MT (θ)) and the following optimization
problem to find the optimal parameters

θ? = arg min
θ∈Θ

J(y?0:T ,MT (θ)). (1)

While the designer is free to select any calibration-
cost function J in (1), we employ

J := log

(
T∑
t=0

(y?t − yt)>W (y?t − yt)

)
, (2)

where W is a ny × ny positive-definite matrix that is
used to assign importance or scale the output errors;
recall y0:T = MT (θ). The natural logarithm log(·)
promotes good numerical conditioning of the cost J
by avoiding very large or very small costs.
We solve the problem (1) by intelligently extracting
samples from the parameter space Θ, forward sim-
ulating the model MT (θ) from [0, T ] to obtain yt,
and computing the cost J(y?0:T , y0:T ); the values and
history of these cost function evaluations drive future
sampling and eventually yield good solutions (asymp-
totically, the optimal solution). This avoids depen-
dence on the underlying description ofMT (θ), mak-
ing our method amenable to grey- or black-box mod-
els. The number of samples required to obtain good
solutions to (1) in high-dimensional parameter spaces
grows exorbitantly due to the curse of dimensional-
ity. Bayesian optimization reduces sampling complex-
ity by directing posterior samples based on updating
prior knowledge, enabling calibration of models with
a large number of parameters.
Scalable Bayesian optimization via sparse GPs
The Bayesian optimization (BO) algorithm typically
consists of two steps that balance exploration and ex-
ploitation (Snoek et al., 2012). Probabilistic machine
learning methods such as Gaussian processes (GPs)
are used to approximate the map from the parameter
space to the calibration-cost function J (Williams and



Rasmussen, 2006). By learning a probabilistic repre-
sentation, one can use the approximation to gener-
ate a predictive distribution for J at each parameter
θ. Furthermore, the predictive distribution is used
to direct subsequent search locations, with a primary
focus on sub-regions of Θ where the function most
likely contains the global solution θ? that minimizes
the cost (1). A benefit of using GPs is that the predic-
tive distributions are Gaussian, and therefore, uncer-
tainty quantification is computationally tractable and
interpretable via simple statistics such as means and
standard deviations. The GPs are used to define a
prior distribution over functions. The underlying as-
sumption made is that the calibration-cost function
J to be optimized has been generated from such a
prior distribution, characterized by a zero mean and
a kernelized covariance function K(θ, θ′). The covari-
ance function K is singularly responsible for defining
the characteristics of the function such as smooth-
ness, robustness to additive noise, and so on. While
many kernel functions are available, we have found
(empirically) that the Matérn 3/2 function provides
a good approximation of calibration-cost functions.
Assume that we have already evaluated the objective
at Nθ input samples. Let this training data be de-
noted by {(θDk , J(θDk ) + νk}Nθk=1, where νk ∼ N (0, σ2

n)
is additive white noise in the measurement channel
with zero-mean and unknown covariance σ2

n. Given a
set of hyperparameters (such as length scales l in each
dimension of the parameter space, kernel variance σ0,
and noise variance σn) for a pre-selected kernel, one
can compute the matrices

KD(θ) =
[
K(θ, θD1 ) · · · K(θ, θDN )

]
and (note the calligraphic K)

KD =

K(θD1 , θ
D
1 ) · · · K(θD1 , θ

D
N )

...
. . .

...
K(θDN , θ

D
1 ) · · · K(θDN , θ

D
N )

 .
With these matrices, we can compute a posterior dis-
tribution characterized by a mean function µ(θ) and
variance function σ2(θ) given by

µ(θ) = KD(θ)>K−1
n J(θ), (3a)

σ2(θ) = K(θ, θ)−KD(θ)>K−1
n KD(θ), (3b)

with Kn = KD+σ2
nI. Now, the accuracy of predicted

mean and variance is strongly linked to the selection
of the kernel and the best (in some sense) set of hy-
perparameters such as l, σ0 and σn. There are a
variety of methods to obtain these hyperparameters,
but the most common method involves maximizing
the log-marginal likelihood function

L = −1

2
log |Kn| −

1

2
J(θ)>K−1

n J(θ)− p

2
log 2π. (3c)

This problem is non-convex but can be solved using
quasi-Newton methods or adaptive gradient meth-
ods (Williams and Rasmussen, 2006).

