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Abstract
In this paper, we present a novel approach for tactile saliency computation on 3D point clouds
of unseen object instances, where we define salient points as those that provide informative
tactile sensory information with robotic interaction. Our intuition is that the local 3D surface
geometries of objects contain characteristic information both in terms of texture and shape
which can provide important discriminating information for tactile interactions. We solve the
problem by taking as input a 3D point cloud of an object and develop a geometric approach
which computes the tactile saliency map for the object without requiring pre-training. We
furthermore develop a formulation to compute grasps using the tactile saliency for prehen-
sile probing manipulation. We demonstrate our framework with evaluation on a variety of
household objects in real-world experiments. Since it is difficult to manually define a ground
truth tactile saliency measure, we evaluate our approach by having a human subject provide
saliency information as baseline in pilot experiments. Results show good performance of our
algorithm both in terms of the computation of tactile saliency and its usefulness to acquire
informative tactile sensory data with a real-world robot.

IEEE International Conference on Automation Science and Engineering (CASE)

c© 2021 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Visual 3D Perception for Interactive Robotic Tactile Data Acquisition

Siddarth Jain, Radu Corcodel, and Jeroen van Baar

Abstract— In this paper, we present a novel approach for
tactile saliency computation on 3D point clouds of unseen object
instances, where we define salient points as those that provide
informative tactile sensory information with robotic interaction.
Our intuition is that the local 3D surface geometries of objects
contain characteristic information both in terms of texture and
shape which can provide important discriminating information
for tactile interactions. We solve the problem by taking as
input a 3D point cloud of an object and develop a geometric
approach which computes the tactile saliency map for the
object without requiring pre-training. We furthermore develop
a formulation to compute grasps using the tactile saliency
for prehensile probing manipulation. We demonstrate our
framework with evaluation on a variety of household objects in
real-world experiments. Since it is difficult to manually define a
ground truth tactile saliency measure, we evaluate our approach
by having a human subject provide saliency information as
baseline in pilot experiments. Results show good performance
of our algorithm both in terms of the computation of tactile
saliency and its usefulness to acquire informative tactile sensory
data with a real-world robot.

I. INTRODUCTION

For performing everyday tasks, humans utilize multiple
sensory modalities to infer object properties. Although hu-
mans can distinguish many object and surface properties by
touch alone, visual information has been shown to influence
tactile judgments of object identities, spatial features, texture,
and even heaviness [1]. For robotic manipulation, tactile
information is of key importance to enable close physical
interactions in applications such as autonomous manufactur-
ing. Tactile sensory information can help enable perception
of intrinsic object properties such as stiffness and hardness,
along with object identities and their pose information for
robotic manipulation. Although intrinsic object properties
cannot be effectively perceived by visual perception, vision is
a fast and global modality which can complement and guide
tactile sensory data acquisition for robotic manipulation.

Learning to make inferences from tactile sensory data
is a challenging task due to the sparse and local nature
of touch. Furthermore, if we consider the problem while
performing the task with a high degree-of-freedom (DOF)
robot, the space of possible actions to acquire tactile sen-
sory data becomes continuous and high-dimensional (6D).
Thus, collecting informative representations of data samples
for a variety of object classes and geometries becomes a
difficult task. One could randomly and/or uniformly sample
objects to acquire tactile sensory data [2], but this would
be extremely time-consuming and performance might not
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generalize across object types. Thus, one needs to (i) know
how to efficiently explore a variety of objects types and
geometries and (ii) be able to discriminate between the object
types based on the acquired tactile information. These two
elements correspond to estimating which aspect of the object
are salient to touch (and which are not), and utilizing that
information to intelligently acquire tactile sensory data.

In this paper, we explore determination of tactile saliency
for informative tactile data acquisition with robotic inter-
actions. We aim to determine tactile saliency from visual
perception, using 3D point cloud depth data of objects. We
refer to this problem as tactile saliency determination and
we define tactile saliency map points on an object’s repre-
sentation as those which are more likely to provide useful
tactile information with robotic interactions. Our algorithm
performs the determination of tactile saliency from point
cloud depth data of a scene containing unknown objects
by leveraging their geometric information. We believe that
certain geometric characteristics and regularities in objects
can be exploited for tactile saliency determination. Our
intuition is that the 3D local surface geometries of objects
contain characteristic information both in terms of texture
and shape (as curvature) and that geometrical analysis of ob-
ject’s point cloud local neighborhood can provide important
discriminating information. We further explore the utilization
of tactile saliency for computation of 6D grasp poses and
demonstrate informative acquisition of tactile sensory data
from objects by robotic prehensile probing manipulation.

