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Robust Motion-Planning for Uncertain Systems with Disturbances using
the Invariant-Set Motion-Planner

Claus Danielson, Karl Berntorp, Avishai Weiss, Stefano Di Cairano

Abstract—The invariant-set motion-planner uses a collection of safe-
sets to find a collision-free path through an obstacle filled environ-
ment [1]–[4]. This paper extends the invariant-set motion-planner to
systems with persistently varying disturbances and parametric model
uncertainty. This is accomplished by replacing the previously used
positive invariant sets with robust positive invariant sets. Since the model
uncertainty obfuscates the relationship between the invariant-sets in the
state-space, and the references and obstacles in the output-space, we
reformulate the dynamics in velocity form so that the system output
appears directly in the modified system state. Since the persistently
varying disturbances will prevent the closed-loop system from converging
to the desired reference, we introduce a new robust connection rule where
references are connected when the invariant-set of one reference contains
the minimal volume robust invariant-set of another. In addition, we bound
the time required to transition between invariant-sets to ensure safety
when the obstacles are moving. By parameterizing the invariant-sets using
a pre-computed input-to-state Lyapunov function, we reduce the real-time
computational complexity of our motion-planner. The robust invariant-
set motion-planner is demonstrated for an automated highway driving
case study.

I. INTRODUCTION

Motion planning is the problem of generating a dynamically
feasible collision-free trajectory between an initial state and a goal
state in a generally nonconvex environment. Motion-planning is a
fundamental problem in a variety of fields, for instance autonomous
driving [5], robotics [6], manufacturing [7], and space exploration [1].
The presence of obstacles in the environment, and hence the noncon-
vexity, renders this problem computationally difficult [8]. Fortunately,
many heuristic motion-planning algorithms have been developed to
simplify the problem.

Often motion-planning is split into path-planning and path-
tracking. One popular class of path-planners is sampling-based al-
gorithms. Rapidly-exploring random trees (RRT) abstract the path-
planning problem as a graph search, where the graph nodes are points
sampled from the obstacle-free region and the graph edges indicate
collision-free geometric paths connecting these nodes [9]–[11]. Kino-
dynamic RRT [9], [10] and closed-loop RRT [5] are variants of RRT
that construct the search graph edges by sampling control inputs and
references, respectively, and then simulating the resulting motion of
the system over a finite-time horizon. By construction, this produces
dynamically feasible trajectories provided that the model used in the
simulations is correct and there are no disturbances. The works [12]–
[14] consider sampling-based motion-planning under uncertainty.

Recently, set-based path-planning algorithms have been growing
in popularity. Like sampling-based algorithms, set-based algorithms
abstract the path-planning problem as a graph search. However, set-
based algorithms sample subsets of the state-space or output-space,
rather than just points. For the invariant-set motion-planners [1]–
[4], the nodes of the search graph index sampled equilibrium states
as well as a surrounding obstacle-free positive-invariant subset of
the state-space, in which the closed-loop system is guaranteed to
avoid collisions, i.e., a safe-set. The edges indicate that it is possible
to enter another safe-set without leaving the current safe-set. A
similar concept is reachable-set based verification methods [15]–
[17] in which an edge of the search graph indicates that the target

node lies in an obstacle-free reachable-set of the current node. LQR-
trees [18], [19] are another example of set-based motion-planners.
In [19] an edge is added to the search graph if a two-point boundary
value problem can be solved to find a trajectory connecting a pair
of nodes and a sum-of-squares program can be solved to find a
full-dimensional invariant set around this trajectory. Model predictive
control has also been used for motion-planning [20], [21], but has
high computational cost due to the need to solve a nonconvex
optimization problem.

One of the advantages of set-based motion-planners is their robust-
ness. By sampling sets instead of points, set-based motion-planners
have a natural buffer that can absorb tracking errors. Furthermore, by
incorporating the controller into the motion-planning process, these
algorithms inherit the innate robustness provided by feedback. The
objective of this paper is to make this implicit robustness explicit
for one particular algorithm: the invariant-set motion-planner. This
paper modifies the invariant-set motion-planner for systems with
parametric model uncertainty and rate-bounded disturbances. This
is accomplished by replacing the positive invariant (PI) sets with
robust positive invariant (RPI) sets that are explicitly designed to
guarantee collision avoidance in the presences of uncertainty and
disturbances. Model uncertainty is a reoccurring complication since
it makes it impossible to precisely relate the system’s inputs, outputs,
and states. For instances, it is impossible to known which state
the system will reach for a given sequence of inputs. Furthermore,
for a sampled output reference, it is impossible to compute the
corresponding equilibrium state where the robust positive invariant
(RPI) should be centered. Likewise, the model uncertainty makes
it difficult to determine whether an RPI subset of the state-space
collides with an obstacle in the output space. All of these issues
are addressed by reformulating the dynamics in the velocity form
so that the system output appears directly in the velocity state due
to the presence of integral-action in the closed-loop system. Thus,
the relationship between velocity-states and outputs is unambiguous,
despite model uncertainty.

The conditions for connecting safe-sets must also be modified to
account for model uncertainty and disturbances. Here, disturbances
are the main issue since they prevent the closed-loop system from
converging to an equilibrium point. Thus, we cannot connect two
safe sets when the equilibrium of the first is included in the second
invariant set. Instead, we create connections when the entire minimal
volume ellipsoidal RPI set associated with a reference is contained
inside the safe-set associated with another reference. In practice,
this connection rule only requires tightening the previously used
connection radius [1]. We show that the computational complexity
of forming edges is quadratic in the dimension of the planning
space and independent of the dimension of the state-space. Thus,
our algorithm has low computational complexity even for systems
with high-dimensional dynamics.

This paper is organized as follows. In Section II we define
the motion-planning problem and briefly describe the invariant-set
motion-planner which we will robustify to handle uncertainty. In
Section III we describe regions of the state-space for which it is



possible to safely track a reference without colliding with an obstacle
and we provide a method for safely connecting these safe-sets. In
Section IV we demonstrate our robust motion-planning algorithm for
highway driving scenario.

Notation and Definitions: A set O is PI for the autonomous system
ẋ = f(x) if x(0) ∈ O implies that x(t) ∈ O for all t ∈ R+. If
V (x) is a global Lyapunov function for the stable autonomous system
ẋ= f(x), then any level-set O= {x : V (x) ≤ l} is a PI set since
V̇ ≤ 0. A set O is RPI for the disturbed system ẋ = f(x,w) if
x(0) ∈O implies that x(t) ∈O for all w(t) ∈W and t ∈R+. The
notation x(t) → x̄ is shorthand for limt→∞ x(t) = x̄. For P � 0
we define the weighted norm ‖x‖P =

√
xᵀPx. The interior of a set

Y is denoted by int(Y). The image of a set X through a matrix A
is defined as AX = {Ax : x ∈ X}. The Minkowski sum ⊕ of sets
X and Y is defined as X ⊕ Y={x+ y : x∈X , y∈Y}. A directed
graph G= (I, E) is a set of nodes I together with a set of ordered
pairs E ⊆ I × I called edges. Nodes i, j ∈ I are called adjacent
if (i, j) ∈ E is an edge. A path is a sequence of adjacent vertices.
A graph search is an algorithm for finding a path through a graph.
The tensor product G = G1×G2 of two graphs G1 = (I1, E1) and
G2 = (I2, E2) is the graph G = (I, E) with nodes I = I1 × I2 and
edges ((i1, i2), (j1, j2))∈E for all (i1, j1)∈E1 and (i2, j2)∈E2.