Unfortunately, inversion and determinant operations
typically used in exact GPs result in cubic complexity
with the number of data points, which implies that
using exact GPs in moderate or high-dimensional pa-
rameter spaces is not practical, since finding good
solutions in these spaces typically requires sampling
and evaluating the calibration-cost function a large
number of times. Sparse GP (SGP) techniques cur-
tail expensive operations on Nθ ×Nθ kernel matrices
by constructing a low-rank approximation K̃D of the
exact matrix KD. From its definition and with the aid
of the Woodbury identity and additional lemmas, the
expressions describing the posterior mean and vari-
ances of SGPs can be computed efficiently by exploit-
ing rank deficiency of the matrices, therein greatly
reducing the computational complexity during train-
ing (Quiñonero Candela and Rasmussen, 2005).
In particular, we consider the variational free en-
ergy (VFE) method (Titsias, 2009), which is an SGP
framework that approximates the exact GP’s poste-
rior density by minimizing the mismatch between dis-
tribution using the Kullback-Leibler (KL) divergence
metric. Optimizing such an objective leads to an in-
trinsic robustness against overfitting, since the data
are not considered directly. The modified likelihood
function used for VFE training is given by

L̃ =− 1

2
log |K̃D + σ2

nI| −
1

2
J(θ)>(K̃D + σ2

nI)−1J(θ)

− 1

2σ2
n

Tr(KD − K̃D)− p

2
log 2π,

for which expensive operations are performed on the
low rank K̃D rather than the dense KD. Here, Tr(·)
denotes the trace operator. Maximizing L̃ can be
used not only to select kernel hyperparameters, but
also to optimize the so called inducing points. In-
ducing points are a small set of representative points
used by SGP techniques to summarise the informa-
tion contained in the large set of original data, thus
alleviating the associated computational burden and
enabling BO at scale; for more details, we refer the
reader to (Quiñonero Candela and Rasmussen, 2005).
The exploration-exploitation trade-off in BO meth-
ods is performed via an acquisition function A(·).
The acquisition function uses the predictive distri-
bution given by the SGP to compute the expected
utility of performing an evaluation of the objective at
each set-point θ. The next parameter at which the
calibration-cost function has to be evaluated is given
by θNθ+1 := arg maxA(θ). As this function only de-
pends on the SGP approximated function and not on
the true calibration-cost J , evaluating A(·) is a cheap
operation. In this work, we use a lower confidence
bound (LCB) acquisition function given by

ALCB = µ(θ)− κσ(θ), (4)

where κ is a scalar usually chosen ≥ 1.5. This acqui-
sition function estimates the expected improvement



of the steady-state power generated by the next set-
point versus the current best solution. An efficient
way of computing the maximum of this acquisition
function is by generating random samples on Θ, com-
puting ALCB for each sample, and choosing the sam-
ple maximum as the next parameter to be evaluated.
After a suitable number of iterations Nθ, the SGP is
expected to learn the underlying function J and the
best solution obtained thus far is deemed the best
set of calibration parameters. The selection of Nθ is
a design decision: it is usually informed by practical
considerations such as the total amount of evaluations
of J , that is, the total amount of simulations one can
run with a practical time budget.

