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Abstract
This article provides a survey of recent results on exploiting parametric auto-regressive (AR)
models for adaptive radar target detection. Specifically, three types of radar systems are con-
sidered, including phased-array radar with multiple co-located transmitters and receivers,
distributed multi-input multi-output (MIMO) radar with widely and spatially separated
transmitters and receivers, and passive radar which uses existing sources as illuminators of
opportunity (IOs). These radar systems are of significant interest for a wide range of military
and civilian applications. For each of the three types of radars, we discuss how AR processes
can be employed to succinctly model the underlying signal correlation and efficiently estimate
it from limited data, thus enabling effective target detection in complex non-homogeneous
environments when training data is limited. We illustrate the performance of such para-
metric model assisted detectors relative to conventional non-parametric approaches by using
computer simulated and experimental data.
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Abstract—This article provides a survey of recent results on
exploiting parametric auto-regressive (AR) models for adaptive
radar target detection. Specifically, three types of radar systems
are considered, including phased-array radar with multiple
co-located transmitters and receivers, distributed multi-input
multi-output (MIMO) radar with widely and spatially separated
transmitters and receivers, and passive radar which uses existing
sources as illuminators of opportunity (IOs). These radar systems
are of significant interest for a wide range of military and civilian
applications. For each of the three types of radars, we discuss
how AR processes can be employed to succinctly model the
underlying signal correlation and efficiently estimate it from
limited data, thus enabling effective target detection in complex
non-homogeneous environments when training data is limited.
We illustrate the performance of such parametric model assisted
detectors relative to conventional non-parametric approaches by
using computer simulated and experimental data.

Index Terms—Parametric modeling, adaptive target detec-
tion, phased-array radar, distributed multi-input multi-output
(MIMO) radar, passive radar

I. INTRODUCTION

Parametric modeling is frequently used in the design and
analysis of radar systems (e.g., [1]–[10]). It employs physical
or statistical models consisting of a finite number of parame-
ters that are useful in the representation and processing of a
signal for radar functions. There are many parametric models
available for radar applications, e.g., geometrical theory of
diffraction model [1], hidden Markov model [2], compound
Gaussian model [3], and auto-regressive (AR) model [4]–[10],
etc. The AR model has attracted extensive research efforts for
radar target detection since it can fit both Gaussian and non-
Gaussian observations. In addition, parameter estimation of the
AR model is relatively simple, which usually involves solving
a system of linear equations.

Adaptive target detection is a fundamental topic for radar
engineers. The problem involves detecting a weak target signal
from strong interference. Effective interference cancellation
requires some accurate knowledge, e.g., the covariance matrix
of the interference. Many adaptive detection algorithms, such
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as the well-known sample matrix inversion (SMI) detector
[11] and Kelly’s generalized likelihood ratio test (GLRT) [12],
need a large amount of homogeneous training (secondary)
data to obtain an accurate estimate of the clutter covariance
matrix. However, real-world radar interference is often non-
homogeneous, which precludes the availability of adequate
training data for covariance matrix estimation. We consider
radar detection in such scenarios with limited data, i.e., lack
of sufficient training data for interference estimation. The
problem can be addressed by utilizing a suitable parametric
model for the interference. This article reviews some recent
developments on exploiting parametric AR models for target
detection in three different types of radar systems with limited
data, namely phased-array radar, distributed multi-input multi-
output (MIMO) radar, and passive radar, respectively.

A standard phased-array radar can be considered as a single-
input multi-output (SIMO) system, where a single waveform
is radiated and the returned signal is collected via multiple
receiving antenna elements. Space-time adaptive processing
(STAP) techniques, which have been developed for adaptive
target detection in phased-array radar and are mostly used
assuming homogeneity of the training data, have shown sig-
nificant performance loss in non-stationary/non-homogeneous
interference environments of unknown statistics [14]. One
way to solve the inhomogeneity related problem is to use
data selection techniques based on either knowledge-based
criteria or data-adaptive methodologies [15]–[17]. Another
different strategy to reduce training requirements in STAP
is to utilize a suitable AR model for the clutter and exploit
the parametric model for target detection. In particular, multi-
channel AR models have been found to be very effective in
representing the temporal correlation among different types of
clutter signals [18]. Thus, several parametric detectors were
developed by modeling the clutter as an AR process which
exploits the structural information of the clutter covariance
[5]–[10], [19]–[21]. AR model based estimation of clutter
parameters is closely related to multi-stage Wiener filtering
through conjugate-gradient (CG) iterations, which has led to
the development of several CG-based parametric detectors
[22], [23].

