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1. INTRODUCTION

Nonlinear model predictive control (NMPC) has grown
mature and algorithmic techniques exist to handle rel-
atively complex constrained control systems (Rawlings
et al., 2017). Although NMPC exhibits an inherent ro-
bustness due to the state feedback (Allan et al., 2017),
it does not take uncertainties directly into account. One
alternative approach is robust NMPC, which relies on the
optimization of control policies under worst-case scenarios
in the presence of bounded disturbances and/or uncer-
tainty. Stochastic NMPC aims at reducing the conserva-
tiveness of robust NMPC by directly incorporating the
probabilistic description of uncertainties into the optimal
control problem (OCP) (Mesbah, 2016).

In the present paper, we aim to solve the following OCP
at each time step of the stochastic NMPC (SNMPC)

min
κ(·)

1

2
E

(
N−1∑
k=0

‖r(xk, κ(xk))‖22 + ‖rN (xN )‖22

)
(1a)

s.t. x0 = x̂t, (1b)

xk+1 = f(xk, κ(xk), wk), ∀ k ∈ ZN−1
0 , (1c)

0 ≥ gj(xk, κ(xk)), ∀ j ∈ Znc
1 , k ∈ ZN0 , (1d)

εj ≥ Pr (hj(xk, κ(xk)) > 0) ,∀ j ∈ Znh
1 , k ∈ ZN0 , (1e)

where xk ∈ Rnx denotes the state, wk ∈ Rnw the process
noise, κ : Rnx → Rnu is the state feedback law and
f : Rnx × Rnu × Rnw → Rnx denotes the nonlinear
system dynamics. We assume a least-squares cost function
in (1a) and the disturbance variables wk ∼ N (w̄k,Σk) are
independent and normally distributed with mean w̄k and
covariance Σk. Eq. (1e) denotes a set of individual chance
constraints, i.e., the probability of violating the constraint
hj(·) ≤ 0 is below a specified threshold value εj > 0.

The optimization over state feedback policies κ(·) and the
chance constraints (1e) are computationally intractable
and typically require an approximate formulation. Scenario-
based SNMPC computes a closed-loop policy, using par-
ticular predictions of the stochastic disturbance sequences.
However, choosing the number of scenarios leads to a trade
off between robustness and efficiency (Schildbach et al.,
2014). Polynomial chaos (PC)-based MPC replaces the im-
plicit mappings with expansions of orthogonal polynomial
basis functions (Fagiano and Khammash, 2012). For time-
varying uncertainties, PC-based SNMPC requires a large
number of expansion terms (Mesbah, 2016).

Alternatively, an uncertainty propagation can be used to
approximate the chance constraints, e.g., see (Telen et al.,
2015) based on the mean and covariance prediction equa-
tions from the extended Kalman filter (EKF) (Gustafsson
and Hendeby, 2012). Recent work in (Feng et al., 2020)
proposed a tailored Jacobian approximation in an adjoint-
based sequential quadratic programming (SQP) algorithm
to solve the resulting SNMPC problems at a computa-
tional cost that is close to that of deterministic NMPC.
The work in (Hewing et al., 2020) uses EKF equations
to approximate chance constraints, based on Gaussian-
process (GP) regression for residual model uncertainty.

It is known that unscented Kalman filtering (UKF) is
more accurate than the EKF-based propagation of mean
and covariance information for nonlinear system dynam-
ics (Julier and Uhlmann, 2004). Linear-regression Kalman
filtering (LRKF), of which UKF is a special case, is
based on statistical linearization instead of an explicit
linearization based on a Taylor-series approximation in
the EKF (Steinbring and Hanebeck, 2013). Therefore, the
EKF is a first-order method to handle nonlinearities, while
the family of LRKFs can achieve second or higher order
of accuracy (Julier and Uhlmann, 2004). The accuracy



of mean and covariance predictions are important when
approximating the stochastic OCP (SOCP) in (1) by a
tractable nonlinear program (NLP).

This paper presents the first computationally tractable
implementation of SNMPC using LRKF-based mean and
covariance propagation techniques. We propose an LRKF-
based SOCP formulation and present a novel extension of
the adjoint-based SQP algorithm from (Feng et al., 2020)
to solve it efficiently online. Based on numerical simulation
results for a vehicle-control case study, we illustrate the
increased accuracy and closed-loop control performance
due to the LRKF-based uncertainty propagation. Finally,
using the tailored Jacobian approximation in the adjoint-
based SQP optimization algorithm, the real-time compu-
tational cost for the proposed SNMPC implementation is
shown to be close to that of deterministic NMPC.