In summary, our work makes the following contributions:

• We present an algorithm which leverages geometric
information for determination of tactile saliency from
point cloud depth data, with the aim to guide acquisition
of useful tactile data with robotic interactions. Our
approach does not require pre-training and work with
novel objects.

• We develop computation of 6D grasp poses based on
tactile saliency map information and demonstrate its
utilization to acquire tactile sensory data with prehensile
probing manipulation by a robotic gripper.

• We validate our contributions with comparative exper-
iments on a variety of household objects in real-world
experiments on a robotic arm.

The remainder of the article is organized as follows.
Related work is discussed in Section II. Section III presents
the problem formulation and and details of our algorithm.
Section IV presents the experimental details with results. In
Section V, we present the discussion and then conclude with
directions for future research in Section VI
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II. RELATED WORK

Visual saliency is a well-studied topic which has been
explored in multiple disciplines of computer vision [3],
where highlighting visually salient regions or objects in an
image has drawn extensive attention. Previous works com-
pute image saliency maps [4] and identify salient objects and
regions in 2D images and videos [5]. Recently, deep learning
based models using convolutional neural networks (CNNs)
have been explored for image saliency determination [6].
3D meshes and point cloud data contain depth information
(in addition to RGB color) and usually consist of larger
data size compared to RGB images and videos, making
saliency determination more challenging. Recently, saliency
determination for meshes has been explored, for example
mesh saliency computation with Gaussian-weighted mean
curvatures for selection of visually interesting regions [7].

In the field of robotics, there exists literature on affordance
detection which aims to localize object parts and identify
their functions [8], and grasp detection using RGB images
and point cloud data [9], [10] for manipulation. With the
recent advancements in tactile sensing, the state-of-the-art
in robotics is moving toward closed loop grasping and
advanced in-hand manipulation. Recent work focuses on
tactile recognition problems including recognition of object
instances [2], [11], [12], surface texture information [13],
shape information [14], and stiffness properties [15]. Tactile
sensing has also been utilized for improving robotic manip-
ulation and grasping [16]. While existing research focuses
on inferring contact and grasping using tactile sensing, in
this paper we focus on the determination of tactile saliency
which aims at inferring from 3D visual perception the tactile
salient aspects of objects for robotic interaction.

There has been recent work in computer graphics targeted
towards tactile saliency detection with human interactions.
Tactile saliency determination is performed for the purpose
of determining salient points for human interactions with
objects on 3D virtual meshes [17] and 2D sketches [18]
using deep learning. In contrast, we study a different aspect
of tactile saliency with the aim to visually determine salient
points which are most useful for a robot to acquire tactile
information from objects. Our problem setting is challenging
as we aim at computing a tactile saliency map on novel
objects to enable an autonomous robot to gather informative
tactile sensory data. Unlike previous works in computer
graphics, our approach does not require a training phase, and
provide tactile saliency determination along with associated
grasp poses for robotic probing of objects.

III. PROBLEM FORMULATION & FRAMEWORK

Acquisition of tactile sensory observations from an object
are restricted to the local regions of object’s surface felt
by robot fingers. Thus, obtaining more complete tactile
information would require a multitude of systematic touches
on the object, which deems expensive in practice. We pro-
pose to make the acquisition of the tactile modality more
efficient by determining tactile saliency map of objects. We
autonomously select a small number of touches on objects,

using the computed tactile saliency maps. The steps in our
proposed framework involves: point cloud preprocessing and
segmentation; tactile saliency map computation; and 6D
touch poses generation for probing with robotic manipulation
for tactile data acquisition.

A. Preprocessing and Segmentation

The visual sensory input to our framework is 3D point
cloud data of the scene from a RGB-D sensor, where each
point is represented by a six-tuple (x, y, z, r, g, b), i.e., its 3D
position in camera coordinates and RGB color information.
The sensory input is transformed into the base frame of
the robot Rbf , in which the Z-axis is perpendicular to the
ground (ZR), the Y-axis is front-to-back (YR) and the X-axis
is left-to-right (XR). We first preprocess the input data to
filter out sparse points which are considered to be noise, and
then segment the scene into individual objects. We find the
individual objects by performing Euclidean clustering such
that the resultant is the set of individual object’s point cloud.
For simplicity, in further discussion we consider the point
cloud of an object of interest denoted as P .