Results and Discussion
Model Description
We construct a model of the vapor compression cycle,
comprising a compressor, condensing heat exchanger,
electronic expansion valve, and evaporating heat ex-
changer. The cycle behavior is dominated by the heat
exchangers over the time scales of interest, so the
overall cycle model used dynamic models of the heat
exchangers and algebraic (static) models of the com-
pressor and expansion valve (Qiao et al., 2017). For
the sake of simplicity, a lumped parameter method
was used to characterize the dynamics of refrigerant
flow in the heat exchangers. A Helmholtz equation-
of-state based model was used to describe the refrig-
erant properties, while an ideal gas mixture was used
for the moist air model.
The building models were constructed from the open-
source Modelica Buildings library (Wetter et al.,
2014). The room model is based on the physics-based
behavior of the fundamental materials and commonly
used components, while the zone air model is a mixed
air single-node model with one bulk air temperature
that interacts with all of the radiative surfaces and
thermal loads in the room.
The building model consists of a one-story residence
with nominal 2009 IECC-based construction, based
on the model used by (Laughman et al., 2019). This
residence has a floor area of 112.24 m2 and is 2.6 m
tall, and is oriented along the cardinal directions with
a peak occupancy of 3 people. Each exterior wall also
has a window of 1.52 m × 2.72 m that admits solar
heat gains into the spaces. A 10 cm thick concrete
slab and 2 m of soil below the house was also in-
cluded to characterize interactions with the thermal
boundary condition under the house, which was set
to a constant 21 °C. A peaked attic was also included
with a maximum height of 1.5 m, so that the building
model includes two thermal zones.
This building envelope model was connected to the
cycle model, and a proportional integral (PI) con-
troller was implemented on the heat pump which used
the compressor frequency to regulate the room tem-

perature and the expansion valve position to regu-
late the evaporator superheat temperature. The con-
troller also implemented anti-windup to maintain sta-
bility while enforcing minimum and maximum actua-
tor limits. The connection between the HVAC system
and the building envelope through mass and energy
relations (e.g., coil and room temperatures, mass and
specific energy of the room air) impose an acausal
coupling between these models, so that data from
the building model includes information about the
HVAC system, and vice versa. This joint model was
simulated using the Atlanta-Hartsfield TMY3 file,
and included convective and radiative heat loads of
2 W/m2 and a latent load of 0.6 W/m2 between the
hours of 8 AM and 6 PM, with weather-driven dis-
turbances outside of these hours. This model was ex-
ported from Modelica using the Functional Mockup
Interface 1, and the resulting functional mockup unit
(FMU) was imported into Python using the FMPy
package2 to enable seamless integration of advanced
machine learning modules.
The inputs and outputs of this model were chosen to
be similar to those which may be observed in a re-
alistic experimental setting. The inputs of the heat
pump include the room temperature set-point, the
evaporator superheat set-point, and the indoor and
outdoor fan speeds. The inputs for the building en-
velope model include the convective, radiative, and
latent heat loads as well as the weather variables pro-
vided in the TMY3 standard. These heat loads may
be estimated to reasonable accuracy via occupancy
detection, load surveys, or other similar methods.
Table 1 lists the parameters of the building and the
heat pump selected to evaluate the efficacy of this
new calibration method. Similar numbers of param-
eters were selected from the envelope model and the
cycle model to study the accuracy for each subsys-
tem. These particular parameters were chosen be-
cause they are often difficult to measure in practice
or to estimate from other physical quantities. For ex-
ample, the refrigerant-side heat transfer coefficients
(HTCs) depend on the amount of oil circulating in the
pipe, the detailed configuration of tubes in the heat
exchanger, and many other system and site-specific
quantities. On the envelope side, the radiative emis-
sivities in the IR and solar spectra were similarly se-
lected because of their potential experimental vari-
ability. We then bounded the ranges of the paramet-
ric variation based on our field experience, though
other alternate ranges could be easily used.
Calibration Performance
We collect ground-truth data for calibration by sim-
ulating the Modelica model from July 1-14 (thus
T = 14 days) with the parameters of the model

1Modelica, Functional Mockup Interface for Model Ex-
change and Co-Simulation, Version 2.0.1.