The paper is organized as follows. Section 2 summarizes
the uncertainty prediction in Kalman filtering, and Sec-
tion 3 introduces the EKF- and LRKF-based SNMPC
formulations. Then, Section 4 presents the tailored adjoint-
based SQP algorithm. Results of the case study are pre-
sented in Section 5 and Section 6 concludes the paper.

2. PRELIMINARIES ON KALMAN FILTERING

Let us consider the nonlinear system dynamics in (1c) at
time step k of the following form

xk+1 = f(xk, uk, wk), (2)

where uk ∈ Rnu denotes the control inputs and the process
noise wk ∼ N (w̄k,Σk) is assumed to be a normally
distributed signal with mean w̄k and covariance Σk. In
practice, the mean and covariance can be estimated online
and may be time-varying in our SNMPC approach.

2.1 Extended Kalman Filtering (EKF)

A first computationally tractable approach to propagate
mean and covariance information for the nonlinear system
in (2) uses an explicit linearization based on a Taylor-series
approximation for the mean disturbance (Telen et al.,
2015). This results in the first-order approximation of the
mean and state covariance propagation

sk+1 = f(sk, uk, w̄k), s0 = x̂t, (3a)

Pk+1 = AkPkA
>
k +BkΣkB

>
k , P0 = P̂t, (3b)

where the Jacobian matrices Ak and Bk read as

Ak =
∂f

∂x
(sk, uk, w̄k) , Bk =

∂f

∂w
(sk, uk, w̄k). (4)

The matrix Pk ∈ Rnx×nx denotes the covariance for the
mean state value sk ∈ Rnx and P̂t is the uncertainty of the
current state estimate x̂t in (1b). We adopt the discrete-
time Lyapunov equations in (3b) instead of a continuous-
time formulation (Telen et al., 2015), to reduce the com-
putational cost and preserve the positive definiteness.

2.2 Linear-Regression Kalman Filtering (LRKF)

In Gaussian filters, of which LRKFs are a subset, the
distribution of the state prediction at time step k + 1 is
approximated by a Gaussian

p(xk+1|xk) ≈ N (E[xk+1],Cov[xk+1]) , (5)

based on the associated moment integrals. In general, no
closed-form solutions exist for the moment integrals, but
numerical integration methods or cubature rules can be
used instead. In LRKFs, a sampling-based approximation
is used for the mean E[xk+1] ≈ sk+1 and state covariance
Cov[xk+1] ≈ Pk+1, see (Steinbring and Hanebeck, 2013).

Let us define coordinate transforms ξx = Lx−1(x− s) and
ξw = Lw−1(w−w̄), given the Cholesky factorization of the

state covariance matrix Pk = Lx
kL

x
k
> and of the process

noise covariance Σk = Lw
k L

w
k
>. LRKFs are then based on

pairs of weights and integration points P = {ω(i), ξ(i)}|P|i=1,

where ξ(i) = (ξ
(i)
x , ξ

(i)
w ) and |P| denotes the cardinality.

Given the integration points ξ(i) for i ∈ Z|P|1 , we evaluate
the nonlinear state transition map (2) as

x
(i)
k+1 = f

(
sk + Lx

k ξ
(i)
x , uk, w̄k + Lw

k ξ
(i)
w

)
, ∀ i ∈ Z|P|1 ,

(6)
given the control action uk and mean state value sk. Given

these evaluated points x
(i)
k+1, the moment integrals can be

approximated by the finite sums

sk+1 =
∑|P|
i=1 ω

(i)x
(i)
k+1, (7a)

Pk+1 =
∑|P|
i=1 ω

(i)
c

(
x

(i)
k+1 − sk+1

)(
x

(i)
k+1 − sk+1

)>
, (7b)

where ω
(1)
c = ω(1) +(1−γ2 +β) for the central integration

point and ω
(i)
c = ω(i) for i 6= 1. Let us introduce the choice

of integration points, weights, and parameter values for
two well known LRKF implementations.

Definition 1. The spherical cubature (SC) rule, as used in
the cubature Kalman filter (CKF) (Arasaratnam, 2009),
defines a set of |P| = 2n = 2 (nx + nw) integration points

(ξ
(i)
x , ξ

(i)
w ) and weights ωi as follows

Ξ =
√
n [1n −1n] , Ω =

1

2n
1>2n, (8)

where 1n denotes the n × n identity matrix and 12n is a
vector of 2n elements that are equal to one. The integration
points and weights correspond to the columns of Ξ and the
elements of Ω, respectively. Note that the SC rule does not
include a central point, i.e., γ = 1 and β = 0.

