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Abstract
In typical point cloud delivery, a sender uses octreebased and graph-based digital video com-
pression to send three dimensional (3D) points and color attributes. However, the digital-
based schemes have an issue called the cliff effect, where the 3D reconstruction quality will
be a step function in terms of wireless channel quality. To prevent the cliff effect subject to
channel quality fluctuation, we have proposed a wireless point cloud delivery called HoloCast
inspired by soft delivery. Although the HoloCast realizes graceful quality improvement ac-
cording to instantaneous wireless channel quality, it requires large communication overheads.
In this paper, we propose a novel scheme for soft point cloud delivery to simultaneously realize
better 3D reconstruction quality and lower communication overheads. The proposed scheme
introduces an end-to-end deep learning framework based on graph neural network (GNN)
to reconstruct high-quality point clouds from its distorted observation under wireless fading
channels. We demonstrate that the proposed GNN-based scheme can reconstruct a clean 3D
point cloud with low overheads by removing fading and noise effects.
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Abstract—In typical point cloud delivery, a sender uses octree-
based and graph-based digital video compression to send three-
dimensional (3D) points and color attributes. However, the
digital-based schemes have an issue called the cliff effect, where
the 3D reconstruction quality will be a step function in terms
of wireless channel quality. To prevent the cliff effect subject to
channel quality fluctuation, we have proposed a wireless point
cloud delivery called HoloCast inspired by soft delivery. Although
the HoloCast realizes graceful quality improvement according to
instantaneous wireless channel quality, it requires large commu-
nication overheads. In this paper, we propose a novel scheme
for soft point cloud delivery to simultaneously realize better
3D reconstruction quality and lower communication overheads.
The proposed scheme introduces an end-to-end deep learning
framework based on graph neural network (GNN) to reconstruct
high-quality point clouds from its distorted observation under
wireless fading channels. We demonstrate that the proposed
GNN-based scheme can reconstruct a clean 3D point cloud with
low overheads by removing fading and noise effects.

Index Terms—Point cloud, deep graph neural network

I. INTRODUCTION

Three-dimensional (3D) holographic displays [1], [2] have
emerged as attractive interface techniques for reconstructing
3D perceptual scenes that provide full parallax and depth infor-
mation for human eyes. 3D holographic display can be widely
used for many applications: entertainment, virtual training, and
medical imaging. Specifically, such 3D holographic visualiza-
tions will play a more important role in the post-Coronavirus
(COVID-19) society because the 3D data can realize high-
presence in remote conferencing [3] and healthcare [4]. For
example, holographic data of doctors and medical imaging
provide more interactive verbal guidance in tele-surgery [5].

Point cloud [6] is one of data formats to represent 3D
scenes/objects on the holographic display [7]. Our study
focuses on one of future wireless multimedia delivery systems,
i.e., wireless point cloud delivery systems, which send 3D
point data to a remote display over wireless links to reproduce
the corresponding 3D scenes/objects on the remote display.
In contrast to conventional two-dimensional (2D) images, 3D
points in point cloud data are massive, non-ordered, and
non-uniformly distributed in space. One of major issues in
point cloud delivery is how to compress such numerous and
irregular structures of 3D points while keeping original 3D
scenes/objects. For example, when the number of 3D points
in the reference point cloud is 800,000, the amount of traffic

(a) Holographic Dis-
play [12]

(b) 3D Modeling [13] (c) AR [14]

Fig. 1. Examples of 3D point applications.

without any compression will be approximately 38 Mbits [8].
A large traffic causes low 3D reconstruction quality in point
cloud delivery over limited data-rate links in wireless commu-
nications.

For point cloud compression over wireless links, conven-
tional schemes typically rely on digital encoding such as point
cloud library (PCL) [9], [10], octree-based coding [11], and
transformation-based coding schemes. Specifically, a sender
takes quantization and entropy coding for the 3D point cloud
to generate the compressed bitstream. Here, the compression
rate of the bitstream is adaptively selected according to link ca-
pacity of wireless channels. The compressed bitstream is then
transmitted over the channels by using channel coding and
digital modulation schemes. Successful high-quality delivery
of point clouds over wireless links can realize high presence in
video applications such as virtual reality (VR) and augmented
reality (AR) on remote display as shown in Fig. 1.

