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Control of Mechanical Systems via Feedback Linearization
Based on Black-Box Gaussian Process Models

Alberto Dalla Libera1˚, Fabio Amadio1˚, Daniel Nikovski2, Ruggero Carli1˚ and Diego Romeres2

Abstract— In this paper, we consider the use of black-box
Gaussian process (GP) models for trajectory tracking control
based on feedback linearization, in the context of mechanical
systems. We considered two strategies. The first computes
the control input directly by using the GP model, whereas
the second computes the input after estimating the individual
components of the dynamics. We tested the two strategies on
a simulated manipulator with seven degrees of freedom, also
varying the GP kernel choice. Results show that the second
implementation is more robust w.r.t. the kernel choice and
model inaccuracies. Moreover, as regards the choice of kernel,
the obtained performance shows that the use of a structured
kernel, such as a polynomial kernel, is advantageous, because
of its effectiveness with both strategies.

I. INTRODUCTION

Dynamics models are fundamental in robotics. For instance,
inverse dynamics models, which relate joint trajectories to
joint torques, are used in high-precision trajectory tracking
applications [1], [2], [3], and also in problems where robots
interact with the environment, such as force control [4], [3],
impedance control [5], [6], and collision detection [7], [8].

In the aforementioned applications, the accuracy of the
inverse dynamics model is crucial. However, deriving an
accurate model of the robot inverse dynamics is a challenging
task, in particular when system specifications are limited or
uncertain, or when complex behaviors such as friction and
elasticity are relevant. Indeed, in these contexts, the identi-
fication of parametric models derived from first principles
of physics [9], [10] are often not effective, due to model
bias and unmodeled behaviors. For these reasons, in the last
decades, several black-box and grey-box strategies for inverse
dynamics identification have been proposed. A relevant class
of solutions is based on Gaussian Process Regression (GPR)
[11], see for instance [12], [13], [14], [15], [16]. Here, instead
of identifying the physical parameters of the model, the
inverse dynamics are treated as an unknown function, which
relates position, velocity, and acceleration of the joints to
torques. This unknown function is modeled a priori as a
Gaussian Process (GP), with covariance parametrized through
a kernel function [11], [17]. The posterior distribution of the
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Fig. 1. Diagrams of feedforward and feedback linearization control. q, r,
and e are the joints position, the reference trajectory, and the tracking error.

joint torques, given the observed data, can be computed in
closed form, and can be used to predict joint torques.

Compared to physical models, which are strictly related
to the dynamics equations, GP models are less interpretable,
and, consequently, their use in control applications might be
less straightforward. However, several works show that such
models can be used in applications, see, for instance, [15],
[18], [19], [20], [16] concerning trajectory tracking, and [8]
concerning proprioceptive collision detection. Typically, in
trajectory tracking, GP models are exploited by implementing
a feedforward control scheme [21], see the diagram in
Figure 1. Instead of using parametric models, in the GP
implementation, the feedforward term is the output of the GP
model evaluated for the position, velocity, and acceleration
of the reference trajectory. The control loop is closed with a
decentralized PD controller to cancel errors. When the GP
model is accurate and the PD gains are set properly, the
feedback loop is effective in canceling the residual tracking
error. However, there are some issues that could limit the
performance of a feedforward controller, as follows. (i) In
the feedback loop, coupling between different degrees of
freedom (DoF) are not considered. (ii) The robot inertia is
configuration dependent, and, in some cases, it might be
difficult to obtain a set of PD gains that can assure the same
performance for all configurations. (iii) Convergence is not
guaranteed, even if the inverse dynamics are known exactly;
see [21], chapter 10.5 for details about (ii) and (iii).