B. Tactile Saliency Map Determination

In this section, we describe our algorithm for tactile
saliency map determination. Our algorithm performs the
determination of tactile saliency from point cloud depth
data of a scene containing unknown objects by leveraging
their geometric information. Our intuition is that the 3D
local surface geometries of objects contain characteristic
information both in terms of texture and shape, i.e, curvature,
and that geometrical analysis of the local neighborhood for
the object’s point cloud can provide important discriminating
information for the determination of tactile saliency.

Given the point cloud of an object we first find clusters
which satisfy smoothness constraints based on surface nor-
mals and curvature. For the identified clusters, if their surface
area is greater than a threshold value determined by the
tactile sensing patch used to probe the objects, we perform
voxelization of the points and identify supervoxels in each
cluster which conform to geometric relationships and object
boundaries. We then compute tactile saliency based on the
interconnections of the computed clusters and all individual
supervoxels, with the intuition that the local neighborhood
at these interconnections contains characteristic information
both in terms of change in texture and shape, which can
provide important discriminating tactile information.

We next describe our algorithm for tactile saliency map
computation in detail. For a point cloud of an object rep-
resented by P , the representative tactile saliency map is
comprised of a saliency value for all points in P , where
the saliency value is based on the likelihood to provide
informative tactile information. For recognizing an object by
touch, its shape is an important cue that associates several
characteristic features, such as edges, curvature, and surface
area. We form this intuition as our basis and we focus on
geometric computation of tactile saliency.



Fig. 1. Examples of the clustering approach where the set of points are
considered to be a part of the same smooth surfaces are clustered together
shown for a sample of objects (including a paper cup, box, water bottle,
and wine glass), where different colors indicate the identified clusters.

The first step of our tactile saliency determination algo-
rithm involves computation of the normal and curvature value
of each point in P . Next, the points are clustered according to
the normal and curvature values. We implement an approach
for clustering similar to [19] 1. Figure 1 shows an example of
the clusters found using the above approach on several point
clouds of objects, where different colors represent different
identified clusters.

Once we have identified the clusters C in P which are
close enough in terms of the smoothness constraints, for
every cluster Ck in C we check if its surface area is greater
than a threshold value θsurf (set as the surface area of the
tactile sensing patch). For every such cluster, we perform
voxelization of the points in Ck based on the distance and
density of the points in the cluster with the aim to identify
supervoxels in each cluster, which conform to geometric
relationships and object boundaries. We generate supervoxels
similar to the VCCS algorithm [20] with an adjacency graph.
Initially, voxels are generated by an octree algorithm on
points in Ck, and next an adjacency graph is constructed
for identifying the spatial relationship between voxels using
a 26-adjacency neighborhood connectivity. This is accom-
plished by searching the voxel Kd-tree, and for a given voxel,
the centers of all 26-adjacent voxels are contained within

√
3

× Vres, where Vres represents the voxel resolution used for
segmentation, set to 0.005m in our experiments. We utilize
the adjacency graph for clustering to generate supervoxels
and finding neighborhoods of the supervoxels. We initialize
seeds for initial supervoxel centers, by first dividing the
space into a voxelized grid with seed resolution higher
than the resolution with which the input cluster point cloud
is quantified. We then compute supervoxel feature vectors
by finding the center of a seed voxel and its connected
neighbors within 2 voxels, where each seed is described
by 39 dimensional features that describe spatial coordinates,
colors and local surface model properties computed by FPFH
pose-invariant features [21], given as,

F = [x, y, z, L, a, b, FPFH1...33]. (1)

Next, the voxels in Ck are clustered to form supervoxels

1For threshold values, we empirically set the angle threshold to 0.06 rad
and curvature threshold to 1.0

Fig. 2. Supervoxles computed on identified clusters in point clouds of
sample objects (including an apple, paper cup, water bottle, and oil bottle)
where different colors indicate supervoxels in the cluster. Uncolored or gray
regions represent the small sized clusters which are considered to be a part
of the same smooth surfaces and were not processed for the supervoxel
computation.