However, the conventional point cloud delivery suffers from
the following problems due to the unreliable wireless channel
and nonlinear point cloud compression. First, the encoded
bitstream is highly vulnerable for bit errors [15]. When the
channel signal-to-noise ratio (SNR) falls below a certain value,
possible errors occurred in the bitstream during communica-
tions will disable point cloud restoration. This phenomenon
is called the cliff effect [16]. Second, the 3D reconstruction
quality will saturate even when the wireless channel quality is
improved unless an adaptive rate control of source and channel
coding is performed in real-time according to the rapid fading
channels. This is called the leveling effect. Third, nonlinear
quantization is a lossy process and its distortion cannot be
recovered at the receiver. Finally, voxel-domain point cloud
encoders [9], [10] have limited coding efficiency since it does
not yield good energy compaction. Although conventional



(a) Conventional GFT-based HoloCast

(b) Proposed GNN-based scheme

Fig. 2. Schematics of conventional and proposed schemes for wireless 3D
point cloud delivery.

transform techniques, such as discrete cosine transform (DCT),
can be used for point cloud data, they do not fully exploit the
underlying irregular geometry of the 3D points.

To solve the above-mentioned issues, we have proposed
HoloCast [17], [18] inspired by soft delivery [19]–[21] to re-
alize graceful 3D reconstruction quality improvement with the
improvement of wireless channel quality. Fig. 2(a) shows the
overview of HoloCast. The key ideas of HoloCast are 1) skip-
ping digital operations, i.e., quantization and entropy/channel
coding, analogous to soft delivery schemes, e.g., SoftCast [19]
and 2) introducing graph signal processing (GSP) [22] for
better energy compaction. To this end, HoloCast regards the
3D points as vertices in a graph and takes graph Fourier
transform (GFT) [23] to exploit the correlations between the
adjacent graph signals, and directly sends the GFT coefficients
by using near-analog modulation. Our HoloCast prevents cliff
and leveling effects by skipping nonlinear digital operations
and thus realizes better 3D reconstruction quality compared
with digital-based schemes even in the presence of wireless
channel fluctuation. The GFT-based soft delivery achieves
better energy compaction in 3D point cloud compared with
the conventional DCT-based soft delivery [19] and brings
better 3D scene reconstruction irrespective of wireless channel
quality. However, soft delivery schemes including SoftCast
and HoloCast need a large communication overhead for signal
decoding. Although overhead reduction techniques [18], [24]
have been proposed for soft delivery schemes, they still need
a large overhead and they are designed for additive white
Gaussian noise (AWGN) wireless channels.

The main objective of our study is to propose a novel soft
delivery scheme for 3D point clouds by introducing a new
framework known as graph neural networks (GNN) [25] to
simultaneously realize better 3D reconstruction quality and
low communication overheads. GNN is a novel model for
graph representation learning, which allows analyzing the
irregular geometric structure of graph data. We focus on an
end-to-end (E2E) deep learning, i.e., GNN-based autoencoders
(GAE) [26]–[29], to encode 3D point clouds into a com-
pressed representation. One of the benefits in the GAE is to
allow the graph signal reconstruction from the limited num-
ber of latent variables without requiring additional metadata.

Fig. 3. Proposed GNN-based end-to-end encoder and decoder for wireless
3D point cloud delivery.

Fig. 2(b) shows the overview of the proposed scheme, where
the GNN-based encoder transforms 3D points into several
latent variables, and then the variables are directly mapped
to transmission signals by means of near-analog modulation
without relying on digital modulation schemes. The latent
variables, which are distorted through wireless fading chan-
nels, are fed into another GNN-based decoder to reconstruct
clean 3D points. Our GAE consists of a sequence of graph
convolution and pooling operations with nonlinear activation
functions for the extraction of important features while fully-
connected layers with nonlinear activation functions for the
3D points reconstruction from the extracted features.