An alternative control scheme is feedback linearization
control [1], [2], [3], described in the diagram in Figure 1.
In contrast to feedforward control, where the model is used
to compute a proper control input in advance, in feedback
linearization, the inverse dynamics model is used to obtain



a tracking error with linear dynamics. The control input is
the sum of two terms. The first aims at compensating all the
torques independent of accelerations. The second is given by
a feedforward term proportional to the reference acceleration,
and a PD feedback term. To account for couplings and
variations of the inertia matrix, the second term is computed
using an estimate of the inertia matrix. In contrast to
feedforward control, feedback linearization assures asymptotic
convergence, if the dynamics are known exactly. Moreover,
the error dynamics are described by a second-order linear
differential equation, fully characterized by the PD gains,
providing a principled way to set the PD gains [3].

In this work, we analyze two implementations of feedback
linearization control based on GP models. The first imple-
mentation is simpler, and estimates directly the feedback
linearization control input using the GP model. In contrast,
the second implementation is composed of two steps. First,
the inertia matrix and the compensation of the torques
independent of accelerations are estimated separately by
means of the GP model. Then, the feedback linearization
control input is computed by applying its standard form.
To the best of our knowledge, the first implementation has
been attempted before only in [18]. However, that paper
was focused on issues related to modeling, and not to
control. In contrast, the second implementation has never
been proposed before, and it requires the estimation of several
different components of the dynamics equations from the GP
model, which is introduced in this paper. We tested the two
implementations with a simulated 7-DoF manipulator, varying
also the choice of the GP prior, i.e., its kernel. The obtained
results show that the second implementation is more robust
w.r.t. the kernel choice and initial errors.

The remainder of the paper is organized as follows. In
Section II, we provide background formulations of robot
dynamics and control, as well as GPR. Section III describes
the strategy proposed to estimate several different dynamics
components from black-box GP models, and in Section
IV we describe the two feedback linearization algorithms
implemented. Experiments are described in Section V, and
conclusions are drawn in Section VI.

II. BACKGROUND

In the first part of this section, we provide background
formulation of robot dynamics, as well as introduce the
trajectory tracking problem and describe the feedforward
and the feedback linearization controllers. In the second part,
we describe GPR for inverse dynamics identification, detailing
the black-box priors adopted in this work.

A. Robot dynamics and control

Consider a mechanical systems with n degrees of freedom,
and denote with qt P Rn its generalized coordinates at time
t; 9qt and :qt are the velocity and the acceleration of the joints,
respectively. The generalized torques, i.e., the control input
of the system, are denoted with τ t P Rn. For compactness, in
the following, we will denote explicitly the dependencies on
t only when strictly necessary. Under rigid body assumptions,

the dynamics equations of a mechanical system are described
by the following matrix equation

Bpqq:q ` cpq, 9qq ` gpqq ` F p 9qq “ τ , (1)

where Bpqq is the inertia matrix, while cpq, 9qq, gpqq, and
F p 9qq account, respectively, for the contributions of fictitious
forces, gravity, and friction, see [3] for a more detailed
description. For compactness, we introduce also npq, 9qq “
cpq, 9qq`gpqq`F p 9qq. In the following, we will denote with
B̂pqq and n̂pq, 9qq the estimates of Bpqq and npq, 9qq.

The trajectory tracking problem consists in designing a
controller able to follow a reference trajectory rt, 9rt, :rt,
starting from initial conditions qt0 , 9qt0 , :qt0 .

In feedback linearization control, the control input τ is

a “ :r `Kpe`Kd 9e, (2a)

τ “ B̂pqqa` n̂pq, 9qq. (2b)

Assuming that the model is known exactly, i.e., B̂pqq “ Bpqq
and n̂pq, 9qq “ npq, 9qq, combining (1) and (2) and recalling
that Bpqq is invertible, it can be proven that the tracking
error goes asymptotically to zero if Kp ą 0 and Kd ą 0
[3]. Indeed, under these assumptions, the dynamics of the
tracking error is described by the following second order
linear differential equation

:e`Kd 9e`Kpe “ 0, (3)

which is stable if Kp ą 0 and Kd ą 0. This fact represent
a considerable advantage w.r.t. feedforward control, since it
provides a principled way to chose Kp and Kd. Indeed,
selecting Kp “ ω2I and Kd “ 2ζωI , with I being
the identity matrix, we obtain n decoupled second-order
input/output relations with natural frequency ω and damping
ratio ζ.