based on their spectral and geometrical relationship in 3D
space, where a supervoxel is a group of voxels that share
similar characteristics based on feature F. Clustering is
performed iteratively by means of the distance metric, the
adjacency graph, and the search volume of the supervoxel,
where the normalized distance D is given as,

D =

√
λD2

c

m2
+

µD2
s

3S2
dist

+ εD2
H (2)

where Dc is the color distance in euclidean space normalized
by a constant m, Ds is the spatial distance, DH is the
distance in FPFH space. λ, µ and ε control the influence
of color, spatial and geometric relationship between voxels
respectively. We use λ = 0.2, µ = 0.8, ε = 0.8 resp.
Sdist determines the distance between supervoxels, we set
Sdist to 0.01m. The influence parameters for supervoxels
computation were set according to importance to normal
and spatial geometric relationship for identification of tactile
saliency. Figure 2 shows example results of the supervoxel
clusters found using the above approach on the clusters
of several point clouds of objects, where different colors
represent the identified supervoxels in the cluster. We note
that the size of the voxel and the resolution of seeds can
affect the performance and we set these factors empirically
according to the object densities and the varying range from
the sensor to the objects.

Once we have identified the clusters and supervoxles in
P , we compute a tactile saliency map which comprises of
points in the point cloud P which are at the interconnections
of the computed clusters and all individual supervoxels in P .
These points contain characteristic information in the local
neighborhood, both in terms of change in texture and change
in shape, and thus provides important discriminating tactile
information.

C. Generation of Tactile Grasp Poses

Given the computed tactile saliency map for an object, we
then compute 6D tactile grasps. Such grasp poses are aimed
to be feasible for prehensile probing on the object in order
to efficiently acquire informative tactile sensory data. Our
hypothesis is that such a grasp pose when used for probing



Fig. 3. Figure shows the results of tactile grasp poses computed by our
approach on a sample of test object point clouds (an apple, football, water
bottle, and oil bottle). Note the green and blue color represents whether
the tactile grasp pose was generated from an initially segmented small size
cluster or a supervoxel region respectively.

an object would make contact with the tactile salient aspects
of the object to acquire informative tactile sensory data.

For each of the identified clusters and supervoxels in P ,
we compute their surface normal from the viewpoint of the
object’s 3D centroid. Next, we compute the cross product
of the surface normal vector and the up vector along the
Z-axis (ZR) of the referential (base frame) to get the axis
of rotation. We then take the dot product of the surface
normal vector and the up vector to compute the angle of
rotation, and compute the quaternion orientation. With the
3D centroid of the respective cluster or supervoxel, the
quaternion orientation, and considering the surface area of
the tactile patch and gripper geometry, we compute grasp
poses (referred to as tactile grasp poses). Figure 3 shows
some example poses for test objects.

We utilize the computed tactile grasp poses to determine
viable and safe grasp candidates that can be executed by
a robot. We use the grasp pose detector (GPD) [10] and
generate a set of all feasible 6D grasps (GPD grasp poses)
on the object’s point cloud where the grasps are filtered to
avoid collisions, and also satisfy the gripper and kinematics
constraints. Next, we perform a radius based nearest neighbor
classifier training on the GPD grasp poses and locate the
GPD grasp poses that are within a given fixed radius of each
of the tactile grasp pose computed by our algorithm. The
fixed radius is based on the associated cluster or supervoxel
size that comprises the tactile pose. Next, we compute the
orientation similarity between each of the nearest neighbors
in the GPD grasp set and the associated tactile poses. We
compute the orientation similarity based on the Euler angles
and denote (α1, β1 γ1) and (α2, β2 γ2) as the two sets of
Euler angles, then

φ : E × E → R+,

φ((α1, β1, γ1), (α2, β2γ2))

=
√
d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2 (3)

where d(x, y) = min { | x - y |, 2π - | x - y | } denotes the
normalized difference between the two angles such that 0 ≤
d(x, y) ≤ π, and α, γ ∈ [-π, π); β ∈ [-π/2, π/2). For each

Fig. 4. Figure shows the robot hardware used in our experiments with the
instrumented tactile sensor and the wrist camera. The flexible tactile sensor
is affixed to a foam backing to allow compliance.

tactile pose, we then select the first n nearest neighbors GPD
poses, with n = 3, based on the orientation similarity to the
corresponding tactile pose, in order to perform prehensile
probing on the object at the detected poses by GPD.