The contribution of this paper is three-fold:
• We verify that the proposed GAE realizes better 3D

reconstruction quality compared with the conventional
soft delivery schemes including SoftCast and HoloCast
over fading channels;

• We confirm that the proposed GNN-based encoder can
reduce the amount of communication overhead by about
one order of magnitude;

• We demonstrate that adaptive channel precoding offers
further quality improvement by means of the diversity
gain of the rapid fading channels.

II. GNN-BASED SOFT POINT CLOUD DELIVERY

Fig. 3 shows the proposed E2E point cloud encoder and
decoder. It can prevent the cliff/leveling effects in 3D scene
reconstruction, gracefully improve reconstruction quality along
with channel quality, and reduce the amount of overhead.

Encoder: The encoder part regards the 3D point cloud as
a graph signal using a weighted and undirected graph G =
(V ,E,W ). Here, V and E are the vertex and edge sets of
G, respectively. W is an adjacency matrix with positive edge
weights and the (i, j)th entry of W represents the weight of
an edge between vertices i and j.

In this paper, we consider the 3D coordinates of the point
cloud p = [x, y, z]T ∈ R3×N as the vertices in the graph where
N is the number of vertices. A K-nearest-neighbor graph is
used for making the connection between the vertices. In this
graph, each 3D point connects to its K closest 3D points. We
use a binary adjacency matrix whose entry is either 1 or 0 to
indicate connectivity.

The encoder maps the 3D coordinate attributes p to m-
dimensional and L-channel real-valued latent variables z ∈
Rm×L by means of an encoding function fθ. The encoding



function fθ is parameterized using graph convolutional neural
networks (GCNN) with weights θ. The encoder consists of a
series of graph convolution followed by leaky rectified linear
unit (ReLU) activation function, Top-K pooling [30], and a
normalization layer. The graph convolution layers extract the
graph signal features and the nonlinear activation function
allows to learn a non-linear mapping from the source signal to
the coded signal. Top-K pooling layer chooses the largest K
values from each channel to remain important features. The
output of the last graph convolution layer is normalized such
that ‖z‖2 = mLP , where P denotes the average transmission
power.

Wireless Link: The coded variables z are sent over the
communication channel by directly mapping to in-phase and
quadrature (I-Q) symbols x for near-analog modulation. The
wireless channel, denoted by η, introduces stochastic distortion
to the transmission symbols. To optimize the proposed scheme
under wireless communications, the channel transfer function
η must be incorporated into the E2E GAE. We consider
Rayleigh fading as a reasonable channel model. In Rayleigh
fading, each analog-modulated symbol at the receiver can be
modeled as follows: yi = hixi+ni, where yi is the ith received
symbol, xi is the ith analog-modulated symbol, hi is the ith
multiplicative fading coefficient, and ni is an AWGN with
an average noise variance of σ2. The fading coefficients in
the Rayleigh fading channels follow the complex Gaussian
distribution, i.e., hi ∼ CN(0, 1) where ∼ means “distributed
as” and CN(a, b) is a complex Gaussian distribution with a
mean of a and a variance of b.

To reduce the impact of fading effects, we consider two
equalization techniques at the sender and receiver, i.e., pre-
equalization and post-equalization, for a channel transfer func-
tion η. The pre-equalization can be realized at the sender
side by sending pre-equalized transmission symbol xi to the
receiver as xi = wizi where wi is a pre-equalizer weight.
Although there are many variants of pre-equalizer, we assume
a simple coherent pre-equalization: wi = h∗i /|hi| where [·]∗
denotes the conjugate operation. In this case, the channel
transfer function will be: ηpreeq(zi) = |hi|zi + ni. The post-
equalization can be realized at the receiver by taking an inverse
operation of the fading attenuation. Specifically, the receiver
takes the zero-forcing post-equalization such that ŷi = yi/hi,
given the estimated fading coefficient hi. In this case, the
channel transfer function will be: ηposteq(zi) = zi + ni/hi.