B. GPR for inverse dynamics identification

GPR provides a solid probabilistic framework to identify
the inverse dynamics from data. Typically, in GPR, each joint
torque is modeled by a distinct and independent GP. Consider
an input/output dataset D “

 

ypiq, X
(

, where ypiq P RN is
a vector collecting N measurements of τ piq, the i-th joint
torque, while X “ txt1 . . .xtN u; xt is the vector collecting
the position, velocity and acceleration of the joints at time t,
hereafter denoted GP input. The probabilistic model of D is

ypiq “

»

—

–

f piq pxt1q

...
f piq pxtN q

fi

ffi

fl

`

»

—

—

–

w
piq
t1
...

w
piq
tN

fi

ffi

ffi

fl

“ f piqpXq `wpiq,

where wpiq is i.i.d. Gaussian noise with standard deviation σi,
while f piqp¨q is an unknown function modeled a priori as a GP,
namely, f piqp¨q „ Np0,KpiqpX,Xqq. The covariance matrix
KpiqpX,Xq is defined through a kernel function kpiqp¨, ¨q.
Specifically, the covariance between f piq

`

xtj

˘

and f piq pxtlq,
i.e., the element of KpiqpX,Xq at row j and column l, is
equal to kpiq

`

xtj ,xtl

˘

. Exploiting the properties of Gaussian
distributions, it can be proven that the posterior distribution



of f piq given D in a general input location x˚ is Gaussian
[11]. Then, the maximum a posteriori estimator corresponds
to the mean, which is given by the following expression

f̂ piqpx˚q “ Kpiq px˚, Xqαpiq, (4)

where

αpiq “ pKpiq pX,Xq ` σ2
i Iq

´1ypiq,

Kpiq
`

x˚, X
˘

“

”

kpiq
`

x˚,xt1

˘

. . . kpiq
`

x˚,xtN

˘

ı

.

Different solutions proposed in the literature can be grouped
roughly based on the definition of the GP prior. In this paper,
we will consider two black-box approaches, where the prior
is defined without exploiting prior information about the
physical model.

Squared Exponential kernel The Squared Exponential
(SE) kernel [11], [17], defines the covariance between samples
based on the distance between GP inputs, and it is defined
by the following expression

kSE

`

xtj ,xtl

˘

“ λe
´‖xtj

´xtl‖
2

Σ ; (5)

λ and Σ are the kernel hyperparameters. The first is a scaling
factor, and the second is a positive definite matrix, which
defines the norm used to compute the distance between inputs.
A common choice consists in considering Σ to be diagonal,
with the positive diagonal elements named lengthscales.

Geometrically Inspired Polynomial kernel The Geomet-
rically Inspired Polynomial (GIP) kernel has been recently
introduced in [12]. This kernel is based on the property that
the dynamics equations in (1) are a polynomial function in
a proper transformation of the GP input, fully characterized
only by the type of each joint. Specifically, q is mapped in q̃,
the vector composed by the concatenation of the components
associated with a prismatic joint and the sines and cosines
of the revolute coordinates. As proved in [12], the inverse
dynamics in (1) is a polynomial function in :q, 9q and q̃,
where the elements of :q have maximum relative degree of
one, whereas the ones of 9q and q̃ have maximum relative
degree two. To exploit this property, the GIP kernel is defined
through the sum and the product of different polynomial
kernels [22], hereafter denoted as kppqP p¨, ¨q, where p is the
degree of the polynomial kernel. In particular, we have

kGIP

`

xtj ,xtl

˘

“ (6)
´

k
p1q
P

`

:qtj , :qtl
˘

` k
p2q
P

`

9qtj , 9qtl
˘

¯

kQ
`

q̃tj , q̃tl
˘

,

where, in its turn, kQ is given by the product of polynomial
kernels with degree two, see [12] for all the details. In this
way, the GIP kernel allows defining a regression problem in
a finite-dimensional function space where (1) is contained,
leading to better data efficiency in comparison with the SE
kernel.