Distributed MIMO radar that employs multiple widely sep-
arated antennas within the transmit and receive aperture, illu-
minates a target from different spatial aspects, which provides
the ability to enhance performance by exploiting the spatial or
geometric diversity [24]–[27]. However, the non-homogeneous
problem in such a system is even worse than the phased-array
radar due to the multistatic configuration. Specifically, the non-
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homogeneity of the clutter is caused by two factors, including
the azimuth-selective backscattering of the clutter scatterers
observed by different transmit-receive (Tx-Rx) antenna pairs
as well as the non-stationary clutter covariance structure across
resolution cells [28]. This issue can be addressed by using a
set of independent scalar AR processes to model the clutter
observed by different Tx-Rx pairs, which accounts for the
inhomogeneity of the first type [29], [30]. With the parametric
modeling of the disturbance, there is no need to use range
training data from adjacent resolution cells to estimate the
clutter covariance matrix, which bypasses the inhomogeneity
across resolution cells in a neighborhood.

Passive radar seeks to exploit a readily available illuminator
of opportunity (IO), e.g., frequency modulation (FM) radio,
television, and digital audio/video broadcasting, to detect and
track targets of interest [31]–[33]. Passive radar is more covert
and provides reduced RF pollution to the electromagnetic
environment since it does not need a transmitter. However,
this also imposes an additional challenge due to the non-
cooperative nature of the system, since the transmitted signal
is generally unknown at the receiver [34]. The unknown IO
waveform can be treated as either a deterministic signal or a
stochastic signal [35], [36]. Due to coding, modulation, pulse
shaping, and propagation effects, the IO waveform is generally
correlated and such temporal correlation can be exploited by
modeling the waveform as an AR process to improve the
detection performance [37]–[39].

In the remainder of this paper, we detail how AR models
can be leveraged for parametric detection in phased-array radar
(Section II), distributed MIMO radar (Section III), and passive
radar (Section IV). We offer some concluding remarks in
Section V.

Notations: We use boldface symbols for vectors (lower case)
and matrices (upper case). (·)T denotes the transpose and
(·)H the conjugate transpose. CN (u,Σ) denotes the complex
Gaussian distribution with mean u and covariance matrix Σ.
CN×1 denotes the set of N × 1 complex vectors. bxc is the
floor function that outputs the greatest integer less than or
equal to x.

II. PARAMETRIC DETECTION FOR PHASED-ARRAY RADAR

Consider a phased-array radar that employs J antennas
to transmit a coherent burst of pulses at a constant pulse
repetition frequency (PRF) fr = 1/Tr, where Tr is the pulse
repetition interval (PRI). The transmitter carrier frequency
is fc = c/λ, where c is the speed of light and λ is
the wavelength. The time interval over which the waveform
returns are collected is commonly referred as the coherent
processing interval (CPI). The CPI length is equal to KTr
where K is the number of pulses in the CPI. At the radar
receiver, each antenna has its own down-converter, matched
filter, and analog-to-digital converter (ADC). Matched filtering
is performed separately on the returns from each pulse, after
which the signals are sampled by the ADC to create slow-
time and fast-time samples [40]. Slow-time samples are taken
at the PRF, while fast-time samples are taken at a sampling
rate determined by the bandwidth of the radar waveform and
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Figure 1. J-channel AR(P ) process: The J × 1 vector d`(k) is the spatial
snapshot of the disturbance at the `-th range bin and k-th pulse. It is modeled
as an AR process with coefficients {A(p)}Pp=1 and spatial noise vector ε`(k).

each fast-time sample corresponds to a specific range bin. The
slow/fast-time sampling along with spatial sampling performed
by the antenna elements result in a data cube. A fundamental
problem for the radar is to detect whether targets are present
in each range bin. Let x0(k) ∈ CJ×1 contain the J spatial
samples collected at the k-th pulse for a test range bin. The
target detection problem is to select between two hypotheses in
the presence of spatially and temporally correlated disturbance
[8]:

H0 : x0(k) = d0(k),

H1 : x0(k) = αs(k) + d0(k), k = 0, 1, · · · ,K − 1,
(1)

where s(k) is the known target steering vector which is
the response of the system to a unit amplitude target, α
is the unknown target amplitude, and {d0(k)}K−1

k=0 are the
disturbance signals (i.e., clutter and noise) that are in general
correlated in space and time. Particularly, s(k) depends on
the array geometry and is parameterized by the target spatial
frequency ws and the normalized Doppler frequency wd. For
a uniformly spaced linear array (ULA), the j-th element of the
target steering vector s(k) is given by e2π(j−1)wse2π(k−1)wd .
For training-based detectors, it is assumed that there is a set
of target-free training signals x`(n), ` = 1, . . . , L, which are
often signals from range bins that are close to the test range
bin.