II. ROBUST MOTION-PLANNING PROBLEM

In this section, we describe the invariant-set motion-planner used
to solve motion-planning problems.

A. Motion-Planning Problem

The objective of the motion-planning problem is to plan the motion
y(t) = C(ξ)x(t) ∈ Rny of a dynamic system from an initial state
x(0) ∈ Rnx to a target output y∞ ∈ Rny through an obstacle
filled environment Ȳ ⊆ Rny where the physical meaning of y(t)
depends on the application e.g. the position of the ego-vehicle in
the autonomous driving case-study in Section IV. The obstacle-free
region Y(t) ⊆ Ȳ is modeled by the set-difference of a nominal
constraint set Ȳ ⊆ Rny and a collection

{
Bj(t)

}
j∈J (t)

of obstacle
sets Bj(t) ⊂ Rny

Y(t)= Ȳ \
(⋃

j∈J (t)Bj(t)
)
. (1)

We assume that the future distribution of obstacles {Bj(tk)}j∈J (t0)

is known at regular time intervals tk = t0 +k∆τ over a horizon
k = 0, . . . , N . Furthermore, we assume that the obstacle sets
Bj(tk) account for the spatial extents of both the obstacle and the
system [22] over the entire interval [tk, tk+1), i.e., Bj(t)=Bj(tk) for
t∈ [tk, tk+1). Note that the number |J (t)| of obstacles is potentially
time-varying.

Without loss of generality, we can assume that the obstacle sets
Bj(tk) are convex, since any compact set can be covered by a
finite union of convex sets [9]. Thus, a nonconvex obstacle can
be replaced by a finite collection of convex obstacles. For simplic-
ity, we also assume that the obstacles sets Bj(tk) are polyhedral
Bj(tk) =

{
y : hjl(tk)y ≤ kjl(tk), l = 1, . . . , `

}
since any convex

set can be approximated with arbitrary precision by a polyhedral
set [23]. Indeed, in practice the obstacle sets Bj(tk) are typically
given by a bounding-box or convex-hull of a point-cloud, which are
both special-cases of polyhedra.

The motion y(t) is produced by providing a piecewise constant
r(t) = r∞k for t ∈ [tk, tk+1) reference trajectory r(t) a closed-loop

dynamic system, modeled by the following uncertain linear state-
space model

ẋ(t) = A(ξ)x(t) +B(ξ)r(t) +Bw(ξ)w(t) (2a)

y(t) = C(ξ)x(t) (2b)

where x(t)∈Rnx is the state and w(t)∈Rnw are disturbances. For
simplicity, we update the reference r(t) at the time epochs tk=k∆τ
when the obstacle sets Bj(tk) are predicted. The uncertain state-
space matrices (A(ξ), B(ξ), Bw(ξ), C(ξ)) depend on a constant, but
unknown parameter ξ∈Ξ which is contained in the bounded set Ξ.
We assume that (2) is a uniform minimal realization of the closed-
loop dynamics, i.e., the pair

(
A(ξ), B(ξ)

)
is controllable and the pair(

A(ξ), C(ξ)
)

is observable for all ξ∈Ξ.
The dynamics (2) model a physical system in closed-loop with a

well-designed controller. Thus, we can assume that the output y(t)
of the closed-loop system (2) asymptotically tracks y(t) → r∞

constant references r(t)=r∞ in the presence of constant disturbances
w(t)=w∞ for all realizations ξ∈Ξ of the model uncertainty. Thus,
it is reasonable to assume that the closed-loop system (2) includes
integral-action, i.e., the state x(t) of the system (2) includes the
integrated tracking error xI(t) =

∫ t
0
y(τ) − r(τ)dτ . Under these

conditions, the closed-loop dynamics (2) can be realized as the
following structured state-space model[

ẋP

ẋI

]
=

[
A11(ξ) A12(ξ)
Cp(ξ) 0

]
︸ ︷︷ ︸

A(ξ)

[
xP

xI

]
+

[
Bp(ξ)
−I

]
︸ ︷︷ ︸
B(ξ)

r+

[
Bpw(ξ)

0

]
︸ ︷︷ ︸
Bw(ξ)

w (3)

where xI(t)∈Rny is the integrated tracking error and xP(t)∈Rnx−ny

is the remainder state, which includes the plant states and potentially
other states of a dynamic controller. If the closed-loop system (2)
does not include integral-action, then the dynamics can be augmented
with integrator dynamics to obtain the structured system (3) with
A12(ξ)=0.

The disturbances w(t) are modeled as time-varying, but rate
bounded w(t) ∈ W =

{
w(t) : ‖ẇ(t)‖2W ≤ 1

}
where W �

0 ∈ Rnw×nw . This model is motivated by the fact that a well
designed closed-loop system (3) will include filters that ameliorate
noisy measurements. Furthermore, constant disturbances w(t)=w∞

are a trivial hinderance since they will be rejected by the integral-
action in the asymptotically stable closed-loop system (3).

The motion planning problem is summarized below.

Problem 1 (Motion-Planning). Compute a piecewise constant refer-
ence r(t)=r∞k for t∈ [tk, tk+1) such that the resulting motion y(t)
of the closed-loop system (2) avoids obstacles y(t) ∈ Y(t) for all
t∈R+ and reaches the target output y(t)→ y∞.

Problem 1 is challenging since the obstacle-free region (1) is
nonconvex and the differential constraints (2) can result in complex
motion y(t), i.e., y(t) will not be composed of simple line-segments.
More importantly for this paper, we cannot predict the exact trajectory
y(t) that the system will follow between waypoints r∞k due to the
persistently varying disturbances w(t) ∈ W and model uncertainty
ξ∈Ξ. Thus, it is difficult to guarantee collision-free motion. This is
the main issue that we address in this paper.

B. Invariant-Set Motion-Planning Algorithm

One method for constructing a piecewise constant reference r(t)
that produces collision-free trajectory y(t) ∈ Y(t) is the invariant-
set motion-planner described by Algorithm 1 [1]–[4]. Like several
other motion-planning algorithms, the invariant-set motion-planner



abstracts motion-planning as a search for a path through a graph.
The nodes i ∈ I of this graph G = (I, E) index reference outputs
r∞i ∈ int(Y) sampled from the interior int(Y) of the obstacle-free
region (1) which are tracked by the closed-loop system (2). The
references r∞i can be sampled from the obstacle-free region (1) using
a variety of methods [22], which are outside the scope of this paper.