In addition to pre-/post-equalization, we also consider pre-
coding method which sorts the latent variables z according to
the fading level |hi| in descending order. Such sorting may
facilitate to optimizing the best latent variables for GNN to
achieve diversity gain.

Decoder: Upon the receipt of distorted latent variables,
the decoder uses a decoding function gφ, based on a multi-
layer perceptron (MLP) for 3D point cloud reconstruction. The
decoder consists of a series of fully-connected layers and leaky
ReLU with a trainable parameter set φ. The MLP decoder
maps the distorted latent variables z̃ into an estimate p̂ of the

3D coordinates. The last layer uses hyperbolic tangent (tanh)
activation function.

Loss Function: The proposed GNN-based encoding and
decoding functions are trained to minimize a loss function:

(θ, φ) = arg min
θ,φ

E
Pr(p,p̂θ,φ)

[
d(p, p̂θ,φ)

]
, (1)

where p̂θ,φ is the reconstructed 3D coordinates via E2E
GAE with encoding and decoding parameter sets of θ and
φ, E[·] is an expectation, d(p, p̂θ,φ) is a defined distortion
function between the original and reconstructed 3D coordinate
attributes, Pr(p, p̂) is the joint probability distribution of the
original and reconstructed 3D coordinate attributes. Since the
true distribution of the input attributes is often unknown and
thus the expected distortion is also unknown. To learn better
weights for the minimization of the expected distortion in
Rayleigh fading channels, all potential distortions due to chan-
nel fading and additive noise are synthetically analyzed by the
proposed scheme in off-line learning phase. We use adaptive
momentum (ADAM) optimizer for weight learning with an
initial learning rate of 0.005, batch size of 10, momentum of
0.9, and momentum2 of 0.999 for 500 epochs.

III. PERFORMANCE EVALUATION

A. Simulation Settings

Datasets: We use a benchmark dataset of ShapeNet [31] for
experiments. ShapeNet contains more than 50,000 unique 3D
points from 55 categories. In our experiments, we select point
clouds of “Airplane” category as an example. We sample 2,115
point clouds for training and 234 point clouds for testing.
The training data are used for learning the network weights
while the testing data are used for comparison in terms of 3D
reconstruction and visual quality.
Loss Function and Quality Metric: We use the augmented
Chamfer distance [28] for the loss function of our scheme
and the distortion function for the 3D coordinate attributes.
The augmented Chamfer distance is essentially the Hausdorff
distance between two 3D point clouds. Although the original
Chamfer distance is one of typical quality metrics, the aug-
mented Chamfer distance is more robust to prevent some ill
cases. The augmented Chamfer distance dCH(S, Ŝ) is defined
as

max

{
1

|S|
∑
p∈S

min
p̂∈Ŝ
‖p− p̂‖2,

1

|Ŝ|

∑
p̂∈Ŝ

min
p∈S
‖p− p̂‖2

}
, (2)

where S is the input point set and Ŝ is the reconstructed
point set. The term minp̂∈Ŝ ||p − p̂||2 enforces that any
3D coordinate p in the original point cloud has a matching
3D point p̂ in the reconstructed point cloud, and the term
minp∈S ||p− p̂||2 enforces the matching vice versa. The max
operation enforces that the distance from S to Ŝ and the
distance vice versa have to be small simultaneously.
Wireless Environment: We consider Rayleigh fading chan-
nels with an additive noise ni for realistic wireless envi-
ronments. The additive noise ni follows circular-symmetry