The detection problem in (1) can be solved by employing
either a covariance matrix based approach [11], [12] or a
parametric method [5]–[9]. Here, the structural information of
the disturbance covariance matrix is exploited to improve the
detection performance and reduce the training requirement.
More precisely, as shown in Fig. 1, the disturbance signal
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Figure 2. Parametric detector for STAP phased-array radar.

{d`(k)}L`=0 is modeled as a J-channel AR process with known
model order P :

d`(k) = −
P∑
p=1

AH(p)d`(k − p) + ε`(k), (2)

where {A(p)}Pp=1 denote the unknown J × J AR coefficient
matrices to be estimated and ε`(k) denotes the J × 1 spatial
noise vectors that are temporally white but spatially colored
Gaussian noise: ε`(k) ∼ CN (0,Q), where Q is the unknown
J × J spatial covariance matrix.

The multi-channel AR model in (2) has been used to
develop parametric STAP detectors in several efforts [5]–[8].
In the following, we discuss a parametric GLRT [13]. First,
the GLRT is evaluated by expressing the likelihood ratio as
a function of unknown parameters: the target amplitude α,
AR coefficient matrices {A(p)}Pp=1, and the spatial covariance
matrix Q. Subsequently, the likelihood function under each
hypothesis is maximized to yield the maximum likelihood
estimates (MLEs) of the unknown parameters, which are then
used to replace the unknown parameters in the likelihood ratio
and compute the test statistics. The flowchart of the parametric
GLRT is shown in Fig. (2). The amplitude estimation under
H1 turns out to be the key problem since the other parameters
can be readily obtained once an estimate of α is available.
However, the cost function of the maximum likelihood (ML)
amplitude estimator is highly non-linear. Newton-like iterative
searches are usually used to find the MLE of the amplitude.
A sub-optimum but computationally more efficient estimator,
referred to as the asymptotic ML (AML) estimator, can be used
to construct a simplified parametric GLRT. It can be shown
that, with the parametric AR modeling of the disturbance, the
parametric GLRT reduces to a ratio of the determinants of
the ML estimates of spatial covariance matrices under the two
hypotheses [8]:

TGLRT =
|Q̂0|
|Q̂1|

H1

≷
H0

γGLRT, (3)

where γGLRT denotes the test threshold to meet a preset
probability of false alarm, and Q̂0 and Q̂1 are the MLEs of
the spatial covariance matrix Q under the null and alternative
hypotheses, respectively.
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Figure 3. Detection maps of (a) the parametric GLRT, and (b) the JDL
detector for the KASSPER dataset. The true targets are represented by
blue cross signs and the detections (range-Doppler cells with test statistics
exceeding the detection threshold) are shown in green bars.

To illustrate the merit of parametric modeling in the STAP
detection problem, we present test results using data from
KASSPER [41] and MCARM [42]. This allows us to assess
the influence from the mismatch between the AR model
assumption and the real disturbance.

1) KASSPER Dataset: The KASSPER 2002 dataset con-
tains many real-world effects including heterogeneous terrain,
array errors, and dense ground targets. The simulated airborne
radar was flying at 3000 meters altitude and speed of 100
m/s, traveling east with a 3◦ crab angle. The radar was
operating at 1240 MHz with a peak power of 15 kW. The 11
virtual antenna array elements were spaced slightly less than
a half-wavelength apart at 0.1092 m (0.9028 half-wavelength
spacing), and the transmit array is uniformly weighted in the
horizontal dimension and phased to steer the mainbeam to
195◦. The PRF was 1984 Hz and the CPI contains 32 pulses.
The KASSPER dataset simulates a dense target environment.
Of particular interest are the targets in the mainbeam of the
radar within the range swath of interest. In total, there are 268
targets in the range interval between 35 km and 50 km.

We apply the parametric GLRT detector to the KASSPER
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data of interest and compute the test statistics with respect
to Doppler frequency and range cells. To compare with other
techniques, we count the number of detection while setting the
threshold with a constraint on the number of false alarm. Due
to range/Doppler sidelobes resulting from pulse compression
and Doppler filtering, it is common for a target to spread into
nearby range-Doppler bins. For this reason, it is a standard
procedure for a radar to cluster target detections such that a
detection in a given range-Doppler cell is associated with a
target that lies in a contiguous range cell or Doppler bin. For
the results reported here, we cluster ±1 cells in range and
±1 bands in Doppler for all processing schemes. Once we
declare a detection in its region, the corresponding test value is
removed from the original test statistics to avoid over-counting.
For comparison purposes, the Joint Domain Localized (JDL)
technique [43], [44] with 3× 3 local processing region (LPR)
is applied to the KASSPER dataset. There are 64 Doppler
frequency bands and two guard cells are used at each side
of the test range cell. The number of false alarm Nfa is
constrained to 10. To improve the detection performance,
we limit the training data by applying the Innovation Power
Sorting (IPS) technique [45]. When J = 11, L = 22, and
P = 2, the detection maps for the parametric GLRT and JDL
are shown in Fig. 3. The results show that the parametric GLRT
can detect 102 targets while JDL can detect 25 targets.