III. ESTIMATE OF THE DYNAMICS COMPONENTS
FROM GAUSSIAN PROCESS MODELS OF THE

INVERSE DYNAMICS
In this section, we describe how it is possible to obtain

estimates of the different contributions in the left-hand side

of (1) when adopting GPR to identify the inverse dynamics;
in particular, we discuss the computation of gravitational
contributions, inertial contributions, and npq, 9qq. We assume
that a distinct GP is used for each of the n degree of freedom,
and we denote by f̂ piqp¨q, i “ 1 . . . n, the estimator of the
i-th joint torque obtained applying (4). For convenience, from
here on, we will point out explicitly the different components
of the GP input, namely, the input of the f̂ piq will be pq, 9q, :qq
instead of x, which comprises the concatenation of q, 9q, :q.
It is worth mentioning that the proposed approach is inspired
by the strategy adopted in Newton-Euler algorithms, see [23].

A. Gravitational contribution

As shown in (1), the torques due to the gravitational
contributions account for all the terms that depend only on q.
Consequently, to obtain gpiqpqq, i.e., the estimate of the i-th
gravitational contribution in the configuration q, we evaluate
f̂ piq by setting 9q “ 0, :q “ 0. Then, the estimate of gpqq is

ĝpqq “

»

—

–

ĝp1qpqq
...

ĝpnqpqq

fi

ffi

fl

“

»

—

–

f̂ p1qpq,0,0q
...

f̂ pnqpq,0,0q

fi

ffi

fl

. (7)

B. Inertial contributions

The inertial contributions, i.e., Bpqq:q, accounts for all
the contributions that depend simultaneously on q and :q.
Consequently, to estimates these contributions, we evaluate
the GP models in p:q,0, qq, and subtract the gravitational
contribution defined and computed previously. In particular,
to obtain B̂ijpqq, i.e., the estimate of the Bpqq element in
position pi, jq, we set all the accelerations to zero, except
for the j-th component. Denoting with 1j the vector with all
elements equal to zero except for the j-th element, which,
instead, is equal to one, we have

B̂ijpqq “ f̂ piqpq,0,1jq ´ ĝ
piqpqq. (8)

C. Estimation of npqq

The vector npqq collects all the contributions that do not
depend on :q. Then, npiqpq, 9qq, i.e., the estimate of the i-th
component of npqq, is computed by evaluating the i-th GP
model setting :q “ 0. Then, we have

n̂pq, 9qq “

»

—

–

n̂p1qpq, 9qq
...

n̂pnqppq, 9qqq

fi

ffi

fl

“

»

—

–

f̂ p1qpq, 9q,0q
...

f̂ pnqpq, 9q,0q

fi

ffi

fl

. (9)

IV. FEEDBACK LINEARIZATION CONTROL BASED
ON GAUSSIAN PROCESS MODEL

In this section, we describe the two GP-based feedback lin-
earization controllers implemented. The first implementation
aims at estimating directly an approximation of (2) using the
GP models, whereas the second computes the approximation
of (2) by estimating Bpqq and npq, 9qq using the expressions
derived in Section III.



A. GP-FL

In this approach, hereafter denoted as GP Feedback Lin-
earization control (GP-FL), the control input is selected to be
directly the estimate of (2b). The estimate of (2b) at time t is
obtained by evaluating the n GP models with GP-input given
by the concatenation of qt, 9qt and at “ :rt `Kpet `Kd 9et.
Then, referring to the notation previously introduced, we have

τ t “
“

f̂ p1qpqt, 9qt,atq . . . f̂ pnqpqt, 9qt,atq
‰T

. (10)

B. GP-FL-DCE

The second approach, named GP Feedback Linearization
control with Dynamics Components Estimation (GP-FL-
DCE), computes the control input based on (2) and the
estimation of Bpqq and npq, 9qq obtained with the GP input.
First, the elements of the inertia matrix and the estimates of
npq, 9qq are computed by applying, respectively, (8) and (9).
Then, the input is

τ̂ t “

»

—

–

B̂11pqq . . . B̂1npqq
...