complex white Gaussian distribution with a variance of σ2,
i.e., ni ∼ CN(0, σ2). We consider the range of the noise power
σ2 is from 0 dB to −30 dB. We also assume that the channel
coefficients are known at the receiver and/or transmitter. De-
tailed analysis of the error impact on the channel estimates hi
will be left as a future work.
GAE Architecture: We use PyTorch Geometric (PyG) [32]
for the simulations of our GAE architecture. The encoder
repeats a series of GCNConv [33] with the output channels
between 12 and 48, leaky ReLU activation function, and Top-
K pooling at the graph pooling ratio between 0.5 and 0.9 three
times. The output of the last Top-K pooling layer is followed
by a normalization layer which enforces the average power
constraint. The decoder uses a series of fully-connected layer
and leaky ReLU three times to reconstruct the 3D coordinate
attributes from the distorted latent variables via a channel
transfer function. Here, the output channels of the first and
the second fully-connected layers are the same as the output
channels of GCNConv while the output channels of the last
fully-connected layer is 3.

B. Overhead Reduction

We firstly discuss an impact of the proposed GNN-based
coding on the amount of communication overheads. Fig. 4
shows the 3D reconstruction quality over Rayleigh fading
channels as a function of communication overheads at a wire-
less channel SNR of 20 dB. Here, the communication overhead
represents the total number of transmission symbols in near-
analog modulation for the proposed scheme. SoftCast addi-
tionally sends the power information of the analog-modulated
symbols for decoding while HoloCast also sends GFT basis
matrix for inverse GFT operations. For the comparison, all the
schemes intentionally discard the number of analog-modulated
symbols. We note that power information and GFT basis
matrix are transmitted by binary phase-shift keying (BPSK)
modulation format without channel coding. When SoftCast
and HoloCast use a channel code for error protection, the
communication overhead will become several-fold larger than
the results in our evaluations.

We compare the proposed scheme with HoloCast [18] and
SoftCast [19]. HoloCast uses octree decomposition and takes
GFT for the graph signals in each octree block with the
size of 1,000 to convert into spectrum domain by using
the eigenvectors of the random-walk graph Laplacian matrix.
HoloCast uses the Givens rotation with a quantization bit
depth b between 2 and 12 to compress the eigenvectors for
overhead reduction. SoftCast takes DCT-based decorrelation
for 3D coordinate attributes and directly maps the power-
allocated coefficients on the I-Q components. For decoding
the power-allocated coefficients, it needs to send the power
information of all the DCT coefficients as metadata. The power
information is compressed by using a Huffman code. The
proposed scheme uses GNN-based encoding and decoding for
overhead reduction. Here, the proposed scheme uses precoding
with a channel transfer function of post-equalization.
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Fig. 4. 3D reconstruction quality as a function of communication overheads
at a wireless SNR of 20 dB.

We can see that the proposed scheme achieves a significant
overhead reduction at the same 3D reconstruction quality com-
pared with the conventional HoloCast. For example, Chamfer
distance of the proposed scheme is 0.011 at the communi-
cation overhead of 9.0 × 104 symbols. On the other hand,
Chamfer distance of HoloCast is 0.009 at the communication
overhead of 4.5 × 106 symbols. In this case, the proposed
scheme achieves 98.0% overhead reduction to achieve the
same 3D reconstruction quality. The conventional SoftCast
has a limited 3D reconstruction quality irrespective of the
communication overhead. Although SoftCast achieves better
3D reconstruction quality compared with the proposed scheme
around the communication overhead of 2.2×104 symbols, the
reconstruction quality sharply degrades as the communication
overhead decreases. For a small communication overhead,
SoftCast discards DCT coefficients in lower-frequency com-
ponents. The discarded coefficients cause a significant impact
on 3D reconstruction quality at the receiver.

C. 3D Reconstruction Quality

We now discuss an effect of wireless channel quality on the
reconstructed point cloud quality. We consider two HoloCast
schemes with a bit depth of 3 and 12 in the Givens rotation
at an octree decomposition size of 1,000. Fig. 5 shows the
3D reconstruction quality over Rayleigh fading channels as a
function of wireless channel SNRs. We observe the following
results:
• The proposed scheme yields the best 3D reconstruction

quality in low wireless SNR regimes.
• Although the conventional HoloCast scheme realizes

better 3D reconstruction quality in high wireless SNR
regimes, the required overhead is more than 10-times
larger than that of the proposed method.