Definition 2. The unscented transform (UT), as used in
the UKF (Gustafsson and Hendeby, 2012), defines a set of
|P| = 2n+ 1 integration points and weights as

Ξ =
√

(n+ λ) [0n 1n −1n] , Ω =
1

λ+ n

[
λ

1

2
1>2n

]
,

where λ = γ2(n + κ) − n and the UT includes a central
integration point ξ(1) = 0n for which the weight value

ω
(1)
c = ω(1)+(1−γ2+β) in (7b). Different parameter values

can be used to choose the sigma points, see (Gustafsson

and Hendeby, 2012), but we further use γ =
√

3
n , β = 3

n −
1, and κ = 0 such that λ = γ2(n+ κ)− n = 3− n.

2.3 Consistency and Prediction Accuracy

The notion of consistency is crucial for the use of estimates
in closed-loop control. A mean state estimate s of a state
variable x with covariance P is consistent if Cov[x] =
E
[
(x− s)(x− s)>

]
� P , i.e., the estimate covariance P

does not underestimate the true state covariance. When



an estimate becomes inconsistent, in closed-loop control,
it means that the controller could rely too much on the
state estimate, with potentially detrimental impact on
the subsequent control actions. As the EKF performs
explicit linearization, it does not take linearization errors
into account, and it therefore provides inconsistent state
estimates when the dynamics are not sufficiently well
behaved or when the initial error is large.

On the other hand, the statistical linearization in LRKFs
can be interpreted as a least-squares minimization of the
function values of the nonlinear and linearized function,
and it is possible to quantify the magnitude of induced
errors and degree of consistency (Lefebvre et al., 2004).
Due to the improved consistency and higher prediction
accuracy of LRKFs compared to the EKF, the resulting
closed-loop control is expected to be more robust. It is
noted in (Wan and Van Der Merwe, 2000) that the UKF is
correct to the second order, even for non-Gaussian inputs,
and higher order accuracy is conditioned on particular pa-
rameter choices. For certain classes of nonlinear transfor-
mations, statistical linearization can be done analytically,
which further improves performance (Greiff et al., 2020).

3. UNCERTAINTY PROPAGATION TECHNIQUES
FOR STOCHASTIC NMPC

To arrive at a tractable approximation of the OCP in (1),
for simplicity, let us define the control action as uk +
Ksk based on control inputs uk ∈ Rnu , mean state
value sk ∈ Rnx and the feedback gain matrix K ∈
Rnu×nx to prestabilize the nonlinear system dynamics. The
techniques in this paper could be extended to alternative
feedback parameterizations, e.g., see (Mesbah, 2016).

3.1 Probabilistic Chance Constraints

The individual chance constraints in (1e) ensure that
the probability of violating each of the path constraints
hj(xk, uk) ≤ 0 is below a certain probability level εj > 0.
Based on the propagation of the mean and covariance, each
chance constraint can be approximated by

hj(sk, uk) + cj

√
Dk,jPkD>k,j ≤ 0, (9)

where Dk = ∂h
∂x (sk, uk) is the constraint Jacobian matrix

and Dk,j is the jth row of Dk. The back-off coefficient
value cj is computed to ensure the probability level εj
in the chance constraint (1e). One option is to use the

Cantelli-Chebyshev inequality, i.e., cj =
√

1−εj
εj

, which

holds regardless of the underlying probability distribution,
but may lead to relatively conservative bounds (Telen
et al., 2015). An alternative approach is based on the
assumption of normally distributed state trajectories, such
that the coefficient cj can be chosen as

cj =
√

2 erf−1(1− 2εj), (10)

where erf−1(·) is the inverse error function.

3.2 Stochastic OCP: Extended Kalman Filtering

The proposed approximate SOCP formulation, using the
EKF-based uncertainty propagation in (3), reads as

min
s,u,L

1

2

N−1∑
k=0

‖r(sk, uk +K sk)‖22 + ‖rN (sN )‖22 (11a)

s.t. s0 = x̂t, Lx
0 = chol(P̂t), (11b)

sk+1 = f(sk, uk +Ksk, w̄k), ∀ k ∈ ZN−1
0 , (11c)

Lx
k+1 = chol

(
ÃkL

x
kL

x
k
>Ã>k + B̃kΣkB̃

>
k

)
, (11d)

0 ≥ gj(sk, uk +Ksk), ∀ j ∈ Znc
1 , k ∈ ZN0 , (11e)

0 ≥ hj(sk, uk +Ksk) + cj

√
Dk,jLx

kL
x
k
>D>k,j , (11f)

∀ j ∈ Znh
1 , k ∈ ZN0 ,

given the Jacobian matrices Ãk = ∂f
∂x (sk, uk + K sk, w̄k)

and B̃k = ∂f
∂w (sk, uk + K sk, w̄k). The optimization vari-

ables include the Cholesky factors Lx
k ∈ R

nx(nx+1)
2 for

k ∈ ZN1 . Unlike the OCP formulation in (Feng et al., 2020)
using covariance matrix variables, our proposed SOCP
in (11) uses the Cholesky factors directly such that the

corresponding state covariance matrices Pk = Lx
kL

x
k
> � 0

are guaranteed to be positive definite at each iteration of
the numerical optimization method.