2) MCARM Dataset: In this section, the MCARM dataset
obtained from a real-world multi-channel airborne experi-
ment, and contains clutter in various terrains including moun-
tains, rural, urban, and land/sea interface, is considered. The
MCARM data was collected from a BAC 1-11 airborne plat-
form operating at L-Band. The MCARM array has 16 columns
and each column consists of two four-element sub-arrays. Each
sub-array has its own output or is combined into a single
output per column with up to 24 outputs for the array. Since
the true joint space-time covariance matrix of the MCARM
dataset is unavailable, a power measure, called input SINR
(per-pulse, per-channel), is adopted and will be computed from
the data. It is defined as SINR = |α|2/σ2

d, where α is the
target amplitude and σ2

d denotes the variance (power) of each
element of the disturbance vector at each time instant. The
MCARM database, specifically acquisition rd050575, has been
used extensively to assess the performance of the parametric
GLRT approach. To test the detection performance potential,
an artificial target with an SINR of -30 dB is injected in the
range bin 295. The disturbance power σ2

d is estimated as a
five-bin average centered on the range bin in which the target
is placed. Model order values P = 1, 2, 3, 4 were evaluated for
each parametric test and the model with the best performance
was selected. The selection criterion is the difference between
the target peak value and the highest non-target peak value.
Diagonal loading of 40 dB for the adaptive matched filter
(AMF) detector [46] is applied. Fig. 4 shows the test statistics
for the three considered detectors. It is seen that the parametric
GLRT can detect the target with a gain of 23 dB even without
training (L = 0), while JDL has a gain of 18.5 dB with L = 8
training signals, but the AMF fails to declare a detection with
L = 8.
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Figure 4. The test statistics of detectors for the MCARM dataset with J = 4
spatial channels, K = 128 pulses, and no (L = 0) or limited (L = 8) limited
training data.

III. PARAMETRIC DETECTION FOR DISTRIBUTED MIMO
RADAR

Observing targets over wide angular sectors with distributed
MIMO radar offers great benefits for Doppler processing and
moving target detection (MTD) [24]. Compared with tradi-
tional monostatic or bistatic radar, distributed MIMO radar is
particularly useful when the targets are difficult to distinguish
from the background clutter by a single illumination path, i.e.,
targets with low radial velocities or blind speeds [47]. More-
over, the joint processing of the received signals in MIMO
radar provides further performance improvement compared to
multistatic radar, referring here to the case where each receiver
performs its own Doppler estimation.

Consider the detection of a moving target using a distributed
MIMO radar [24]–[26], [29]. Without loss of generality, as-
sume a moving target with a velocity v , (vx, vy) is in the
same 2-dimensional (2-D) plane of the transmit and receive
antenna elements of the distributed MIMO radar system. The
techniques discussed in the sequel can be easily extended
to the 3-D case [29]. The transmit and receive antennas are
assumed to be on stationary platforms. The relative geom-
etry of the setup is illustrated in Fig. 5. Let the target be
illuminated by M transmit antennas with illumination angles
θtm, m = 1, · · · ,M . The signals scattered by the target
are collected by N receive antennas placed at locations of
direction θrn, n = 1, · · · , N . Given the M transmitters and
N receivers, there are MN Tx-Rx paths, resulting in MN
different spatial looks of the resolution cell under test. To
exploit target spatial diversity for detection, the M transmit
waveforms are assumed to be orthogonal for ease of separation
at the receiver. The same approach as that used in standard
Doppler radars which employs pulsed transmission is used
here [40]. Each transmitter in the MIMO radar system sends
a succession of K periodic pulses, i.e., K repetitions of an
orthogonal waveform over a CPI. Each receiver employs a
bank of M matched filters corresponding to M orthogonal
waveforms. The matched filter output is sampled at the pulse
repetition interval (PRI) via slow-time sampling. A vector
xmn ∈ CK×1 contains K samples of the matched filter output
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Figure 5. Distributed MIMO radar configuration for moving target detection.

