MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Inverse design for integrated photonics using deep neural
network

Kojima, Keisuke; Koike-Akino, Toshiaki; Tang, Yingheng; Wang, Ye
TR2021-061  June 04, 2021

Abstract
Focusing on nanophotonic power splitters, we show that a generative neural network can
design a series of devices that achieve nearly arbitrary target performance, with an excellent
capability to generalize training data produced by the adjoint method.

Integrated Photonics Research, Silicon and Nanophotonics (IPR)

© 2021 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modifications of the content of this paper are prohibited.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






Inverse design for integrated photonics using
deep neural network

Keisuke Kojima'", Toshiaki Koike-Akino!, Yingheng Tang!-?, and Ye Wang!

! Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA.
2School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West
Lafayette, IN 47907, USA.

* ..
kojima@merl.com

Abstract: Focusing on nanophotonic power splitters, we show that a generative neural
network can design a series of devices that achieve nearly arbitrary target performance,
with an excellent capability to generalize training data produced by the adjoint method.

1. Introduction

As the functionality requirement for photonic integrated circuits increases, there is a desire to shrink the device
size significantly. There has been significant interest in integrated nanophotonic devices, and the adjoint method [1,
2] has been applied with great success. A potentially complementary technology to the adjoint method is deep
neural networks (DNN5s), which may be categorized into three models [3]. The first model is a forward regression
model, wherein the trained DNN is used within an optimization loop. The second is an inverse regression model,
in which the trained DNN takes the target performance as input and generates the desired structure. The third
model is a generative network, which can randomly generate a series of optimized design candidates for a given
target performance. Generative modeling is a fast growing category, wherein a DNN is trained from a variety of
device samples and can generate a series of device structures that can achieve a given target characteristic. In this
paper, we review how the generative modeling can be applied to a design of nanophotonic power splitters, and
complement the adjoint method [4].
2. Device Structure and Simulation

We consider a nanostructured power splitter with an arbitrary and fixed splitting ratio towards two output ports,
targeting flat response with low insertion loss, based on a silicon-on-insulator (SOI) structure with one input and
two output ports. It consists of the optimization regions of 3um x 3.6um, having 151 x 181 pixels of 20 nm square
size as shown in Fig. 1 [4].
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Fig. 2: Adversarial CVAE network with cycle consistency [6]. Both encoders
share the same weight, and both decodes share the same weight.

We adopt the adjoint method, to generate the training data, using the LumOpt library [7] to interface with
Lumerical two-dimensional (2D) finite-difference time-domain (FDTD). The adjoint method starts with an initial
condition and then updates the pixels by calculating the gradients at each pixel. Then, the pixel values are gradually
binarized, and also the manufacturing constraints are incorporated. The target splitting power ratios for the two
output ports were chosen as, 0.9 : 0.1, 0.85:0.15, 0.825:0.175,0.8: 0.2, ..., 0.525: 0.475, 0.5 : 0.5, excluding
0.875:0.125 and 0.725 : 275 for the testing purpose. We conducted a total of 15 optimization runs, each between
146 and 233 iterations, and accumulated 1,729 data examples for DNN training.



3. Network Architecture and Training

We use a variant of the conditional variational autoencoder (CVAE) for the inverse design of nanophotonic
power splitters [5, 6]. For device generation, the trained decoder of the CVAE model is used with the desired
condition along with latent variables sampled from the normal distribution, by which a series of device topology
candidates are generated. Then, we introduced an adversarial CVAE (A-CVAE) [5], where a separate branch to
the adversary block is used for isolating the latent variable z from the conditional variations s (the target spectra).
Further, we implement cycle consistency (CC) to further improve the training of the network [6]. The benefit of
CC along with the A-CVAE model is that in addition to training the encoder-decoder pair for forward reconstruc-
tion, the reversed-order decoder-encoder pipeline is also trained for latent space consistency as shown in Fig. 2
(respective DNN modules share the same weights). Correspondingly, we are comparing not only the decoded
device topologies but also the latent variables.

For the training of the whole A-CVAE model with CC, we use an adversarial loss formulation, that incorporates
the mean-square error (MSE) loss between the decoded topology x’ and actual topology x, a Kullback—Leibler
(KL) divergence term to ensure that the latent variables follow the normal distribution, the MSE between the two
latent variables z and 7’ (to enforce reconstruction of the latent variables by the reversed decoder-encoder pair),
and the two adversarial blocks that aim to make both § and §’ orthogonal to s as much as possible.

4. Device Generation Performance

In order to verify the effectiveness of the generative model, we 05 > aning Data
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250 devices is generated and validated. The red markers in Fig. 3
show the generated devices, demonstrating a capability that the
achieved mean 77 can arbitrarily cover from 0.48 to 0.90 with an
excellent total transmittance grater than 98%.

As the above results show, generative deep learning models can
produce a series of good devices based on the statistical character-
istics of the training data and target conditions. For our example of
2D FDTD simulations, the adjoint method for each device takes
about 2.5 hours. The A-CVAE-CC network training takes about 40 minutes on a computer using a graphic pro-
cessor unit (GPU) board, which is a one time investment. When we need to generate a series of devices covering
a wide range of target performances, as in Fig. 3, it takes 20 seconds to generate these 250 devices, and 21 min-
utes to validate the performance. Therefore, once a solid DNN model is established, it can generate devices to fill
the gaps of the training data much faster than individual adjoint method runs. This DNN method can easily be
extended to 3D FDTD simulations [6].

5. Conclusion

To design complicated nanophotonic devices with hundreds of thousands of parameters, a sophisticated design
algorithm is necessary, and deep learning offers a promising solution. A series of adjoint method optimization runs
are used to generate training data with different target performances. Once trained, nano-optic broadband power
splitter design via cycle-consistent adversarial DNN can generate a series of improved device structures given
target spectral data. Deep learning shows a good promise for generating structures not covered by the training
data, with much shorter time.

Fig. 3: Mean 77 and 7, over the wavelength
range of 1,450 nm and 1,650 nm of the de-
vices used for the training and the generated
devices by the generative model when the tar-
get 71 is swept from 0.45 to 0.95. The dashed
line shows the ideal 100 % transmittance [4].
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