...
...

B̂n1pqq . . . B̂nnpqq

fi

ffi

fl

at `

»

—

–

n̂p1qpq, 9qq
...

n̂pnqppq, 9qqq

fi

ffi

fl

,

(11)
where, as before, at “ :rt `Kpet `Kd 9et.

V. EXPERIMENTS

Experiments have been carried out in PyBullet [24],
simulating a KUKA LBR iiwa, which is a 7-DoF collab-
orative manipulator1. The system was controlled at 1000
HZ. Position, velocity, and torques of the joints are directly
provided by the simulator. The accelerations needed for model
identification were computed offline by means of acausal
numerical differentiation of the velocities. Specifically, we
applied the central difference approximation, namely, the
acceleration of the joints at time t is approximated with
:qt “ p 9qt`1 ´ 9qt´1q{p2δT q, where δT is the sampling time.

The remainder of this section is organized as follows. First,
we compare the accuracy of GP models obtained with the
SE and GIP kernel. Second, the control performance of GP-
FL and GP-FL-DCE is compared on a trajectory tracking
problem, with initial tracking error equal to zero and varying
the kernel choice. Finally, the two strategies are tested on the
same trajectory tracking problem, in the presence of initial
tracking errors for all joints.

A. Model learning performance

To train and test the GP models obtained with the SE and
GIP kernel, we collected two data sets, hereafter denoted
by Dtr and Dtests. The first data set, Dtr, was used to
derive the GP estimators (4), after optimizing the kernel
hyperparameters by marginal likelihood maximization [11].
The second data set, Dtest, was used to compare the
performance of the two GP estimators. Both data sets were
collected by employing a hand-tuned PD controller to track
a random reference trajectory. For each joint, the reference

1A video of the experiments is available at https://youtu.be/
ehy8iDRGIDo
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Fig. 2. Boxplots of the absolute errors obtained in Dtest with the SE and
GIP kernels. In the table below, we report the nMSE percentages.

kernel τ1 τ2 τ3 τ4 τ5 τ6 τ7
SE 3.99 0.48 4.22 0.88 7.95 10.86 4.91
GIP 0.42 0.12 0.55 0.18 1.21 1.80 1.05

trajectory was Gaussian noise filtered with a second-order
low-pass filter (with cutoff frequency 1 Hz). The length of
the trajectory was 50 seconds, resulting in 50,000 samples.
To limit the computational complexity of (4), the collected
samples were down-sampled with a constant rate of 10,
obtaining 5,000 samples for each dataset.

In Figure 2, we visualize the distribution of the absolute
value of the errors obtained in Dtest with the two GP
estimators. Moreover, in the table below Figure 2, we reported
the normalized Mean Squared Error (nMSE), namely, the
ratio between the mean squared error and the variance of the
correspondent joint torques, expressed as a percentage. As
already showed in [12], for all joints, the estimator based on
the GIP kernel outperforms the one based on the SE kernel,
showing better data efficiency and generalization.

B. Trajectory tracking without initial tracking error

In the first control experiment, the GP-FL and GP-FL-
DCE controllers based on the two models were tested on
the same trajectory tracking problem. For each dof, j “
1, . . . , 7, the reference joint position was given by r

pjq
t “

0.165 t sinp2πFjtq, where the frequencies Fj were randomly
sampled from N p0.5, 1q. The controller gains are selected
following the considerations reported in Section II, Kp “ ω2I
and Kd “ 2ζωI , with ω “ 100 and ζ “ 2. The control
horizon was 5s, and the initial tracking error was zero. In
Figure 3 and 4, the evolution of the joint angles and control
torques obtained by GP-FL with SE and GIP kernel, and
GP-FL-DCE with SE kernel are reported, respectively.