(within a CPI) at the n-th receiver matched to the transmitted
waveform from the m-th transmitter. The detection problem
is then to test the presence of the moving target in the cell of
interest using the observations {xmn}.

Specifically, the target detection problem involves selecting
between the following two hypotheses [29]:

H0 : xmn = dmn,

H1 : xmn = αmns(fmn) + dmn,

n = 1, · · · , N ;m = 1, · · · ,M,

(4)

where αmn denotes the unknown signal amplitude associ-
ated with the (m,n)-th Tx-Rx pair and dmn is the clutter
and noise components. With widely separated antennas, the
amplitude αmn varies significantly with aspect angle, due
to the azimuth-selective backscattering [24]. Thus, {αmn},
which are different for different Tx-Rx pairs, are modeled
as deterministic unknown parameters. In addition, dmn is the
disturbance signal that integrates the clutter and noise. Further,
s(fmn) is a K×1 steering vector with the k-th element given
by e−2π(k−1)fmn , where fmn denotes the normalized Doppler
frequency such that (cf. Fig. 5)

fmn =
Tr

λ
[vx(cos θtm + cos θrn) + vy(sin θtm + sin θrn)], (5)

where Tr denotes the PRI. The moving target is assumed to
be in the far field such that the Doppler shift with respect to
the antennas is constant within the CPI.

Due to the multistatic configuration inherent in distributed
MIMO radar, it is straightforward to consider the disturbance
signals from different Tx-Rx pairs as non-homogeneous [48],
[49]. In order to account for the non-homogenous disturbance,
a set of MN different AR processes can be employed to
model the disturbance signal seen by different Tx-Rx pairs.
These independent AR processes are capable of modeling
variations in both the clutter structure and power level across
different probing-observing angles in distributed MIMO radar
[29]. Specifically, the k-th slow-time sample of the disturbance
for the (m,n)-th Tx-Rx pair, i. e., dmn(k), is modeled as a

scalar AR process with model order Pmn:

dmn(k) = −
Pmn∑
p=1

amn(p)dmn(k − p) + εmn(k), (6)

where amn(p) denotes the p-th AR coefficient and εmn(k) ∼
CN (0, σ2

mn) is the zero-mean driving noise with variance
σ2
mn.
To test for the presence of a target in a resolution cell, a

parametric detection solution can be developed by using the
above AR model, e.g., a parametric detector that maximizes
the likelihood function under both hypotheses in (4) over
the unknown parameters including target amplitudes αmn,
velocities vx and vy , driving noise variance σ2

mn, and the AR
coefficients {amn(p)}Pmn

p=1 . Note that the MLE of the target
velocity requires a 2-D optimization that can be solved through
numerical approaches [25]. The other parameters can then
be obtained via least squares. Finally, the parametric GLRT
detector for MIMO radar, referred as MIMO-PGLRT, can be
obtained by substituting all the parameter estimates back into
the likelihood ratio. It can be shown that the detector performs
local adaptive subspace detection, non-coherent combining
using local decision variables, and a global threshold com-
parison, as shown in Fig. 6 [29]. Specifically, a test statistic is
computed at each sensor by first adaptively projecting the test
signal xmn into two distinct subspaces and then computing the
energy of both projected test signals. The aggregate statistic
which is obtained through a non-coherent combination of the
test statistic computed at each sensor is compared with the
global threshold. The two distinct subspaces are the orthogonal
complement of a regression data matrix formed using the
return signal within a CPI under hypothesis H1 and the
alternative hypothesis, respectively.

The MIMO-PGLRT detector does not require any training
data. For comparison, we also consider two conventional
covariance matrix based detectors, both depending on training.
The first detector is the sample covariance matrix (SCM)-based
detector [24]. This method requires L homogeneous training
signals for each transmit-receive pair to form a pairwise
disturbance covariance matrix

Ĉmn =
1

L

L∑
`=1

xmn,`x
H
mn,`, (7)

where xmn,` ∈ CK×1 denotes the `-th training signal for the
(m,n)-th Tx-Rx pair. The covariance matrix Ĉmn is used to
whiten the observation xmn prior to cross correlating it with
the Doppler steering vector s(fmn). To ensure that the sample
covariance matrix is full rank, L > K range training signals
are required for each transmit-receive pair. In general, L =
2K training signals are needed for an acceptable performance.
As such, the SCM detector requires at least 2KMN training
signals in total, which may be difficult to fulfill in a non-
homogeneous environment.

The second detector is the robust MIMO detector [26],
which employs a compound-Gaussian model for both the test
and training signals across different Tx-Rx pairs to address
non-homogeneous training. The detector uses a fixed-point
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Figure 6. Parametric detector for distributed MIMO radar.