Remark 1. The use of a Cholesky factorization in OCP (11)
requires this operation to be defined everywhere. The ma-
trix expression in (11d) is positive semi-definite by design
and can be ensured to be positive definite by adding a
small regularization term δ > 0 as

Lx
k+1 = chol

(
ÃkL

x
kL

x
k
>Ã>k + B̃kΣkB̃

>
k + δ 1

)
. (12)

First and higher-order derivatives of the Cholesky fac-
torization can be computed by algorithmic differentia-
tion (AD) tools, e.g., in CasADi (Andersson et al., 2018).

3.3 Stochastic OCP: Linear-Regression Kalman Filtering

Using the LRKF-based uncertainty propagation in (7), the
approximate SOCP formulation reads as in (11) but (11c)-
(11d) are replaced by the following equations

sk+1 =
∑|P|
i=1 ω

(i)x
(i)
k+1, ∀ k ∈ ZN−1

0 , (13a)

Lx
k+1 = chol

(
Yk+1Y>k+1

)
, ∀ k ∈ ZN−1

0 , (13b)

where Σk = Lw
k L

w
k
>, Pk = Lx

kL
x
k
> � 0, and the expres-

sions for x
(i)
k+1 and Yk+1, ∀k ∈ ZN−1

0 read as

x
(i)
k+1 = φ

(
sk + Lx

k ξ
(i)
x , uk, w̄k + Lw

k ξ
(i)
w

)
, ∀ i ∈ Z|P|1 , (14a)

Yk+1,i =
√
ωc

(i)
(
x

(i)
k+1 − sk+1

)
, ∀ i ∈ Z|P|1 , (14b)

where Yk+1,i denotes the ith column of the matrix Yk+1.
We introduced the compact notation φ(·) for the pre-
stabilized dynamics in (14a) as

φ(sk, uk, wk) = f(sk, uk +Ksk, wk). (15)

Similar to Remark 1, a small regularization term δ > 0
should be added in (13b) to ensure the OCP to be well-
defined. In case of the SC or the UT rule in Definition 1
and 2, the LRKF-based uncertainty propagation is based
on |P| = 2n and |P| = 2n+1 samples, respectively, where
n = nx + nw. Based on the discussion in Section 2, the
LRKF-based SOCP formulation using (13) is known to
provide advantages over the EKF-based SOCP in (11), in
terms of consistency and prediction accuracy.



4. ADJOINT-BASED SEQUENTIAL QUADRATIC
PROGRAMMING FOR SNMPC

Let us write the stochastic LRKF-based OCP formulation
in (11) using (13) compactly as

min
y,z

1

2
‖L(y)‖22 (16a)

s.t. 0 = F (y, z), 0 = E(y, z), 0 ≥ I(y, z), (16b)

based on the following shorthand notation for the trajec-
tories of optimization variables

y =
[
u>0 , s

>
1 , u

>
1 , . . . , s

>
N−1, u

>
N−1, s

>
N

]>
,

z =
[
vec(Lx

1)>, . . . , vec(Lx
N−1)>, vec(Lx

N )>
]>
,

(17)

and for the constraint functions

F (·) =

 s1 −
∑|P|

i=1
ω(i)x

(i)
1

...

sN −
∑|P|

i=1
ω(i)x

(i)
N

 , E(·) =

 Lx
1 − chol

(
Y1Y>

1

)
...

Lx
N − chol

(
YNY>

N

)
 ,
(18)

where x
(i)
k and Yk are defined as in (14a) and (14b), I(y, z)

denotes the inequality constraints in (11e)-(11f) and L(y)
defines the least squares cost in (11a). Note that the initial
state variables can be eliminated based on the conditions
s0 = x̂t and Lx

0 = chol(P̂t) in (11b). The Lagrangian
function for the NLP in (16) reads as

Λ(·) =
1

2
‖L(y)‖22 + λ>F (y, z) + µ>E(y, z) + ν>I(y, z),

where λ and µ are the Lagrange multipliers for the equality
and ν the multipliers for the inequality constraints.

Remark 2. The NLP in (16) can similarly represent the
EKF-based OCP formulation in (11). However, the state
dynamic equations 0 = F (y, z) depend on both y and z
in (13a) for the LRKF-based OCP, unlike the equations
0 = F (y) for the EKF-based OCP formulation in (11c).