IV. EXPERIMENTS & RESULTS

Our experimental work aims to evaluate the performance
of our approach both for tactile saliency determination and
its utilization to intelligently acquire tactile sensory data with
6D grasp pose generation. We used a test set of no = 11
household objects in our experiments, namely: apple (ap),
box (bx), camera lens (ln), koala bear plush toy (kb), glass
oil bottle (ob), paper cup (pc), foam football (fb), soda can
(sc), tennis ball (tn), plastic water bottle (wb), and a wine
glass (wg). The test set of objects is shown in Fig. 5.

Robot Hardware & Tactile Sensors: Our research platform
for the experiments described in this section is the Kinova
Gen3 robot arm (Kinova Robotics, Canada) [22], a 7-DoF
manipulator with a Robotiq Hand-E parallel jaw gripper. We
instrumented both gripper finger pads with pressure based
tactile sensor arrays [23] as shown in Figure 4. Each planar
tactile array contain 10 × 18 calibrated capacitive taxels
(tactile sensing pixels) which measure contact pressure in
the range 0-5PSI with a 14-bit resolution. The active area
of a tactile array is 55mm × 30mm. The calibrated pressure
data is converted into 3D localized tactile data, similar to
[2], constructed as a NURBS polynomial surface patch [24].
The visual input to our algorithm is from the wrist mounted
RGB-D camera of the robotic arm.

Experiment Protocol: We aim to evaluate the similarity
between the algorithm computed tactile saliency maps to
those generated by a human as baseline on the test set
objects, and furthermore we also conduct an evaluation of
the similarity between the acquired tactile sensory data with
prehensile probing manipulation across the two modalities.
In experiments, both the algorithm and a human subject were
presented with a large set of GPD generated 6D grasp poses
(>200) for each object in the test set (no = 11), and they
were tasked to select grasp poses which would result in better
tactile sensory information when used to perform prehensile
probing on the object. The grasp pose detector (GPD)
ranks the quality of generated proposals by first pruning
proposals that are infeasible based on the robot’s gripper



Fig. 5. Test set of objects used in our experiment spanning a wider range of material properties and geometry.

TABLE I
AVERAGE DISTANCE BETWEEN GRASP POSES DETERMINED BY OUR ALGORITHM AND THE NEAREST NEIGHBOR HUMAN-DIRECTED GRASP POSE. THE

FIRST TWO ROWS ARE EUCLIDEAN POSITIONAL ERROR (m), AND THE LAST TWO ROWS ARE ORIENTATION ERROR ACCORDING TO EQ. 4. OUR

ALGORITHM IS ABLE TO PROPOSE GRASPS POSES IN CLOSE PROXIMITY OF THE HUMAN BASELINE TO ACQUIRE TACTILE SENSORY DATA.

Human baseline vs. ap box kb le ob pc fb tb wg wb sc
Position error Ours (trial 1) 0.012 0.018 0.0004 0.021 0.015 0.009 0.034 0.030 0.017 0.10 0.013

Ours (trial 2) 0.019 0.018 0.011 0.013 0.018 0.029 0.017 0.027 0.040 0.011 0.020
Orientation error Ours (trial 1) 0.405 0.166 0.241 0.173 0.146 0.143 0.342 0.420 0.203 0.219 0.195

Ours (trial 2) 0.433 0.057 0.341 0.229 0.225 0.147 0.388 0.290 0.203 0.205 0.176

and kinematics constraints, followed by pruning based on
a cost function [10]. The cost function takes into account
the approach angles and the distances in the configuration
space. In contrast, our algorithm computes a set of tactile
grasps, with the aim to acquire informative tactile sensory
information.