2https://github.com/CATIA-Systems/FMPy



Parameter Variable True Value UB [%] Best estimate ACC [%]
Building Parameters

Airflow infiltration rate VFlowExt 3.368× 10−2 ±15 3.492× 10−2 96.3
Thickness of the floor xFloorVal 1.016× 10−1 ±15 1.087× 10−1 93.1
Infrared emissivity of roof (outer) IR-Roof-a 9.000× 10−1 ±15 9.253× 10−1 97.2
Solar emissivity of roof (outer) Sol-Roof-a 9.000× 10−1 ±15 7.923× 10−1 88.0
Infrared emissivity of roof (inner) IR-Roof-b 7.000× 10−1 ±15 7.068× 10−1 99.0
Solar emissivity of roof (inner) Sol-Roof-b 7.000× 10−1 ±15 7.898× 10−1 87.2
Interior room air HTC hInt 3.000 ±15 2.955 98.5
Exterior air HTC hExt 1.000× 101 ±15 1.026× 101 97.4

HVAC Parameters
Outdoor HEX HTC adjustment factor pfHTC-a 1.000 ±15 9.472× 10−1 94.7
Indoor HEX HTC adjustment factor pfHTC-b 1.000 ±15 9.044× 10−1 90.4
Indoor HEX Lewis number Le-a 8.540× 10−1 ±15 9.044× 10−1 94.1
Outdoor HEX vapor HTC HTC-vap-a 5.000× 102 ±15 5.082× 102 98.4
Outdoor HEX 2-phase HTC HTC-2ph-a 3.000× 103 ±15 3.107× 103 96.4
Outdoor HEX liquid HTC HTC-liq-a 7.000× 102 ±15 5.968× 102 85.3
Indoor HEX vapor HTC HTC-vap-b 5.000× 102 ±15 4.969× 102 99.4
Indoor HEX 2-phase HTC HTC-2ph-b 2.000× 103 ±15 1.945× 103 97.2
Indoor HEX liquid HTC-liq-b 7.000× 102 ±15 8.047× 102 85.1

Table 1: Description of parameters, true values, and uncertainty expressed as a percentage from the true value.
(HTC = heat transfer coefficient, HEX = heat exchanger, UB = uncertainty bound, ACC = accuracy)

set to their true values (see Table 1). The 8 mea-
sured output sequences y?0:T of the model are col-
lected at 5 minute intervals, and we do not split the
data into weekdays and weekends as sometimes re-
quired (Chong et al., 2019).
Hereafter, we use GP and SGP interchangeably, since
we use SGP as our learner. We initialize the SGP by
choosing 100 randomly selected parameter samples
from within the bounds Θ associated with each pa-
rameter (see Table 1). With each of these initial pa-
rameters samples, we simulate the Modelica model for
the same time interval as the ground truth and obtain
the estimated output sequence y0:T . Subsequently, we
evaluate the cost function (2) for each of the initial
samples with y0:T and true outputs y?0:T . This ini-
tial collection of parameters and calibration-cost val-
ues is used to construct the initial training set of the
SGP. We use Matérn 3/2 kernels with dimension-wise
separate length-scales, since the admissible parame-
ter space is not normalized. We construct the GP
using the Python library gpflow, and use 500 epochs
of a limited-memory BFGS (L-BFGS) solver to ob-
tain the optimal hyperparameters for training. Un-
like MCMC methods that require tens of thousands
of iterations to converge, we set our BO method to
run for 750 iterations, that is, the Modelica model is
simulated 750 (BO iterations) + 100 (initial) = 850
times from [0, T ]. We select the acquisition function
to be a lower-confidence-bound (4) with κ = 1.96. For
acquisition function maximization, we adopt a uni-
form random sampling approach with 10,000 samples.
This sampling is cheap since it only requires evalua-
tion of the SGP, rather than the simulation model.
The specific SGP framework used is VFE with 100
inducing points.
Table 1 shows that the best estimates of the parame-
ters after 750 iterations are quite close to the true pa-