4.1 Exact Jacobian-Based SQP Algorithm for SNMPC

In an SQP algorithm for solving the NLP (16), given the
solution guess (yi, zi) at each iteration i, the following
quadratic program (QP) is solved

min
∆y,∆z

1

2
∆yi

>
Hi ∆yi + gi

>
∆yi

s.t.


σiF
σiE

∣∣∣∣∣ 0 =

[
F (yi, zi)
E(yi, zi)

]
+


∂F

∂y
(·) ∂F

∂z
(·)

∂E

∂y
(·) ∂E

∂z
(·)

[∆yi
∆zi

]
,

σiI

∣∣∣ 0 ≥ I(yi, zi) +

[
∂I

∂y
(·) ∂I

∂z
(·)
] [

∆yi

∆zi

]
,

(19)

to compute the primal search direction (∆yi,∆zi) and
Lagrange multiplier values (σiF, σ

i
E, σ

i
I). The SQP method

updates the iterates as yi+1 ← yi+αi∆yi and zi+1 ← zi+
αi∆zi, in which the step size αi can be computed, e.g.,
using a line-search method. The multipliers are updated
as λi+1 ← λi + αi(σiF − λi), µi+1 ← µi + αi(σiE − µi), and
νi+1 ← νi + αi(σiI − νi). Alternative techniques can be
used to ensure global convergence such as in trust-region
SQP methods (Nocedal and Wright, 2006).

Due to the least-squares form of the objective in (16a), the
NLP can be solved by the generalized Gauss-Newton (GGN)

variant of SQP (Gros et al., 2020). In this case, the Hessian
of the Lagrangian Λ(·) can be approximated as

Hi =
∂L

∂y
(yi)>

∂L

∂y
(yi) ≈ ∇2

yΛ
(
yi, zi, λi, µi, νi

)
, (20)

and the gradient is computed as gi = ∂L
∂y (yi)>L(yi). The

GGN Hessian approximation (20) is known to be increas-
ingly accurate for smaller values of the residual function
L(·) in (16a), which makes it popular for tracking-type
NMPC formulations (Rawlings et al., 2017). In contrast to
SQP applied to deterministic NMPC, each QP subprob-
lem (19) additionally involves the Cholesky factors in z
for SNMPC, resulting in a total number of N (nx + nu) +

N
(
nx(nx+1)

2

)
QP variables. The latter leads to a consid-

erable increase in the computational cost of each SQP iter-
ation, which is asymptotically equal to O

(
N (n2

x + nu)3
)

when using a sparsity exploiting QP solver (Quirynen and
Di Cairano, 2020), compared to O

(
N (nx + nu)3

)
for de-

terministic NMPC that involves only N (nx+nu) variables.
To remedy this, we present an extension of the tailored
inexact Newton-type implementation of SQP for SNMPC
in (Feng et al., 2020), aimed at achieving a computational
cost for solving the LRKF-based SNMPC (16) that is
comparable to the cost for deterministic NMPC.

4.2 Adjoint-Based SQP Algorithm for SNMPC

The adjoint-based SQP from (Feng et al., 2020) cannot
be directly applied to our proposed LRKF-based SNMPC
problem in (16), due to Remark 2. Instead, to solve the
NLP in (16), we propose an adjoint-based SQP method
that solves the following QP in each iteration

min
∆y

1

2
∆yi

>
Hi ∆yi + gia

>
∆yi

s.t.


σiF

∣∣∣ 0 = F̃ (yi, zi) +
∂F

∂y
(yi, zi)∆yi,

σiI

∣∣∣ 0 ≥ Ĩ(yi, zi) +
∂I

∂y
(yi, zi)∆yi,

(21)

and the adjoint-based gradient correction reads as

gia = gi + [1 0]
(
J ieq − J̃ ieq

)> [λi
µi

]
= gi +

∂E

∂y
(·)>µi, (22)

where gi = ∂L
∂y (yi)>L(yi) denotes the objective gradient

and using the following Jacobian approximation

J̃ ieq =

∂F∂y (·) ∂F

∂z
(·)

0
∂E

∂z
(·)

 ≈

∂F

∂y
(·) ∂F

∂z
(·)

∂E

∂y
(·) ∂E

∂z
(·)

 = J ieq. (23)

As desired, and similar to deterministic NMPC, each QP
subproblem (21) for the adjoint-based SQP method in-
volves N (nx +nu) variables and requires a computational
cost of O

(
N (nx + nu)3

)
using a sparsity exploiting opti-

mization algorithm as in (Quirynen and Di Cairano, 2020).