Table I
PARAMETERS USED IN SIMULATIONS OF DISTRIBUTED MIMO RADAR

M N fc K Tr σ2
αmn

Pmn v
2 2 1 GHz 32 2 ms 1 3 108 km/h

estimate (FPE) of the covariance matrix based on the following
equation:

Ĉmn =
K

L

L∑
`=1

xmn,`x
H
mn,`

xHmn,`M̂
−1
mnxmn,`

, (8)

which can be solved by iterative approaches [26].
The parametric MIMO-PGLRT, the covariance matrix based

SCM, and the robust MIMO detector are compared with each
other. The receiver operating characteristic (ROC) curves for
the three detectors are shown in Fig. 7, where the parametric
MIMO-PGLRT uses no training (L = 0), while two training
sizes (L = 36 and L = 64) are considered for the SCM
and robust MIMO detectors. The results are obtained when
the disturbance signals are generated with different settings of
clutter power and scatterer root-mean-square (RMS) velocity
for different Tx-Rx pairs. This general clutter model [25], [48],
which has been widely used to model the clutter Doppler
characteristics and is not an AR process, is employed to
evaluate the performance of the MIMO-PGLRT with model
mismatch. The Parameters used in the simulation are listed in
Table I. The clutter-to-noise ratio is 30 dB, and the signal-
to-interference-plus-noise ratio (SINR) is 20 dB. The target
velocity is 108 km/h with the moving direction randomly and
uniformly chosen in the range [−180◦, 180◦] for each simula-
tion trial. The fluctuating target amplitudes αmn are generated
as complex Gaussian random variables with zero mean and
variance σ2

αmn
. There are two transmitters at 0◦ and 65◦

relative to the target and two receivers at −30◦ and 40◦. The
clutter power and RMS values of the scatterer velocities are,
respectively, selected as [1.5, 0.8, 2, 1] and [0.5, 1.5, 1.2, 0.8]
m/s for the four Tx-Rx pairs. Note that the AR coefficients
amn estimated for different Tx-Rx pairs are still different as
the disturbance is non-homogeneous across Tx-Rx pairs.

Fig. 7 indicates that the covariance matrix based detectors
benefit significantly from a larger training size. In particular,
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Figure 7. ROC curves for the MIMO-PGLRT detector, the SCM detector,
and the robust MIMO detector in clutter with 2×2 antennas, K = 32 pulses,
and L = 0, 36, 64 training data.

when L = 2K = 64, the robust MIMO detector outperforms
the MIMO-PGLRT with L = 0, while the gap between the
SCM and the MIMO-PGLRT is considerably smaller. The sim-
ulation results also demonstrate the advantage of the MIMO-
PGLRT detector, which does not use any training signal, over
the covariance matrix based detectors when the latter are
supplied with limited training signals (L = 36). Specifically,
the robust MIMO detector shows moderate performance loss
compared to the MIMO-PGLRT detector, while the SCM
detector fails to produce a detection. The advantage of the
MIMO-PGLRT detector stems from the set of scalar AR
models that take into account the non-homogeneous clutter
variations from cell to cell. It is noted that covariance matrix
based detectors often require L ≥ 2K homogeneous training
signals to reach good detection performance [12].

IV. PARAMETRIC DETECTION FOR PASSIVE RADAR

Passive radar exploits non-cooperative illuminators of op-
portunity (IOs) to detect and track targets of interest without
requiring a dedicated transmitter. Although passive radar has
the advantages of covertness and deployment flexibility, pas-
sive sensing is more challenging than its active counterpart
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Figure 8. Configuration of a passive multistatic radar system.

because the transmitted signal is generally unknown at the
receivers. Several research efforts have been spurred to address
the target detection problem in passive multistatic radar [32],
[33], [37].

Consider a multistatic passive radar system that consists of
N geographically dispersed stationary receivers and one non-
cooperative stationary transmitter located in a plane which also
contains a moving target [37]. The waveform x(t) transmitted
by the IO impinges on the target and terminates at the
receivers, forming a target signal with a bistatic delay of tn
and a Doppler frequency of fn at the n-th receiver. In addition
to the target echo, there is also a direct-path interference
from the IO to the n-th receiver, with a propagation delay
of dn. We assume that any direct-path propagation is treated
as interference. As a result, the system does not employ a
reference antenna pointing to the IO direction to collect a
reference IO signal. Fig. 8 provides an illustration of the setup.
The dashed lines represent the reflection from the target and
the solid lines are the transmission from the IO source. Since
the location of the IO is usually known at each receiver, the
direct-path induced delay dn can be compensated to the target-
path delay tn, which gives τn , tn− dn, where τn represents
the propagation delay difference between the target-path and
the direct-path at the n-th receiver. For simplicity, we assume
the system is a stationary passive radar system (radar receivers
are placed on stationary platforms), where the clutter has been
filtered out in a pre-filtering stage.