The defining feature of the invariant-set motion-planner is that
knowledge of the closed-loop system (2) is incorporated into the
graph G using the system’s invariant sets Oi ⊆ Rnx . Associated
with each sampled reference output r∞i is an obstacle-free PI set Oi.
Since the set Oi is PI, we know that the closed-loop dynamics (2)
will evolve inside this set,, i.e., if x(0) ∈ Oi and r(t) = r∞i then
x(t)∈Oi for all t ∈ R+. Furthermore, if the invariant set Oi ⊆ Rnx

is obstacle-free C(ξ)Oi ⊆ Y(t) for all ξ ∈ Ξ, then the motion
y(t) = C(ξ)x(t) is safe y(t) ∈ C(ξ)Oi ⊆ Y(t) even though
the closed-loop system (2) does not perfectly track the reference
y(t) 6= r(t). An edge (i, j) ∈ E of the search graph G = (I, E)
indicates that the system (2) state x(t) will enter the safe-set Oj of
the j-th reference r∞j while tracking the i-th reference r∞i without
leaving the current safe-set Oi. Thus, the invariant-set motion-planner
avoids obstacles by moving the system through a series of safe-sets
Oi.

Algorithm 1 Motion-Planning Algorithm
1: Find path σ(0), . . . , σ(N) ∈ I through the search graph G =

(I, E) where x(t0)∈Oσ(0)
2: for each time tk for k=0, . . . , N do
3: r(t)=r∞σ(k)
4: end for

This paper addresses two main issues. First, finding regions Oi ⊆
Rnx of the state-space where it is safe C(ξ)Oi ⊂ Y(t) to track the
i-th reference r∞i ∈C(ξ)Oi despite model uncertainty ξ∈Ξ. Second,
connecting (i, j) ∈ E safe-sets Oi and Oj in the search graph G =
(I, E) when the system does not necessarily converge y(t) 6→ r∞i to
the desired reference r∞i due to disturbances w(t)∈W .

III. ROBUST MOTION-PLANNER DESIGN

In this section, we describe a method for finding regionsOi ⊆ Rnx

where it is safe to track the i-th reference r∞i and provide a method
for safely connecting (i, j)∈E safe-sets Oi and Oj .

First, we provide a method for quantifying the robustness of the
closed-loop system (2) to model uncertainty ξ∈Ξ and disturbances
w(t)∈W , which will guide the construction of the safe sets Oi ⊆
Rnx and the search graph G=(I, E). The robustness of the closed-
loop system (2) is quantified by solving

max
α,X

log detX (4a)

s.t.

[
XA(ξ)ᵀ+A(ξ)X+αX Bw(ξ)

Bw(ξ)ᵀ −αW

]
� 0 ∀ξ∈Ξ (4b)

where α > 0 ∈ R and X = P−1 � 0 ∈ Rnx are the decision
variables. Problem (4) is nonconvex, but it can be efficiently solved
by alternatively finding X � 0 and α∈ (0, ᾱ), using a semidefinite
program and line-search, respectively. Methods for formulating the
matrix inequality (4b) for different models of parametric uncertainty
ξ ∈ Ξ can be found in [24, Ch.6]. For example, for systems with
polyhedral uncertainty A(ξ) =

∑`
i=1 ξiAi with

∑`
i=1 ξi = 1 and

ξ ≥ 0 the matrix inequality (4b) must be satisfied for each vertex
Ai.

Problem (4) produces a quadratic input-to-state Lyapunov function
V (x)=xᵀPx that is common to all realizations ξ∈Ξ of the closed-
loop system (2) dynamics. The common Lyapunov function allows
us to replace the uncertainty of the system state-space matrices (2)
with the certainty of the Lyapunov matrix P ∈ Rnx×nx . The
asymptotic stability of the closed-loop system (2) does not guarantee
that the optimization problem (4) is feasible. However, if the closed-
loop system (2) is quadratically stable (i.e. ∃X � 0 such that
XA(ξ) +A(ξ)ᵀX ≺ 0 ∀ξ∈Ξ) then the optimization problem (4) is
feasible [25]. The cost (4a) minimizes the volume of the level-sets
of the input-to-state Lyapunov function V (x)=xᵀPx [24].

Note that the optimization problem (4) only depends on the state-
space parameters

(
A(ξ), Bw(ξ)

)
of the closed-loop dynamics (2),

which are time-invariant, and not on the time-varying environ-
ment (1). Thus, the robustness analysis (4) can be conducted offline
and will not adversely affect the online complexity of the motion-
planner.

In terms of the integral-action state-space realization (3), the
Lyapunov matrix P �0 obtained from (4) can be partitioned as

P =
[
Pxx Pxy

Pyx Pyy

]
� 0 (5)

where the partition Pyy∈Rny×ny corresponds to integrated tracking
error xI(t)∈Rny and the partition Pxx∈Rnx−ny×nx−ny corresponds
remainder xP(t)∈Rnx−ny of the state x(t). The partitioning (5) of
the Lyapunov matrix P is important for determining when a set Oi
is safe and for safely connecting (i, j)∈E references r∞i and r∞j .

A. Robust Safe Sets

In this section, we provide a method for finding regions Oi ⊆
Rnx of the state-space Rnx in which the closed-loop system (3)
can safely track the i-th reference r∞i without colliding with any
obstacles Bj(t) for j∈J . Finding the largest safe-set Oi ⊆ Rnx is
a nonconvex problem since the obstacle-free region (1) is generally
nonconvex. Thus, we focus on finding a computationally tractable,
rather than optimal, method for computing the safe-sets Oi. This
includes restricting the safe-sets Oi to ellipsoidal sets.

Previously [1]–[4], the safe-sets Oi were obstacle-free ellipsoidal
PI sets, centered at an equilibrium state x∞i ∈Rnx corresponding to
the reference r∞i ∈Rny where[

A(ξ)
C(ξ)

]
x∞i =

[
−Bw(ξ)w(t)

r∞i

]
(6)

for a constant disturbance w(t) ≈ w̄. Unfortunately, we cannot
solve (6) for an equilibrium state x∞i (ξ, w) corresponding to the
reference r∞i since it depends on the unknown parameter ξ ∈ Ξ
and disturbance w(t)∈W . Furthermore, even if ξ∈Ξ and w(t)∈W
were estimated online, the equilibrium (6) must be recomputed online
for each new reference r∞i ∈ int(Y(t)) sampled for the time-
varying obstacle-free region (1). This requires a matrix inversion
or factorization, which could prevent real-time computation. To
overcome this issue, we reformulate the closed-loop dynamics (3)
in velocity-form [26]

d

dt

[
ẋP(t)
y(t)

]
=

[
A11(ξ) A12(ξ)
C(ξ) 0

]
︸ ︷︷ ︸

A(ξ)

[
ẋP(t)
y(t)

]
︸ ︷︷ ︸
ẋ(t)

+

[
B̂pw(ξ)

0

]
︸ ︷︷ ︸
Bw(ξ)

ẇ(t) (7)

where ẏ(t)= ė(t)−ṙ(t) and ṙ(t)=0 for almost all t∈R+ since the
reference r(t)=r∞σ(k) is piecewise constant on the planning intervals
[tk, tk+1). The velocity-dynamics (7) have two main advantages; the
equilibrium states ẋ∞i =

[ 0
r∞i

]
corresponding to a reference r∞i do

not depend on the model uncertainty ξ∈Ξ or disturbances w(t)∈W



and there is no uncertainty in the output matrix [0 Iny ] that relates
the system (3) state ẋ(t)=

[
xP(t)
y(t)

]
to the output y(t).