Based on the Jacobian approximation (23) and because the
Jacobian matrix ∂E

∂z (·) is invertible, due to the structure

of equality constraints in (18), the variables ∆zi are
eliminated numerically from the QP in (21). However, they
can be computed using the following expansion step

∆zi = −∂E
∂z

(yi, zi)−1E(yi, zi). (24)



Given Eq. (24), the resulting QP subproblem (21) depends
only on state and control variables in ∆y, based on the
following updated evaluation of the inequality constraints

Ĩ(yi, zi) = I(yi, zi) +
∂I

∂z
(·)∆zi

= I(yi, zi)− ∂I

∂z
(·)∂E

∂z
(·)−1E(yi, zi),

(25)

and similar expressions for the updated evaluation of the
equality constraints

F̃ (yi, zi) = F (yi, zi)− ∂F

∂z
(·)∂E

∂z
(·)−1E(yi, zi). (26)

After solving the QP in (21) to compute ∆yi, σiF, and
σiI, the update to the Lagrange multiplier values corre-
sponding to the covariance propagation equations can be
computed as

σiE = −∂E
∂z

(·)−>
(
∂F

∂z
(·)>σiF +

∂I

∂z
(·)>σiI

)
, (27)

including a contribution from the equations 0 = F (y, z)
for the LRKF-based SOCP in (16), due to Remark 2.

Remark 3. The computations of ∆zi, Ĩ(·), F̃ (·), and σiE
in (24)-(27) can be performed efficiently by exploiting the
block-structured sparsity of the matrices, without the need
for any matrix factorization. For example, based on the
definition of E(·) in (18) and given ∆zi0 = 0, Ĩ = I −
∂I
∂z

∂E
∂z

−1
E(·) can be computed recursively as

∆zik = −Ek −
∂Ek
∂zk−1

∆zik−1, Ĩk = Ik +
∂Ik
∂zk

∆zik, (28)

for k ∈ ZN1 , based on directional derivatives that can be
computed efficiently using AD (Andersson et al., 2018),
where zk = vec(Lx

k) and Ek, Ik denote the equality and
inequality constraints of the OCP at stage k, respectively.

4.3 Merit Function and Line Search SQP

The real-time iteration (RTI) algorithm performs one full-
step SQP iteration at each NMPC time step without any
globalization, under the assumption that the sampling
time is sufficiently small and the iterates remain within
a local contraction region when shifting trajectories from
one time step to the next (Diehl et al., 2005). However,
due to the strongly nonlinear equations in the SOCP for-
mulations (11) and (13), we propose to use a globalization
technique to improve convergence behavior of the resulting
closed-loop system. In this work, we use a line-search
method (Nocedal and Wright, 2006) based on the exact
`1 penalty function for the NLP in (16),

m(y, z; ρ) =
1

2
‖L(y)‖22 + ρ ‖F (y, z)‖1 + ρ ‖E(y, z)‖1
+ ρ

∑
j max (Ij(y, z), ε) ,

(29)

where ρ > 0 is the penalty value and ε ≥ 0 denotes the
feasibility tolerance for the inequality constraints. Note
that the `1 merit function in (29) is not differentiable but
directional derivatives exist. As discussed in (Nocedal and
Wright, 2006), the merit function (29) is exact, i.e., a local
minimizer (y?, z?) to the NLP (16) is a local minimizer of
m(y, z; ρ) for a sufficiently large penalty value ρ > ρ?.

Similar to (Nocedal and Wright, 2006, Theorem 18.2),
it can be shown that the search direction (∆y,∆z) for

the exact or inexact adjoint-based SQP method forms
a descent direction for the merit function m(·) in (29)
for a sufficiently large parameter value ρ > 0. The line
search then computes a step size αi ∈ (0, 1] for which the
following sufficient decrease condition holds

m(yi + αi∆yi, zi + αi∆zi; ρ) ≤ m(yi, zi; ρ)

+ αiη
[
∇ym(yi, zi; ρ)> ∇zm(yi, zi; ρ)>

] [∆yi
∆zi

]
,

(30)

which is based on the Armijo condition for unconstrained
optimization and where η ∈ (0, 1).

4.4 Real-Time Iterations for Stochastic NMPC

Based on standard SQP convergence results (Nocedal and
Wright, 2006), the proposed line-search SQP method con-
verges to a local minimizer for the NLP in (16). How-
ever, in order to achieve a real-time feasible implemen-
tation of SNMPC, we propose an extension of the RTI
method (Gros et al., 2020) based on a single iteration of
the adjoint-based SQP method in Section 4.2 at each time
step. The resulting approach is detailed in Algorithm 1.

Algorithm 1 Real-time Adjoint-based SQP for SNMPC

1: Input: Guess (yi, zi, λi, µi, νi), and feedback gain K.
2: Prepare QP subproblem (21):
3: Compute block-diagonal Hessian Hi and gia in (22).
4: Evaluate block-sparse Jacobians ∂F

∂y (·) and ∂I
∂y (·), and

Ĩ(·) and F̃ (·) in (25)-(26), using Remark 3.