• The 3D reconstruction quality of SoftCast is lower than
that of the proposed scheme irrespective of wireless
channel SNRs.
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D. Impact of Precoding and Equalization

In this section, we evaluate the effects of precoding and
equalizations, i.e., post-equalization and pre-equalization, on
the 3D reconstruction quality of the proposed scheme. As
mentioned in Sec. II, the channel transfer functions for the
latent variables zi in post-equalization and pre-equalization
are ηposteq(zi) = zi + ni/hi and ηpreeq(zi) = |hi|zi + ni,
respectively. In addition, the precoding method sorts the latent
variables according to the fading coefficient in descending
order for diversity gain.

Fig. 6 shows the 3D reconstruction quality of the proposed
schemes over Rayleigh fading channels as a function of wire-
less channel SNRs for the case with different channel transfer
functions of ηpreeq and ηposteq with/without precoding. The
evaluation results are summarized as follows:
• Precoding performs well in high wireless SNR regimes

since it may achieve a higher diversity gain.

(a) Original (b) SoftCast (DCT)
Chamfer distance: 0.020

(c) HoloCast (GFT)
Chamfer distance: 0.003

(d) Pre-equalization w/o Precoding
Chamfer distance: 0.013

(e) Post-equalization w/o Precoding
Chamfer distance: 0.014

(f) Pre-equalization w/ Precoding
Chamfer distance: 0.013

(g) Post-equalization w/ Precoding
Chamfer distance: 0.012

Fig. 7. Snapshot of reconstructed 3D point cloud over different channel
transfer functions with/without precoding at a channel SNR of 20 dB.

• Pre-equalization works well at lower SNR regimes,
whereas post-equalization does well at higher SNR
regimes.

• As a consequence, pre-equalization without precoding
yields the best 3D reconstruction quality at low SNR
regimes below 10 dB.

• Accordingly, the post-equalization with precoding be-
comes the best one in the high SNR regimes above 10 dB.

We finally compare some examples of visual snapshots for
SoftCast, HoloCast, and the proposed schemes over Rayleigh
fading channels in Figs. 7(a) through (g) at a channel SNR
of 20 dB. Here, the point cloud is selected from one point
cloud from the test data in ShapeNet database. Although
each proposed scheme may reconstruct the 3D shape of the
aircraft, the proposed scheme with precoding may realize clear



reconstruction compared with the proposed scheme without
precoding. In particular, SoftCast has an obvious degradation
over other schemes. Nevertheless, the 3D shape of the aircraft
tail remains noisy even with proposed methods. Note that we
focused on a simplified GNN method compared with state-of-
the-art techniques such as graph inception networks (GIN) [28]
and FoldingNet [27] in order to demonstrate an initial proof-
of-concept study of GNN-based 3D point cloud delivery.
Extension to further improve 3D reconstruction quality will be
considered as another follow-up work. To the best of authors’
knowledge, this paper is the very first study exploiting GNN
methods for wireless 3D point cloud delivery.

IV. CONCLUSIONS

We have proposed a novel scheme of soft point cloud
delivery for future wireless streaming of holographic and 3D
data. Specifically, the proposed scheme integrates GNN-based
point cloud coding and near-analog modulation to simultane-
ously achieve: 1) prevention of the cliff effect, 2) prevention
of the leveling effect, 3) high energy compaction, and 4)
low communication overhead. In addition, the proposed E2E
design of the GAE scheme accounts for random distortion due
to fading channels through the use of pre-/post-equalization
and precoding techniques. We demonstrated that the proposed
scheme achieved a good trade-off between 3D reconstruction
quality and communication overhead compared with the con-
ventional SoftCast and HoloCast. More rigorous analysis with
GIN and FoldingNet will follow as future work.
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