The following proposition uses the input-to-state Lyapunov ma-
trix (5) to characterize a family of RPI sets for the velocity-
dynamics (7).

Proposition 1. The set Oi= ẋ∞i +ρiO is an RPI set of the system (7)
for all rate-bounded disturbances ‖ẇ‖2W ≤ 1 and model uncertainty
ξ∈Ξ if ρi ≥ 1 where

O=

{[
ẋP

y

]
:

∥∥∥∥[ẋP

y

]∥∥∥∥2
P

≤ 1

}
(8)

is the minimal volume ellipsoidal RPI set centered at the origin x∞=
0 and ẋ∞i =

[ 0
r∞i

]
is the equilibrium state-velocity associated with

the reference r∞i ∈Rny .

Proof. Pre- and post-multiplying (4) by [ Pẋẇ ] shows that the vector-
field f(ẋ, ẇ)=Aẋ+Bwẇ on the boundary {ẋ : ‖ẋ‖2P =ρ2} of the
set Oi=ρiO satisfies

f(ẋ, ẇ)ᵀ
(
∂‖ẋ‖2P
∂x

)
+
(
∂‖ẋ‖2P
∂x

)ᵀ
f(ẋ, ẇ) = (9)

=
(
A(ξ)ẋ+Bw(ξ)ẇ

)ᵀ
P ẋ+ ẋᵀP

(
A(ξ)ẋ+Bw(ξ)ẇ

)
≤ αẇᵀWẇ − αẋᵀP ẋ ≤ −α(ρ2−1) ≤ 0

for α > 0 where ‖ẇ‖2W ≤ 1 and ẋᵀP ẋ = ρ2. Since ρ ≥ 1, the
vector-field prevents the state ẋ from leaving the set Oi. Thus, if if
ρ ≥ 1 then the set (8) is RPI for the system (7) for all ξ ∈ Ξ and
w(t)∈W .

According to Proposition 1, the state ẋ(t) = [ẋP(t)
ᵀ y(t)ᵀ]ᵀ of

the dynamics (7) will remain inside the set (8). Thus, the invariant
set (8) bounds the motion y(t) of the original closed-loop system (3)
since y(t) is a component of the state of the velocity-dynamics (7)
due to presence of integral-action. If the Lyapunov matrix (5) was
hypothetically block-diagonal, then for states ẋ(t) inside the RPI

set (8) the resulting motion y(t) of the system (2) remains in a
neighborhood ‖y(t)− r∞i ‖Pyy ≤ ρi of the reference r∞i and the
state-velocity ẋP(t) is low ‖ẋP(t)‖ ≤ ρi. The cross-term Pxy in
the Lyapunov matrix (5) allows the tracking-error y(t)− r∞i to
be larger provided that the state-velocity ẋP(t) is in a direction
ẋP(t)

ᵀPxy(y(t)−r∞i ) < 0 that decreases the tracking error y(t)−r∞i .
The full state x(t)=

∫ t
0
ẋ(τ)dτ of the original system (2) is bounded

since it is observable. Any feasible solution of the optimization
problem (4) provides an RPI set (8), while the optimal solution
provides the minimal volume ellipsoidal RPI [24].

Proposition 1 provides a lower-bound ρi ≥ 1 on the radius ρi of the
neighborhoods Oi of the equilibrium state ẋ∞i =

[ 0
r∞i

]
in which the

system (7) will remain given the uncertainty about the plant dynamics
ξ∈Ξ and the presence of disturbances w(t)∈W . Next, we provide
a condition on the reference r∞i that ensures that the set Oi is safe,
i.e., [0 Iny ]Oi ∩ Bj(t) =∅ during a planning interval t∈ [tk, tk+1)
where [0 Iny ] is the output matrix of the velocity dynamics (7).

Theorem 1. The set Oi= ẋ∞i +ρiO will not intersect [0 Iny ]Oi ∩
Bj(t) = ∅ the obstacle Bj(t) at time t ∈ R+ if and only if r∞i 6∈
Bj(t)⊕ ρiS where S={y∈Rny : yᵀS−1y ≤ 1} and

S−1 =Pyy−PyxP−1
xx Pxy (10)

is the Schur complement of the Lyapunov matrix (5) obtained from
robustness analysis (4).

Proof. First, we prove the if portion of Theorem 1. Suppose there
exists x∈Rnx and y∈Rny such that y+r∞i ∈Bj(t) and [ xy ]∈ρiO.

Then, using Schur complements we can show y ∈ ρiS. Likewise,
−y∈ρiS since all ellipsoidal sets are centrally symmetric S=−S.
Thus,

r∞i ∈Bj(t)⊕ ρiS=
{
y1 + y2 : y1∈Bj(t), y2∈ρiS

}
where y1 =y+ r∞i ∈Bj(t) and y2 =−y∈ρS. Summarizing: if there
exists y′=y+ r∞i ∈ [0 Iny ]Oi ∩Bj(t), then r∞i ∈Bj(t)⊕ ρiS. The
contrapositive of that statement is: if r∞i 6∈ Bj(t)⊕ ρiS, then there
does not exist y′∈Bj(t) ∩ [0 Iny ]Oi, i.e., Bj(t) ∩ [0 Iny ]Oi=∅.

Next, we prove the only if portion of Theorem 1. Suppose
r∞i ∈ Bj(t) ⊕ ρiS. Then, there exists y ∈ Bj(t) such that
y− r∞i ∈ ρiS by definition of the Minkowski sum Bj(t) ⊕ ρiS.
Define x=−P−1

xx Pxy(y−r∞i ). Then,[
x

y−r∞i

]ᵀ [
Pxx Pxy
Pyx Pyy

] [
x

y−r∞i

]
=

=(y − r∞i )ᵀ (Pyy−PyxP−1
xx Pxy)︸ ︷︷ ︸

S−1

(y − r∞i ) ≤ ρ2i

where (y− r∞i )ᵀS−1(y− r∞i )ᵀ ≤ ρ2i since y−r∞i ∈ρiS. Thus, y∈
[0 Iny ]Oi since

[ x
y−r∞i

]
∈ρiO. Therefore, y∈Bj(t) ∩ [0 Iny ]Oi 6=

∅.