5: Solve block-sparse QP (21):

6: Receive current state estimate x̂t and P̂t.
7: Solve QP in (21) to obtain ∆yi, σiF and σiI.
8: Expand solution ∆zi in (24) and σiE in (27).

9: Search for step size selection:
10: Compute αi ∈ (0, 1] such that Eq. (30) holds.
11: yi+1 ← yi + αi∆yi, zi+1 ← zi + αi∆zi, λi+1 ← λi +

αi∆λi, µi+1 ← µi + αi∆µi and νi+1 ← νi + αi∆νi.
12: Feedback: send control u∗ = ui+1

0 +Kx̂t to process.
13: Shift to next time step, see (Gros et al., 2020).

14: Output: New values (yi+1, zi+1, λi+1, µi+1, νi+1).

5. CASE STUDY: STOCHASTIC NMPC FOR
VEHICLE CONTROL UNDER UNCERTAINTY

The case study involves a reference tracking SNMPC
for vehicle control under external disturbances on the
tire-wheel angle and on the tire-friction parameters. We
present numerical simulation results based on a C code
implementation of Algorithm 1 that uses AD code gener-
ation in CasADi (Andersson et al., 2018) in combination
with the primal active-set method in PRESAS (Quirynen
and Di Cairano, 2020) to solve each QP subproblem.

5.1 Vehicle Control Problem Formulation

Similar to (Berntorp et al., 2020), we use a single-track
vehicle model that includes the position (px, py), the
longitudinal velocity vx, lateral velocity vy, yaw angle ψ
and yaw rate ψ̇ as states, i.e., nx = 6. The inputs to the
vehicle model are the front and rear wheel speeds ωf , ωr
and the tire-wheel angle δ, i.e., nu = 3. The single-track



model lumps together the left and right wheel on each
axle, while roll and pitch dynamics are neglected. The slip
angles αi and slip ratios λi are defined as in (Berntorp
et al., 2020), and the tire forces are computed with
Pacejka’s Magic Formula,

Fx
i = µxi F

z
i sin(Dx

i arctan(Bx
i (1− E

x
i )λi + Ex

i arctan(Bx
i λi))),

F y
i = ηiµ

y
i F

z
i sin(Dy

i arctan(By
i (1− E

y
i )αi + Ey

i arctan(By
i αi))),

where F zi denote the normal forces, µji , Bji , Dj
i and

Eji , for i ∈ {f, r}, j ∈ {x, y}, are the parameter values
corresponding to a snow-covered road.

To illustrate the performance of our proposed SNMPC in
Algorithm 1, we consider the following uncertainty model
in the nonlinear vehicle dynamics

δd ∼ N (0,Σδ), µji ∼ N (µ̄ji ,Σi,j), (31)

where δd is an external disturbance on the front-wheel
steering angle δf = δ + δd and the friction coefficients
are normally distributed with mean values µ̄ji for i ∈
{f, r}, j ∈ {x, y}. We define the stage cost in (1a) as

‖r(·)‖22 = ‖xk − xref,k‖2Q + ‖uk − uref,k‖2R, (32)

corresponding to state and control reference tracking. We
enforce individual chance constraints for the following
time-varying inequalities h(·) ≤ 0 in the OCP (1),

¯
py
k ≤ p

y
k ≤ p̄

y
k, ¯

δk ≤ δk ≤ δ̄k,
¯
ωi,k ≤ ωi,k ≤ ω̄i,k, (33)

for i ∈ {f, r} and ε = 0.1 in (10). The state-dependent
inequality constraints are reformulated using a slack vari-
able, with an exact `1 penalty in the cost function (Bern-
torp et al., 2020), to ensure that a feasible solution exists
for the OCP at each time step in closed-loop simulations.

5.2 Open-loop Optimal Control Problem

Figure 1 illustrates the solution trajectories for the lat-
eral position of the vehicle based on the proposed SOCP
in (11)-(13). To allow a fair comparison of the predic-
tion accuracy, Figure 1 shows the open-loop simulation
results for the mean value and the state covariance using
either the EKF- or LRKF-based equations in (3) or (7),
respectively, based on the same trajectory of control input
values. In addition, similar to (Gustafsson and Hendeby,
2012), we use Monte-Carlo simulations with 5000 random
disturbance realizations to validate the accuracy of the
open-loop simulation results for the lateral position of
the vehicle. Using the UT in Definition 2, the LRKF-UT
approach performs better than the EKF in this example,
both for the mean and covariance trajectories.