The test objects were presented one by one in a random
pose configuration, on a table in front of the robot two times
(trial 1 and trial 2), for a total of 22 trials and selection
was the same for both the human and algorithm. The human
subject was able to view the experimental setup, as well
as the 3D point cloud with color information of the test
object on a computer monitor screen, where the selectable
GPD generated 6D grasp poses on the test objects were
also displayed with an overlay on the point cloud. The
visualization could be rotated by the human in 6D using a
computer mouse to change viewing angles (see Figure 6).
The human subject was tasked to select the best set of
grasp poses from the visualization of the object which when
executed in order to perform prehensile probing on the
object would result in informative tactile sensory data. Our
algorithm was provided as input with the same point cloud
and the available pool of GPD generated grasp poses, which
then were processed autonomously to determine a tactile
saliency map on the object (Section IV-B) and a set of tactile
6D grasps based on the saliency information (Section IV-C).
Only the number of grasps computed by the algorithm (na)
were communicated to the human subject. The subject then
select the same number of grasps on the object from the
pool of GPD grasps which according to them would result
in salient tactile information when used on the object.

Human baseline vs. algorithm generated tactile saliency:
We first perform an evaluation of the tactile saliency by
computing the difference between the 6D grasp poses se-
lected by the human subject and those by our algorithm.
Our intuition is that the grasp selected by the human subject
are targeted to tactile salient areas on the object and thus
proximity to those grasp locations on the object would
provide information about tactile saliency computation for

Fig. 6. Figure shows visualization of the RGB-D point cloud of football,
the initial grasp pool set computed by GPD, the human baseline for grasps
shown in green and our algorithm determined tactile grasps using the tactile
saliency are shown in blue. Some grasps choices overlap between human
baseline and algorithm selection.

the object. Thus, our hypothesis is that the grasps selected
according to the determination of saliency maps should better
correspond with those selected by the human subject (in
terms of 3D location and orientation).

We first perform a nearest neighbor classifier training on
the human selected grasp poses, and then for each grasp
computed by our algorithm on the object, we determine its
nearest neighbor based on Euclidean distance ranking and we
determine both a positional error (distance in 3D Cartesian
space between grasp locations) and an orientation error. The
orientation error is computed according to Equation 3. Table I
summarizes the result over the test set of objects and results
show that our approach generated grasps based on tactile
saliency determination are targeted on similar areas of the
objects as selected by the human subject and are closer to
human selections of grasps both in terms of position and
orientation.

Human baseline vs. algorithm directed acquisition of
tactile sensory information: In addition to performing an
evaluation of spatial similarity, we also perform an evaluation
of the tactile sensory information acquired by using human
subject as a baseline vs. tactile saliency determination. The
selected grasp poses (human vs. algorithm) were executed
by the 7-DoF Kinova robotic arm to perform prehensile
probing manipulation on the test objects. Each object was
palpated by the robot gripper equipped with a tactile sensor



Fig. 7. Left: Figure shows results (mean ± S.E.) for the cosine similarity between the human baseline and algorithm for the acquired tactile sensory data
in the two trials of the experiment. Middle and Right: Figure shows results (mean ± S.E.) for surface texture content in terms of image entropy between
the human baseline and algorithm for the acquired tactile sensory data in trail 1 (middle) and trial 2 (right) of the experiment.

on the selected grasp locations to acquire tactile sensory
information about the object. The calibrated pressure maps
and the NURBS polynomial surface data for the sensors are
recorded to the disk for each palpation. Our hypothesis is
that the tactile sensory data acquired by the grasps generated
by our algorithm based on tactile saliency determination
would show similarity to the human baseline data. In order to
process and examine the informative content and similarity
of the acquired data, we perform two set of evaluations.

We first encode all the NURBS polynomial surface data as
a Viewpoint Feature Histogram(VFH) [25] which is a 308-
dimensional descriptor for 3D data. We compute one for each
finger of the gripper, and store combination of two VFHs,
as a 616-dimensional feature vector. We use the nearest
neighbor classifier training on the human selected grasp
poses, and for each grasp pose computed by our algorithm on
the object, we determine the nearest neighbor human directed
grasp based on Euclidean distance ranking, and orientation
computed according to Equation 3. Next, we compute the
similarity between the feature descriptors computed by the
tactile data acquired by the human baseline to that acquired
by our algorithm, according to the cosine similarity. The
cosine similarity similarity between the tactile data feature
histograms f1, f2 ∈ R616 is computed as,

c(f1, f2) = cos(θ) =
〈f2 · f2〉
‖f1‖‖f2‖

(4)

where 〈 · 〉 defines the inner product of f1, f2, θ denotes the
angle they form and ‖ · ‖ denotes the Euclidean norm. Note
that the cosine similarity takes values in the range [−1, 1].
Figure 7 (left) shows the cosine similarity for the two sets
of test objects. Results shows high values (> 0.5) of cosine
similarity for our algorithm directed tactile sensory data on
the test objects (trial 1 mean: 0.76 ± 0.011, trial 2 mean:
0.81 ± 0.012). Cosine similarity between human directed and
algorithm directed tactile sensory data acquisition indicates
that the computed tactile saliency maps on the objects
resulted in informative tactile sensory data.