Theorem 1 uses the robustness (4) of the closed-loop system (3)
to determine whether an invariant-set Oi is obstacle-free [0, I]Oi ∩
Bj(t) = ∅. Since the obstacle-sets are piecewise constant Bj(t) =
Bj(tk) for t∈ [tk, tk+1), Theorem 1 means that the invariant-set Oi
is obstacle-free and therefore safe over the time interval [tk, tk+1).
Theorem 1 uses the Schur complement (10) rather than the output
component Pyy of the Lyapunov matrix (5). This more restrictive
condition S−1 � P−1

yy ensures, not only that the system is initially
outside the obstacle y(tk) 6∈ Bj(tk), but also that the state-velocity
ẋP(t) is small enough so that the dynamics (7) will prevent the output
y(t) from colliding with an obstacle y(t) 6∈ Bj(t) = Bj(tk) in the
future t∈ [tk, tk+1).

Theorem 1 is applicable to any class of obstacle-sets Bj(t).
For the polyhedral obstacle-sets Bj(t) considered in this paper, the
Minkowski sum Bj(t)⊕ ρiS in Theorem 1 is troublesome for three
reasons. First, computing the Minkowski sum of polyhedra described
by their half-spaces is known to be computationally expensive, in
general. Second, the Minkowski sum of ellipsoidal sets is not nec-
essarily ellipsoidal. And third, the Minkowski sum of an ellipsoidal
set and a polyhedron is neither an ellipsoid nor a polyhedron. The
following corollary provides a polyhedral outer-approximation of the
Minkowski sum Bj(t) ⊕ ρiS that is both tight and inexpensive to
compute.

Corollary 1. Let Bj(t) =
{
y : hjl(t)

ᵀy ≤ kjl, l= 1, . . . , `
}

. Then
Bj(t)⊕ ρiS ⊆ B̄j(t) where

B̄j(t) =
{
y : hjl(t)

ᵀy ≤ kjl+ρi‖hjl‖S , l=1, . . . , `
}

(11)

and S�0 is the inverse of the Schur complement (10) of (5) obtained
by solving (4).

Proof. For notational simplicity, we will drop the indices i, j and
time t from ρi and Bj(t).

The set B=
⋂`
l=1Hl is the finite `<∞ intersection of half-spaces

Hl={y : hᵀ
l y ≤ kl}. Thus,

B ⊕ ρS =
⋃
y∈ρS

⋂`
l=1Hl + y

⊆
⋂`
l=1

⋃
y∈ρSHl + y =

⋂`
l=1Hl ⊕ ρS



by the properties of unions and intersections. Therefore, we can outer-
approximate the Minkowski sum B⊕ρS by the finite intersection of
Minkowski sums Hl ⊕ ρS of a half-space Hl and an ellipsoid ρS.
Note that

Hl ⊕ ρS = S
1
2 S−

1
2 (Hl ⊕ ρS) (12)

= S
1
2 (Ĥl ⊕ ρS)

where S−
1
2 is the matrix-square-root of the Schur complement (10),

Ĥl = S−
1
2Hl = {y : ĥᵀy ≤ k} with ĥl = (S

1
2 )ᵀhl, and S = {y :

‖y‖2 ≤ 1} ⊂ Rny is the unit-sphere in Rny . The Minkowski sum
Ĥl ⊕ ρS has a closed-form solution

Ĥl ⊕ ρS=Ĥl+ρ ĥl

‖ĥl‖
. (13)

For verification, note that if y ∈ Ĥ ⊕ ρS then y = y1 + y2 where
hly1 ≤ kl and yᵀ2y2 ≤ ρ2. Thus, ĥᵀy= ĥᵀy1 + ĥᵀy2 ≤ k + ρ‖ĥ‖,
i.e., y∈Ĥl + ρ ĥl

‖ĥl‖
. Therefore, Ĥl ⊕ ρS ⊆ Ĥl+ρ ĥl

‖ĥl‖
.

Conversely, if y∈Ĥl+ρ ĥl

‖ĥl‖
then define y2 =ρ ĥl

‖ĥl‖
∈ρS so that

y1 =y−y2∈Ĥl since ĥᵀy1 = ĥᵀy− ĥᵀy2 ≤ k+ρ‖ĥl‖−ρ‖ĥl‖=k.
Thus, Ĥl⊕ρS ⊇ Ĥl+ρ ĥl

‖ĥl‖
. Therefore, we can conclude (13) holds.

Substituting (13) into (12) yields

Hl ⊕ ρS = S
1
2

(
Ĥl + ρ

S
1
2 hl
‖hl‖S

)
=Ĥl + ρ

Shl
‖hl‖S

=
{
y : hᵀ

l y ≤ kl+ρ‖hl‖S
}

where S
1
2 =(S

1
2 )ᵀ. Taking the intersection over l = 1, . . . , ` yields

the enlarged set (11).

In most motion-planning algorithms, collision checking is the most
computationally expensive operation. According to Corollary 1, the
collision check can be performed by checking whether a reference
r∞i is contained in the expanded polyhedron (11), which has the
same number of constraints ` as the original obstacle set Bj(t).
Thus, the only additional computation is the evaluation of a series of
weighted 2-norm ‖hjl(t)‖S for j ∈ J (t) to expand the set (11)
where the Schur complement (10) of the Lyapunov function (5)
can be computed offline since it only depend on the time-invariant
system dynamics (7), rather than the time-varying environment (1).
Thus, the total computational cost O(|I||J (t)|n2

y) of the collision
check [0 Iny ]Oi ∩ Bj(t) = ∅ is linear in both the number of
references |I| and number of obstacles |J (t)|, and quadratic in the
output dimension, which is typically small ny ≤ nx � |I|, |J (t)|.
Therefore, the collision check r∞i 6∈ B̄j(tk) can be computed in
real-time for a large number of references |I| � 1 and obstacles
|J (t)| � 1, even for high-dimensional system nx � 1 provided the
output dimension is low ny�nx.

B. Robust Connection Rules

In this section, we describe how to connect (i, j) ∈ E safe-sets Oi
and Oj in the search graph G=(I, E) used by Algorithm 1.

The edges (i, j)∈E of the search graph are meant to indicate that it
is possible to safely transition from tracking the i-th reference r∞i to
tracking the j-th reference r∞j . Previously [1]–[4], an edge (i, j)∈E
was included in the search graph G= (I, E) if an equilibrium state
x∞i corresponding to the i-th reference r∞i was contained x∞i ∈Oj in
the j-th safe-setOj . But again, the equilibrium states x∞i (ξ, w) of the
uncertain system (3) depend on the unknown disturbance w(t)∈W
and model uncertainty ξ ∈Ξ. As before, this issue can be resolved
by using the velocity-dynamics (7). However, the persistently varying
disturbance ẇ(t) presents a new issue since it prevents the system

from converging x(t) 6→ x∞i to an equilibrium x∞i . Thus, we need
a new rule for connecting (i, j)∈E the graph nodes i, j ∈I that is
robust to persistently varying disturbances ẇ(t) 6= 0.