First, we discuss the performance obtained using the model
based on the SE kernel. It can be noticed that the GP-
FL controller with the SE kernel works properly when the
amplitudes of the reference oscillations are low, but it starts
to fail suddenly towards the end of the control horizon, when
zero torques are commanded to all joints. This observation
suggests that the GP-FL scheme evaluates the GP model in
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Fig. 3. Joints trajectories obtained with GP-FL (with SE and GIP kernel), and GP-FL-DCE (with the SE kernel) in experiment of Section V-B.
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Fig. 4. Joint torques obtained with GP-FL (with SE and GIP kernel), and GP-FL-DCE (with the SE kernel) in experiment of Section V-B.

unexplored regions, where predictions are equal to the prior
mean [11], which is zero. This is due to the large magnitude
of at, which grows with the tracking error, and becomes
significantly different from the accelerations seen during
training. Instead, GP-FL-DCE with the SE kernel is able to
track the reference trajectory, demonstrating better robustness
compared to the GP-FL. This robustness is likely achieved
thanks to the estimation of the individual components of
the dynamics. Indeed, even though the robot is far from the
configurations seen during training, the GP model based on
SE provides sufficiently accurate estimates of Bpqq and npqq,
which results in keeping the robot close to the reference.

Thanks to the better generalization of the GIP kernel, the
GP-FL controller based on the GIP kernel is more robust and
is always able to track the desired reference trajectory, also
in unexplored areas of the state space. The performance of
GP-FL-DCE with the GIP kernel has not been reported, since
the trajectory obtained with this scheme and GP-FL-DCE
with the GIP kernel is the same of GP-FL with GIP kernel.
This is due to the definition of the GIP kernel, which is closer
to the physics of the system, and already encodes the linear
dependencies of the torques on the acceleration of the joints.

C. Trajectory tracking with initial tracking error

In this experiment, we tested the controllers on the same
reference trajectory as in the previous experiment, considering

also the presence of initial tracking errors. For all joints, we
considered an initial error of 5.73o. The obtained behavior
confirmed the observations from the previous experiment. The
GP-FL scheme with the SE kernel is not effective. In fact, the
initial error makes the magnitude of the at term large, leading
to considerable distances from accelerations observed during
training, and zero torques from the beginning. In Figure 5,
we plotted the tracking errors obtained by GP-FL-DCE with
the SE kernel and GP-FL with the GIP kernel, as well as the
one obtained by a feedback linearization control based on the
true model. For all three estimators, the main dynamics of
the tracking error follows the exponential behavior described
in (3). Significant differences between the tracking error
evolution can be appreciated only at steady state, where
the controllers based on GP models are subject to limited
oscillations around zero, with absolute value lower than 1o,
and growing with the amplitude of the reference trajectories.
These errors are due to model inaccuracies, which becomes
more relevant when the reference trajectories cross regions
that are far from the distribution of the training samples. The
errors are higher for the controller based on the SE kernel.
This is in accordance with the considerations presented in
Section V-A, where we highlight that the model based on
GIP is more accurate. In particular, the tracking errors at
steady state are higher in joint 3, 4, 6, and 7, which are the
ones where the GP estimator is less accurate, as confirmed
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Fig. 5. Tracking errors obtained with feedback linearization based on the true model, GP-FL (with GIP kernel), and GP-FL-DCE (with SE kernel).

by the nMSE obtained in the experiment of Section V-A.

VI. CONCLUSIONS
In this paper, we analyze the implementation of feedback

linearization control based on GP models. We considered
two strategies. The first computes the control input directly
with the GP model, whereas the second computes the input
after estimating the individual components of the dynamics, in
particular, the inertia matrix and the torques independent of ac-
celerations. The two strategies were compared on a trajectory
tracking problem with a simulated 7-DoF manipulator, varying
also the kernel choice; we considered the SE and GIP kernels.
Results show that the second implementation is more robust
w.r.t. the kernel choice and model inaccuracies. Moreover,
as regards the choice of kernel, the obtained performance
shows that the use of a structure kernel, such as the GIP
kernel, is advantageous, resulting in good performance for
both implementations.
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