Given the above discussions, the delay-compensated signal
observed at the n-th receiver is given by

yn(t) = βnx(t) + αnx(t− τn)e2πfnt + ñn(t), (9)

where βn is the scaling coefficient which includes the antenna
attenuation and the channel propagation effects from the IO to
the n-th receiver, ñn(t) contains the clutter and noise at the n-
th channel, and αn is the scaling coefficient accounting for the
target reflectivity. Specifically, αn lumps the target radar cross-
section (RCS), the antenna gain, and channel propagation
effects from the IO to the target and then from the target to
the n-th receiver.

The IO waveform x(t) has a duration of Tt seconds, e.g.,
due to framed transmissions employed by the IO, in which
case Tt represents the frame duration. At the receiver end, the
observation window To is chosen such that To ≥ Tt + τmax,
where τmax denotes the maximum tolerated delay difference.
Let the transmitted waveform have a bandwidth of B. Then,
the received signal at each channel is sampled at frequency
fs ≥ 2(B + fmax), where fmax is the maximum Doppler
frequency of the target that is designed to be detectable by
the passive system. The K samples of the observed signal
are sequentially organized into an K × 1 vector with K =
bTo/Tsc, where Ts = 1/fs denotes the sampling interval. Let
yn ∈ CK×1 denote the sampled complex baseband signal
at the n-th receiver, the target detection problem is to select
between the following two hypotheses:

H0 : yn = βnx + nn,

H1 : yn = βnx + αnD(τn, fn)x + nn, n = 1, · · · , N,
(10)

where x ∈ CK×1 contains the discrete samples of x(t);
D(τn, fn) is the delay-Doppler operator that accounts for the
delay and Doppler shifts imparted to the IO signal as it prop-
agates to the n-th receiver along the target path; nn ∈ CK×1

is the noise vector. Note that when multiplied by D(τn, fn),
the signal x is first converted into the frequency domain and
then phase-shifted (in the frequency domain) due to the time
domain delay τn. Then, it converts the delay-shifted signal
back to the time domain and imposes a phase shift (in the
time domain) caused by the Doppler frequency fn.

The non-cooperative nature of passive sensing, i.e., the IO
waveform x is generally unknown, imposes an additional
challenge in solving the passive detection problem in (10),
when compared to its active counterpart. The IO waveform
can be treated as a deterministic unknown vector to develop
solutions, e.g., the energy detector (ED) and the generalized
canonical correlation (GCC) detector [32]. However, the num-
ber of unknowns to be estimated in such detectors grows with
the number of observations. Another method to avoid such
a disadvantage is to model the IO waveform as an element-
correlated stochastic process with unknown temporal correla-
tion. Specifically, an AR model is used to fit the stochastic
IO waveform where the temporal correlation is parameterized
by the AR coefficients and the driving noise variance. A P -th
order AR process is expressed as

x(k) = −
P∑
p=1

a(p)x(k − p) + w(k), k = 1, · · · , K̄, (11)

where K̄ is the number of transmitted IO signal samples, a(p)
is the p-th AR coefficient with a = [a(1), · · · , a(P )]T , and
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Figure 9. Parametric detector for passive multistatic radar.

w(k) ∼ CN (0, σ2) is the zero-mean driving noise. Note that
K̄ ≤ K, since the observation window To is selected to be no
less than the time duration Tt of the transmitted signal with
delay. Given (11), x is zero-mean Gaussian distributed with
covariance matrix Cx(a, σ2), which is Hermitian, Toeplitz,
and thus can be fully determined by its first column, i.e.,
the auto-correlation function (ACF) sequence. In addition,
the relationship between the AR parameters {a(p)}Pp=1 and
σ2, and the ACF sequence is described by the Yule-Walker
equations [51]. Note that the AR model is introduced to model
the IO waveform, which brings the advantage of capturing the
waveform correlation and exploiting it to improve detection
performance.