First, we consider the simpler case in which the obstacles are static
Bj(t) = Bj for all t ∈ R+. For static obstacles, we only need to
show that the system is guaranteed to enter the safe set Oj of the
reference r∞j while tracking the i-th reference r∞i . This is shown in
the following proposition.

Proposition 2. If ẋ∞i +O ⊆ int(Oj) then the state ẋ(t) of the
velocity-dynamics (7) will enter and remain inside the j-th safe-set
Oj while tracking the i-th reference r∞i for all w(t) ∈ W and ξ ∈ Ξ.

Proof. Consider the Lyapunov-like function

Vi(ẋ)=

{
(ẋ−ẋ∞i )ᵀP (ẋ−ẋ∞i )− 1 if ẋ 6∈ ẋ∞i +O
0 if ẋ ∈ ẋ∞i +O

(14)

which is zero inside of the safe-set ẋ∞i +O and positive elsewhere
since ‖ẋ−ẋ∞i ‖2P = 1 on the boundary of O by definition (8). Thus,
we can show ẋ(t)→ ẋ∞i +O if V (ẋ(t))→ 0. From (9) we have

d
dt
Vi(ẋ) ≤ −α(ẋ−ẋ∞i )ᵀP (ẋ−ẋ∞i ) + αẇᵀWẇ

≤ −α(ẋ−ẋ∞i )ᵀP (ẋ−ẋ∞i ) + α=−αVi(ẋ)

where ‖ẇ(t)‖2W ≤ 1 and α > 0. Thus, Vi(ẋ) → 0 exponentially
converges to zero which implies the state of the velocity-dynamics (7)
converges ẋ(t) → ẋ∞i + O ⊆ Oj to the j-th safe-set Oj while
tracking the i-th reference r∞i .

Proposition 2 says that the references r∞i and r∞j can be connected
if the smallest neighborhood ẋ∞i +O to which the state ẋ(t) of the
closed-loop dynamics (7) is guaranteed to converge is contained in the
next safe-set Oj . The following corollary provides a computationally
tractable method for testing the set-inclusion ẋ∞i +O ⊆ int(Oj).

Corollary 2. The reference outputs r∞i and r∞j can be connected
by a directed edge (i, j)∈E if and only if

‖r∞i − r∞j ‖Pyy < ρj − 1 (15)

where Pyy tracking error partition of the Lyapunov matrix (5).

Proof. First, we show that if (15) holds then ẋ∞i +O ⊆ int(Oj).
The elements of the ellipsoidal set ẋ∞i +O can be parameterized as
ẋ= P−

1
2 z + ẋ∞i where ‖z‖22 ≤ 1, P−

1
2 is the matrix square-root

of P−1�0, and ẋ∞i =
[ 0
r∞i

]
is the equilibrium state-velocity. Thus,

the set-inclusion ẋ∞i +O ⊆ int(Oj) holds if the following inequality
is satisfied(

ẋ∞i − ẋ∞j + P−
1
2 z
)ᵀ
P
(
ẋ∞i − ẋ∞j + P−

1
2 z
)
< ρ2j

for all ‖z‖22 ≤ 1. The worst-case z can be found by solving the
following optimization problem

max
z
‖ẋ∞i − ẋ∞j ‖2P + 2(ẋ∞i − ẋ∞j )ᵀP

1
2 z + ‖z‖22 (16a)

s.t. ‖z‖22 ≤ 1. (16b)

This optimization problem has a closed-form solution, namely z?=
P

1
2 (ẋ∞i −ẋ

∞
j )

‖ẋ∞i −ẋ
∞
j ‖P

which yields the following quadratic equation

‖ẋ∞i − ẋ∞j ‖2P + 2‖ẋ∞i − ẋ∞j ‖P + 1− ρ2j < 0.

Since this quadratic equation is strictly convex, it is negative between
its roots, which are−1 ± ρj . Since the norm ‖ẋ∞i − ẋ∞j ‖P ≥ 0 is
already positive and −ρj − 1 < 0 is negative, the inequality ‖ẋ∞i −



ẋ∞j ‖P ≥ −ρj − 1 is redundant. This leaves the inequality ‖ẋ∞i −
ẋ∞j ‖P < ρj − 1. Substituting ẋ∞i =

[ 0
r∞i

]
we obtain (15).

Next, we show that if (15) does not hold then ẋ∞i +O 6⊆ Oj . Again,
consider the worst-case element ẋ= ẋ+∞i

(ẋ∞i −ẋ
∞
j )

‖ẋ∞i −ẋ
∞
j ‖P

∈ ẋ∞i +O of
the minimal RPI set ẋ∞i +O. This state ẋ satisfies

(ẋ− ẋ∞j )ᵀP (ẋ− ẋ∞j ) = ‖r∞i − r∞j ‖2Pyy
+ 2‖r∞i − r∞j ‖Pyy + 1

≥ (ρj − 1)2 + 2(ρj − 1) + 1=ρ2j

where ‖r∞i − r∞j ‖Pyy ≥ ρj − 1 since (15) does not hold. Thus,
ẋ∈ ẋ∞i +O but ẋ 6∈ int(Oj).

The connection rule (15) is necessarily more restrictive ρj−1 < ρj
than the previously [1]–[4] used connection rule ‖r∞i −r∞j ‖ < ρj due
to the model uncertainty ξ∈Ξ and persistently varying disturbances
‖ẇ(t)‖2W ≤ 1. For static obstacles Bj(t) = Bj , we add an edges
(i, j)∈E to the search graph G=(I, E) for every pair of references
r∞i , r∞j for i, j∈I that satisfy (15).

We now return to the case of moving obstacles Bj(t). For time-
varying obstacles, it is important that we complete the transition from
safe-set Oi to the next safe-set Oj within a single planning interval
[tk, tk+1) since the current safe-set Oi may become unsafe in the
future t > tk+1. The transition time is uncertain due to the model
uncertainty and presence of disturbances. Nonetheless, the following
corollary bounds the worst-case transition time.

Corollary 3. Suppose the closed-loop system (7) is tracking y(t)→
r(t)=r∞i the i-th reference r∞i . Then the state ẋ(t)∈Oj is contained
in the j-th safe-set Oj for all times t ≥ τij ∈ R+ after

τij =
1

α
log

[
ρ2i − 1(

ρj − ‖r∞i −r∞j ‖Pyy

)2 − 1

]
(17)

where α was obtained from (4).

Proof. Since ẋ∞i +O ⊆ int(Oj), we can enlarge ρẋ∞i +O the set
ẋ∞i +O such that ρẋ∞i +O ⊆ Oi. The maximum radius ρ can be
found by solving an optimization problem similar to (16). Again,
this optimization problem has a closed-form solution which yields
the following quadratic equation

‖r∞i − r∞j ‖2Pyy
+ 2ρ‖r∞i − r∞j ‖Pyy + ρ2 − ρ2j ≤ 0.

This inequality holds between the roots ‖r∞i − r∞j ‖Pyy =−ρ± ρj .
Since the distance ‖r∞i − r∞j ‖Pyy ≥ 0 is positive, this produces the
maximum radius ρ=ρj −‖r∞i − r∞j ‖Pyy > 1 such that ρẋ∞i +O ⊆
Oi.