Since the recorded tactile imprints from the tactile gripper
can be represented as images, we propose an additional
comparison between algorithm selected grasps and human
selected grasps. Our hypothesis is that for tactile salient

grasps, the tactile imprints should record surface details.
Although we do not have access to real ground truth data,
we rely on the assumption that human subjects will pick
grasps which are most likely to provide informative tactile
data. We thus aim to verify whether the grasps selected by
our proposed algorithm capture the same amount of surface
detail. There are different ways to analyze the image content
in terms of the amount of variation, or texture, that is present.
We choose to compute image entropy from grey level co-
occurrences matrices (GLCM) [26] determined for the image
representing the tactile imprint for texture information. We
simply convert the acquired tactile pressure values to a grey-
scale image and GLCM (CM ) is then computed according
to:

CM∆x,∆y(i, j) =

n∑
x=1

m∑
y=1

(5){
1, if I(x, y) = i, and I(x+ ∆x, y + ∆y) = j

0, otherwise.

Here, i and j represent the possible image intensity values for
the n ×m image I . In our case the offsets are determined
from a distance d and angle θ. The entropy can then be
calculated as:

E = −
c∑

i=1

c∑
j=1

CM(i, j) log2 CM(i, j). (6)

We have tried different distances and angles, and they gave
mostly similar results. We report the case for d = 1 and
θ = 0. Fig. 7 middle and Fig. 7 right show the results. We
can see that the entropies for the algorithm directed grasps
are similar to the entropies for the human directed grasps for
most objects in the test set for both trials, indicating that a
similar amount of detail is captured by our algorithm selected
grasps based on the computation of tactile saliency.

V. DISCUSSION AND FUTURE WORK
We have introduced tactile saliency computation with

visual perception on novel objects for robots to intelligently
acquire informative tactile sensory data. One assumption we
have made is that the local neighborhood of the object’s
point cloud can provide important discriminating information



for tactile saliency. Our intuition was to first segment and
label the local geometry of the object, which then would
provide an understanding for computing tactile saliency. An
advantage of our method is that it works without any existing
training data on real-world depth data for many types of
shapes as shown in the experiments.

In the absence of ground truth or a comparative approach,
tactile saliency selection by a human subject provides a
baseline in our pilot experiments. We demonstrate the ef-
fectiveness of our approach with an evaluation of proximity
to human-selected grasp poses for probing salient areas of
objects and we also analysed and evaluated the acquired
tactile sensory data. Results indicate that our algorithm
successfully computed and utilized the tactile saliency maps
on a variety of objects, and performance is comparable to
the human baseline. We observed that performance may vary
based on the pose in which the object is presented as shown
in the two trials. Although we performed prehensile probing,
the computed tactile saliency information can also be useful
for other types of object interactions.

Although we achieve promising results, we would like to
further explore a learning based framework and experiment
with large network architectures for further improving our
approach. In future work, we will recruit a higher number
of human subjects to provide the baseline for experiments
and explore the possibility of manually annotated 3D point
clouds for tactile saliency ground truth information. We will
also explore ways to indicate confidence on the computed
saliency maps and handle uncertainty when applied in the
real world. Finally, the computed saliency maps can also
provide an understanding of functional grasping for the
objects, which would be an interesting future direction.

VI. CONCLUSION

We have presented an algorithm for the computation of
tactile saliency from visual 3D perception with the aim to
guide the acquisition of informative tactile sensory data by
robotic manipulation. Our method has several advantages
as it does not require known models of the objects and
is independent of any object recognition or training phase.
Results from our experiments have shown that the approach
is capable of computing tactile saliency that is similar to
human-selection as baseline for a wide range of unseen
household objects, and the computed saliency was also used
to perform autonomous prehensile probing with 6D grasps
by a robotic arm to intelligently acquire informative tactile
sensory data.
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