rameter values. Indeed, 13 of the 17 parameters (6/8
building and 7/9 equipment) are captured to above
90% accuracy3, despite using only one 2-week dataset
and no additional pre-processing such as sensitivity
analysis or data splitting. It is noteworthy that the
4 parameters with the lowest fits, highlighted in gray
in this table, were all > 85%. Given the lack of heat
transfer from the surfaces affected by these parame-
ters, the relatively poor quality of these fits matches
our intuition for the low sensitivity of the measured
outputs to these parameters.
As per ASHRAE Guideline 14, a CVRMSE of < 15%
indicates a good model fit with acceptable predictive
capabilities (ASHRAE, 2014). In order to illustrate
our calibration performance, we report the CVRMSE
and the NMBE4 metrics (Ruiz and Bandera, 2017) in
Table 2 for each of the model outputs. All of the pa-
rameters respect the ASHRAE guidelines in terms of
the CVRMSE metric, showing the potential of our
calibration mechanism and modeling approach. The
highest CVRMSE is exhibited by the suction super-
heat, which can likely be attributed to sharp peaks
produced in the signal related to large changes in the
compressor speed and valve position during the rapid
increase in the load caused by the morning solar load
and the presence of occupants.
Although major advantages of our proposed approach
are that there is no burn-in period to acquire a practi-
cal distribution and that no initial parameter guesses
are required, the sequential nature of BO means that

3Accuracy of the k-th parameter θk is computed by 100 ×
(1− |θtruek − θ?k|/θ

true
k ).

4CVRMSE (Coefficient of Variation of the Root Mean
Square Error) measures the variability of the errors between
measured and simulated values. NMBE (Normalized Mean
Bias Error) is the normalized average of the error sequence. We
refer the reader to (Ruiz and Bandera, 2017) for their mathe-
matical definitions.



Output CVRMSE |NMBE| |MBE|
Room Temp. < 0.1% < 0.1% < 0.1 K
Room Humidity 1.01% 11.50% 0.08
Ceiling Temp. < 0.1% < 0.1% < 0.1 K
Attic Temp. < 0.1% < 0.1% < 0.1K
Suction Superheat 6.03% 0.62% 0.03 K
Ambient Temp. < 0.1% < 0.1% < 0.01 K
Compressor Freq. 0.99% 1.41% 0.43 Hz
Exp. Valve Pos. < 0.1% < 0.1% 0.05

Table 2: Output calibration performance metrics.

the calibration performance is dictated strongly by
the quality of the initial SGP model. We therefore
tested our proposed approach for robustness to initial
conditions in which the calibration mechanism was
run 50 times, with different initial random seeds (that
is, different samples were extracted for the initial GP
construction). The results of these simulation studies
are shown cohesively in Figure 2. The median (hor-
izontal orange line), quartiles (horizontal box lines),
and range (whisker ends) for the best parameter set
obtained over 50 runs are shown using boxplots, with
the true parameter value shown with a ‘?’. We deduce
from these plots that the best parameter estimates
are close to their true values, with (predictably) the
worst calibration performance exhibited by the inner
roof parameters. Interestingly, the liquid heat trans-
fer coefficients do not exhibit significant decline over
runs, but the Lewis number does. It is likely that this
variation can be attributed to the time varying mois-
ture removal rate of the evaporating heat exchanger
and the dependence of the indoor relative humidity
on both ambient conditions and internal latent loads.

Conclusions
In this paper, we developed a Bayesian optimiza-
tion methodology for calibrating black-box models
without exorbitant simulations. We utilized sparse
GPs as surrogate models for the calibration-cost func-
tion, and demonstrated the accuracy and efficacy of
our proposed approach on a Modelica model of a
real building with 17 tunable parameters, exhibit-
ing over 90% accuracy on 13 of 17 parameters. We
showed that the outputs we estimate are mostly < 1%
CVRMSE and < 1% NMBE. We also perform fur-
ther testing on our proposed method and demonstrate
that the method is robust to the initial set of samples
used to construct the initial sparse GP model. In fu-
ture, we plan to test this method on real-world data
which will be noisy and with larger model mismatch.
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