The maximum amount of time τij spent to reach the safe-set
Oj is given by the amount of time required for the Lyapunov-
like function (14) to decay from the initial value ρ2i − 1 to final
value ρ2−1 = (ρj−‖r∞i −r∞j ‖Pyy )2−1. Since the Lyapunov-like
function (14) is exponentially decaying, we have(

ρ2i−1
)
e−αt ≤

(
ρj − ‖r∞i −r∞j ‖Pyy

)2 − 1.

The upper-bound (17) is obtained by solving for t=τij .

The transition time (17) from each safe-set Oi to itself is zero τii=
0 since the safe-sets are PI. Also, for all pairs of references r∞i and
r∞j that satisfy the connection rule (15) the transition time τij <∞
is finite. However, if the strict inequality in the connection rule (15)
is replaced with a non-strict inequality, then the transition time τij
will be infinite τij =∞ when the equality holds ‖r∞i −r∞j ‖=ρj−1.

Next, we describe the construction of the search graph G=(I, E)
for moving obstacles Bj(t). We adopt the approach from [1], [4],

which is split into offline and online phases. In the offline phase,
we construct a graph RN that describes the N -step reachability
properties of the system (7). The nodes of this graph RN are
pairs (i, k) ∈ I × N of reference indices i ∈ I and planning
instances k = 0, . . . , N . The edges of the graph RN are pairs(
(i, k), (j, k+1)

)
where τij < ∆τ , indicating that any state ẋ(t)∈Oi

inside the invariant-set Oi can move into the invariant-set Oj during
a single planning interval [tk, tk+1) where tk = k∆τ . Note that
((i, k), (i, k+1)) ∈ E is always an edge in the reachability graphRN
since τii=0<∆τ according to Corollary 3. The N -step reachability
graph RN is a causal (N+1)-partite graph. This property can be
exploited to accelerate the graph search in Algorithm 1 [27].

The computational complexity O(|I|2n2
y) of constructing the edge

list E of the reachability graph RN = (I, E) is independent of
the state-dimension and therefore can be efficiently computed for
systems with high-dimensional dynamics nx � ny . However, the
computational complexity O(|I|2n2

y) is also quadratic in the number
|I| of reference samples r∞i which can be extremely large |I| � 1.
Therefore, constructing the reachability graph RN = (I, E) can be
onerous. However, the reachability graph RN can be constructed
offline since it describes the reachability properties of the closed-
loop dynamics (7), which are independent of the time-varying envi-
ronment (1).

Algorithm 2 Search Graph Construction: Moving Obstacles
1: initialize graph G=RN
2: for each i ∈ I and k = 1, . . . , N do
3: if r∞i ∈ B̄j(tk) then
4: remove nodes (i, k) and (i, k−1) from G
5: end if
6: end for

During the online phase, we use Algorithm 2 to remove nodes
(i, k) from the reachability graph RN that collide with the moving
obstacles. Algorithm 2 is initialized G = RN with the N -step
reachability graph RN . For each reference index i∈I and planning
instance k = 1, . . . , N , Algorithm 2 performs a collision check
[0 Iny ]Oi ∩ Bj(tk) 6= ∅ for each obstacle {Bj(tk)}j∈J at each
planning instance k = 0, . . . , N . Collision checks are efficiently
performed by testing the inclusion r∞i ∈ B̄j(tk) where (11) bounds
the Minkowski sum Bj(tk) ⊕ ρiS according to Corollary 1. If the
inclusion r∞i ∈ B̄j(tk) holds then the invariant set Oi is unsafe
during the time interval [tk, tk+1) and therefore the node (i, k) is
removed from the search graph G. In addition, the node (i, k−1) is
also removed since the state ẋ(t) could prematurely transition j → i
into the setOi during the time interval [tk−1, tk]. The resulting search
graph G is then be used by the motion-planner (Algorithm 1) to find a
sequence of references r(t)=r∞σ(t) that moves the output y(t) of the
system (2) to the target output yT while avoiding moving obstacles
y(t)∈Y(t). Note that if collision avoidance is not possible then the
graph G will not be connected.

IV. CASE STUDY: HIGHWAY DRIVING

In this section, we demonstrate the robust invariant-set motion-
planner in a simplified automated highway driving case study.

The closed-loop motions of the vehicle in the longitudinal and
lateral directions are modeled by linear systems (2). Although the
longitudinal and linearized lateral dynamics are independent, they
are combined into a single linear system since avoiding obstacles
will require coordinated movement in both directions. The state
x1(t) ∈ R3 of the closed-loop longitudinal dynamics includes the



longitudinal position y1(t), longitudinal velocity ẏ1(t), and the
integrated longitudinal tracking error

∫ t
0
y1(τ)−r1(τ)dτ . The input

and output are the throttle u1(t) and longitudinal position y1(t),
respectively. The state x2(t)∈R5 of the closed-loop lateral dynamics
includes the lateral position y2(t) and velocity ẏ2(t), the yaw
ψ(t) and yaw-rate ψ̇(t), and the integrated lateral tracking error∫ t
0
y2(τ)− r2(τ)dτ . The input and output are the steering angle

u2(t) and lateral position y2(t) respectively. The dependence of the
lateral dynamics on the longitudinal velocity is modeled as an additive
disturbance w2(t) [15]. See [28, eq. (4.1) and (2.45)] for details on
the longitudinal and lateral dynamics.

Since the longitudinal and lateral dynamics are independent, both
the robustness analysis (4) and RPI set design (8) can be performed
independently. The RPI sets for the combined dynamics are cartesian-
products Oi=Oi,1×Oi,2 of the longitudinal Oi,1 and lateral Oi,2 RPI

sets. A common radius ρ1 > 1 was chosen for all the longitudinal
RPI sets x∞i,1+ρ1O1 ⊂ R3 such that the projection r∞i,1+ρ1S1∈R1

has a radius of 2.5 m. Similarly, a common radius ρ2 > 1 was
chosen for the lateral RPI sets x∞i,2+ρ2O2 such that the projection
r∞i,2+ρ2S2∈R1 has a radius of 0.5 m. According to Theorem 1, this
means we need a 2.5×0.5 m safety envelop around the ego-vehicle
to account for imperfect reference tracking y(t) 6= r(t).