5.3 Closed-loop SNMPC Simulation Results

Next, we can validate the closed-loop performance of the
proposed SNMPC algorithm using the closed-loop cost and
constraint violation defined as follows

Cost =
∑
k

(
‖xk − xref,k‖2Q + ‖uk − uref,k‖2R

)
,

Violation =
∑
k Ts

(
(py
k − p̄

y
k)+ + (

¯
py
k − p

y
k)+

)
,

(34)

where (·)+ = max(·, 0). Table 1 displays the mean and
maximum values of both metrics in (34) for closed-
loop simulation results of deterministic versus stochastic
NMPC, in which the SQP method converges at each con-
trol time step to obtain accurate comparisons. The results
are based on 500 realizations of the disturbances in (31)
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Fig. 1. Stochastic OCP for vehicle control: open-loop solu-
tion trajectory for lateral position (top) and reference
tracking error for EKF and LRKF compared against
5000 Monte Carlo simulations (bottom).

and the vehicle maneuver is illustrated in Figure 1 on a
snow-covered road surface at a reference speed of 12 m/s.

Table 1. Results for 500 disturbance realiza-
tions on snow at 12 m/s: closed-loop SNMPC

simulations with converged SQP method.

Converged SQP
Cost Violation

mean max mean max

Deterministic NMPC 3.04e-01 1.65e+01 2.68e-03 2.46e-01

SNMPC: EKF 1.53e-01 3.54e+00 1.49e-03 1.44e-01

SNMPC: LRKF-SC 1.14e-01 2.27e+00 7.93e-04 1.83e-01

SNMPC: LRKF-UT 9.39e-02 1.01e+00 2.38e-04 5.38e-02

Table 1 includes results for SNMPC using the EKF-based
SOCP in (11) and the LRKF-based SOCP in (13), using
the SC and UT rule in Definition 1 and 2. The average and
worst-case cost for SNMPC-EKF is a factor 2 and 4 times
smaller than for deterministic NMPC, and the constraint
violations are reduced greatly too. In addition, the LRKF-
based SNMPC reduces both the cost and violations even
further, while the LRKF-UT based SNMPC leads to the
overall best performance. The SC-based LRKF reduces the
mean cost with roughly 30 % compared to using EKF, and
the UT-based LRKF improves even further. In addition,
the constraint violations are heavily reduced when using
the LRKF-based SNMPC formulations.

5.4 Real-time Feasibility of Adjoint-based SNMPC

Table 2 illustrates the real-time feasibility of the proposed
adjoint-based SQP method in Algorithm 1, using one iter-
ation at each control time step. The table shows average
and worst-case computation times for 100 disturbance re-
alizations, using either the adjoint or exact Jacobian SQP
method for the LRKF- or EKF-based SNMPC. Table 2
presents timing results for the major computational steps
including the preparation, the QP solution, and the line
search. It can be observed that the proposed adjoint SQP
method is at least 6 times faster than an exact Jacobian
implementation. The worst-case computation times for
adjoint-based SNMPC are very comparable to the worst-
case computation time for deterministic NMPC. Specifi-



Table 2. Results for 100 disturbance realizations on snow at 12 m/s: average and worst-case
computation times per sampling instant of RTI-based SNMPC simulations. 1

SNMPC: LRKF-UT SNMPC: EKF Deterministic NMPC
Adjoint SQP Exact SQP Adjoint SQP Exact SQP Exact SQP

Preparation time (ms) 1.15/1.74 1.55/2.28 0.16/0.32 0.69/1.40 0.05/0.12

QP solution time (ms) 0.52/5.74 29.25/73.28 0.79/12.18 30.78/82.65 1.68/9.58
# of QP iterations 20.6/206.0 922.0/1000.0 29.8/373.0 907.1/1000.0 77.8/393.0

Line search time (ms) 0.55/2.04 0.50/1.96 0.03/0.19 0.06/0.46 0.05/0.19
# of LS iterations 1.1/4.0 1.1/4.0 1.2/7.0 1.1/4.0 1.8/5.0

Total CPU time (ms) 3.59/9.57 32.00/76.33 1.16/12.61 31.66/84.36 1.81/9.78

cally, the total computation time for the proposed LRKF-
based SNMPC controller is below 10 ms and therefore well
below a desirable sampling time of 50 ms for vehicle control
applications (Berntorp et al., 2020).

6. CONCLUSION

This paper presents a novel approach for SNMPC with
individual chance constraints, using LRKF to approxi-
mate the propagation of mean and covariance information
for the nonlinear system dynamics in a computationally
tractable formulation. An adjoint SQP optimization algo-
rithm is presented with a tailored Jacobian approximation
to result in a computational cost that is close to that of
deterministic NMPC. A real-time feasible implementation
of LRKF-based SNMPC is proposed, using only one ad-
joint SQP iteration per time step, and its performance
is illustrated based on numerical simulation results for a
vehicle control case study under external disturbances.
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