The AR model in (11) can be used to develop solutions for
the passive detection problem in (10), i.e., a parametric detec-
tor. The ML estimations in the development of the detector
turn out to be highly non-linear and do not have closed-form
solutions [38]. An expectation-maximization (EM) procedure
can be formulated to solve the estimation problem, and the
estimates are subsequently used to derive a parametric GLRT
detector. The EM algorithm alternatively iterates an expec-
tation step and a maximization step until a convergence is
achieved. Specifically, it first needs to determine the “com-
plete” data as z = [xT ,yT1 , · · · ,yTN ]T which includes both the
unknown IO waveform and the observations from N receivers.
After specifying the “complete” data, the EM algorithm starts
with an initial guess of the unknown parameters {αn}Nn=1,
{βn}Nn=1, and AR parameters {a(p)}Pp=1 and σ2 under H1;
the unknown parameters under H0 are the same as those of
H1 except for the target scaling coefficients {αn}Nn=1. In fact,
we only need to initialize the correlation matrix Cx(a, σ2)
of the IO waveform instead of the AR parameters directly.
A simple way is to initialize the covariance matrix to an
identity matrix, which implies that the waveform correlation
is ignored for the start of the EM algorithm. During each
iteration of the EM algorithm, an expectation step (E-step)
is followed by a maximization step (M-step) [37], [38]. In
particular, the E-step is intended to find the expectation of
the log-likelihood function (LLF) of the “complete” data z,
which is taken with respect to the signal waveform x and
conditioned on observations {yn}Nn=1 given the estimates of
the unknown parameters from the last iteration. Then, the

M-step is intended to maximize the expectation of the LLF
with respect to the unknown parameters. The maximization is
carried out sequentially with respect to each parameter group,
including the scaling coefficients, the AR parameters, and
the channel noise variance. When maximizing with respect
to a specific group, the other parameters are fixed as the
results from the last iteration or from the latest updates in
this iteration. The iteration cycle is repeated until the algorithm
converges, e.g., the difference of the estimates of the unknown
parameters from the recent two iterations are smaller than
a certain pre-defined tolerance level. Once the EM iteration
converges, the final estimates of the unknown parameters can
be substituted back into the likelihood ratio to compute the test
statistic. The flowchart of the parametric detector for passive
multistatistic radar is shown in Fig. 9.

Since the detector is developed based on the assumption
that the IO signal follows a scalar AR model, a mismatch may
exist between the assumption and the exact IO signal. Fig. 10
reproduced here is for the case of a frequency modulation
(FM) signal that is employed as the IO waveform to test the
performance of the detectors. It illustrates the gains provided
by the parametric GLRT (curve labeled “pGLRT”), which
exploits the waveform correlation by modeling the IO signal
as an AR process, over conventional detectors. For comparison
purposes, three conventional detectors are also included in the
analysis. The “clairvoyant MF” curve comes from the matched
filtering (MF) detector assuming that the IO waveform is
perfectly known, which serves as an upper bound for all
passive detectors considered in this section. The “mGCC”
stands for the modified version of the original GCC detector,
which was developed in the absence of direct path interference
(DPI) [32]. The modification is carried out by adding a DPI
cancellation step which subtracts the estimated DPI from the
original observation to obtain the modified observation and
replacing the original observation in the existing detector with
the modified one (see [37, Section 4.1] for details). Finally, the
“sGLRT” represents the simple GLRT where the covariance
matrix Cx is replaced by an identity matrix, i.e., the correlation
of the IO waveform is completely ignored. It is observed that
the performance of the pGLRT detector is close to the upper
bound provided by the clairvoyant MF and the sGLRT detector
performs 2 dB worse than the pGLRT detector in our setup.
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Figure 10. Detection performance of the parametric GLRT versus the
target SNR using an FM waveform as the IO with N = 3 receivers.
In the simulation, the AR model order is estimated as P = 1 based
on the generalized Akaike information criterion (AIC) [50]. The target
delays are [2.2, 3.6, 4.9]Ts for the three paths, the target Doppler are
[3.1, 0.8, −3.6] fs

K
, the SNR of the direct signal is 0 dB, and the probability

of false alarm is set to 10−2.

V. CONCLUSIONS

In this survey article, we have shown that AR processes can
be employed to model the clutter and unknown source signal
to reduce the requirement of training data for effective target
detection. There are some subtle differences in applying para-
metric modeling in solving different radar detection problems.
Specifically, in phased-array radar, the disturbance is modeled
as multi-channel AR process. For distributed MIMO radar, a
set of independent scalar AR processes are used to model the
clutter observed at different Tx-Rx pairs, which are capable
of capturing the variations in both clutter structure and power
level across different probing-observing angles. Finally, for
passive radar, the unknown IO signal is treated as an element-
correlated stochastic process, which can be represented by
an AR model. In all cases, we have demonstrated that AR
modeling is able to bring significant performance improvement
over conventional non-parametric methods, in particular when
training data is limited.
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