Reachability graphsRN,1 andRN,2 for the longitudinal and lateral
dynamics were independently constructed, with a common planning
rate of ∆τ=1 s and planning horizon of N∆τ=20 s. The nodes I1
of the longitudinal reachability graph RN,1 =(I1, E1) were sampled
by gridding the longitudinal position with a resolution of 1 m for
±20 m around the nominal trajectory y1(t) = vegot where vego =
24 m/s is the nominal velocity of the ego-vehicle. Nodes i, j ∈ I1
are connected by an edge (i, j)∈I1 if it is possible to reach safe-set
Oj,1 from Oi,1 within one planning interval, i.e., τij ≤ ∆τ where
the planning rate is ∆τ = 1 second. Due to the meek closed-loop
dynamics, only adjacent nodes were connected, i.e., (i, j) ∈ I1 if
and only if r∞i = r∞j ± 1. Likewise, the nodes I2 of the lateral
reachability graph RN,2 = (I2, E2) were sampled by gridding the
lateral position with a resolution of 0.25 m for ±2 m. Nodes i, j∈I2
were connected by an edge (i, j)∈I2 if it is possible to reach safe-
set Oj,2 from Oi,2 within one planning interval of ∆τ = 1 second.
Again, due to the meek closed-loop dynamics, only adjacent nodes
were connected, i.e., (i, j)∈I1 if and only if r∞i =r∞j ± 0.25. The
reachability graph RN = (I, E) for the combined longitudinal and
lateral dynamics was obtained by computing the tensor product R=
RN,1×RN,2 of the longitudinal RN,1 and lateral RN,2 reachability
graphs, producing a graph with |I|=28, 414 nodes and |E|≈30×106

edges. Recall that the reachability graphR is constructed offline since
it describes reachability properties of the system dynamics (3) which
are independent of the time-varying environment (1).

In this case study, the ego-vehicle shares the road with |J | =
2 obstacle-vehicles {Bj(t)}j=1,2, as shown in Figure 2. The first
obstacle B1(t) is initially 27 m ahead of the ego-vehicle, in the same
lane, traveling 2 m/s slower than the ego-vehicle. This means that
the ego-vehicle must either slow down or change lanes to avoid this
obstacle-vehicle B1(t). The second obstacle-vehicle B2(t) is in the
opposite lane, initially 10 m behind the ego-vehicle and traveling
1 m/s faster than the ego-vehicle. This means that if the ego-vehicle
decides to change lanes, then it will either need to speed-up and get
ahead of the obstacle-vehicle B2(t) or slow-down and get behind
it. This case study illustrates that the invariant-set motion-planner
uses knowledge of the closed-loop vehicle dynamics to both plan
and execute driving maneuvers.

Algorithm 2 was used to remove unsafe nodes from the reachability
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Fig. 1. Nodes I of reachability graph RN = (I, E). Only nodes i ∈ I
reachable from initial condition (y1, y2) = (0,−1.5) and inside road
boundaries are shown.

Fig. 2. Driving scenario involving ego-vehicle (blue) and two obstacle-
vehicles (yellow) traveling at different speeds.

graph RN . The nodes i ∈ I that were determined to be unsafe
are marked by red dots in Figure 1. Executing the algorithm in
MATLAB on a 2014 MacBook Pro with a 2.5 GHz i7 processor and
16 GB of RAM, it required ≈10 ms to perform the collision checks.
The remaining safe nodes (marked by blue plus-signs in Figure 1)
comprise the search graph G used by Algorithm 1. For this scenario,
searching the graph G required ≈ 30 ms to find the sequence of
references r∞σ(0), . . . , r

∞
σ(N) shown in Figure 1, where the initial state

x(t0)∈Oσ(0) is contained in the initial safe-setOσ(0).Thus, the entire
algorithm required ≈40 ms which is ≈500× faster than the planning
horizon N∆τ = 20 s.

Fig. 3. Vehicle path relative to nominal trajectory vegot of the ego-vehicle
without disturbances where vego = 24 m/s; robust invariant-set motion-
planner on top and nominal planner on bottom. Yellow regions indicate spatial
extent of the obstacle vehicles Bj(t) and blue region indicates spatial extent
of the ego-vehicle over time where darkening of sets indicates passage of
time.

The motion y(t) of the vehicle relative to its nominal constant-
velocity trajectory y1(t) = vegot while tracking the reference
r(t) = r∞σ(t) is shown in Figure 3. For comparison, Figure 3 also
shows the motion of the vehicle tracking a path produced by a non-
robust invariant-set motion-planner. The nominal and robust invariant-
set motion-planners produce qualitatively different behaviors; The
nominal motion-planner increases the speed of the ego-vehicle and
changes lanes in front of the second obstacle-vehicle B2(t). Whereas,
the robust motion-planner slows the ego-vehicle and changes lanes
behind the second obstacle-vehicle B2(t). Slowing the vehicle ap-
pears as backward motion in Figure 3 which shows the longitudinal
position y1(t) relative y1(t)− vegot to a constant velocity trajectory
vegot.



The advantage of the path chosen by the robust motion-planner
is apparent when there are disturbances w(t) ∈ W acting on the
ego-vehicle. Figure 4 shows the same scenario as Figure 3, but
with a random rate-bounded disturbance w(t) ∈ W perturbing the
vehicle. The disturbances degrade the tracking performance as shown
in Figure 5, which shows the lateral tracking performance for the
nominal motion-planner. During 4 time-intervals [7, 9], [8, 9], [9, 10],
and [11, 12], the disturbance w(t) ∈ W forced the system state
x(t) 6∈ Oσ(t) to leave the non-robust positive invariant sets. During
one of these intervals [9, 10], the obstacle vehicle B1(t) was nearby
causing a collision at time t = 9.7 ∈ [9, 10], as shown in Figure 4
(bottom).

In contrast, since the robust invariant-set motion-planner uses RPI

sets, the disturbances w(t)∈W cannot force the system state out of
the sets. Thus, x(t)∈Oσ(tk) for all t∈ [tk, tk+1). Therefore, since the
system state x(t) are always inside the specified neighborhoodOσ(tk)
during the specified time interval [tk, tk+1), we can guarantee that
the ego-vehicle will not collide with an obstacle, despite the presence
of disturbances w(t)∈W .

Fig. 4. Vehicle paths with disturbances; robust invariant-set motion-planner
on top and nominal planner on bottom. Nominal planner (bottom) does not
account for additional track error e(t)=y(t)−r(t) due to disturbances w(t)
which causes a collision at t = 9.7 seconds.

Fig. 5. Lateral tracking performance. Black lines are reference r(t)=r∞
σ(t)

and gray/red region are (non-robust) PI sets. Red regions indicate when the
random rate-bounded disturbances w(t) ∈ W force the system trajectory
y(t) 6∈ Oi to leave the (non-robust) PI sets Oi.

V. CONCLUSIONS

This paper adapted the invariant-set motion-planner for systems
with persistently varying disturbances and parametric model uncer-
tainty. This required reformulating the dynamics in velocity-form
so that the system output appeared directly in the velocity-state.
The velocity-form was used to find an invariant subset of the state-
space where it is safe to track a particular reference. These safe-
sets were connected using a more conservative connection-rule that
accounts for additional reference tracking error due to the presence
of disturbances. For scenarios with moving obstacles, we were able
to bound the time required to transition from safely tracking one
reference to another. The robust motion-planner was demonstrated
for a highway driving scenario where the robust invariant-set motion-
planner was able to prevent collisions by incorporating knowledge of
the closed-loop longitudinal and lateral vehicle dynamics into the
search graph.
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