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Abstract—Humans quickly solve tasks in novel systems with
complex dynamics, without requiring much interaction. While
deep reinforcement learning algorithms have achieved tremen-
dous success in many complex tasks, these algorithms need a
large number of samples to learn meaningful policies. In this
paper, we present a task for navigating a marble to the center
of a circular maze. While this system is very intuitive and easy
for humans to solve, it can be very difficult and inefficient for
standard reinforcement learning algorithms to learn meaningful
policies. We present a model that learns to move a marble in
the complex environment within minutes of interacting with the
real system. Learning consists of initializing a physics engine
with parameters estimated using data from the real system. The
error in the physics engine is then corrected using Gaussian
process regression, which is used to model the residual between
real observations and physics engine simulations. The physics
engine augmented with the residual model is then used to control
the marble in the maze environment using a model-predictive
feedback over a receding horizon. To the best of our knowledge,
this is the first time that a hybrid model consisting of a full
physics engine along with a statistical function approximator has
been used to control a complex physical system in real-time using
nonlinear model-predictive control (NMPC).

Index Terms—Reinforcement Learning, Cognitive Control Ar-
chitectures

I. INTRODUCTION

ARTIFICIAL Intelligence has long had the goal of design-
ing robotic agents that can interact with the (complex)

physical world in flexible, data-efficient and generalizable ways
[1], [2]. Model-based control methods form plans based on
predefined models of the world dynamics. However, although
data-efficient, these systems require accurate dynamics models,
which may not exist for complex tasks. Model-free methods
on the other hand rely on reinforcement learning, where the
agents simultaneously learn a model of the world dynamics
and a control policy [3], [4]. However, although these methods
can learn policies to solve tasks involving complex dynamics,
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Fig. 1: We train a reinforcement learning agent that initializes
a policy with a general purpose physics engine, then corrects
its dynamics model using parameter estimation and residual
learning. The agent uses this augmented model in a circular
maze to drive a marble to the center.

training these policies is inefficient, as they require many sam-
ples. Furthermore, these method are typically not generalizable
beyond the trained scenarios.

Our aim in this paper is to combine the best of both
methodologies: our system uses nonlinear model predictive
control with a predefined (inaccurate) model of dynamics
at its core, but updates that model by learning residuals
between predictions and real-world observations via physical
parameter estimation and Gaussian process regression [5]. We
take inspiration from cognitive science for this approach, as
people can interact with and manipulate novel objects well
with little or no prior experience [6]. Research suggests people
have internal models of physics that are well calibrated to the
world [7], [8], and that they use these models to learn how to
use new objects to accomplish novel goals in just a handful
of interactions [9]. Thus, we suggest that any agent that can
perform flexible physical problem solving should have both
prior knowledge of the dynamics of the world, as well as a
way to augment those dynamics in a way that supports their
interactions with the scene. Note that we do not suggest that
this specific approach corresponds to the way that humans learn
or reason about physics, but instead that we believe augmented
simulation is key to human sample efficiency, and therefore
should be important for robotic sample efficiency as well. Fig. 1
provides an idea of the proposed approach.

Our testbed for this problem is a circular maze environment
(CME; see Fig. 1), in which the goal is to tip and tilt the
maze so as to move a marble from an outer ring into an inner



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2021

circle. This is an interesting domain for studying real-time
control because it is intuitively easy to pick up for people —
even children play with similar toys without prior experience
with these mazes — and yet is a complex learning domain for
artificial agents due to its constrained geometry, underactuated
control, nonlinear dynamics, and long planning horizon with
several discontinuities [10], [11]. Adding to this challenge, the
CME is a system that is usually in motion, so planning and
control must be done in real-time, or else the ball will continue
to roll in possibly unintended ways.

The learning approach we present in this paper falls under the
umbrella of Model-Based Reinforcement Learning (MBRL).
In MBRL, a task-agnostic predictive model of the system
dynamics is learned from exploration data. This model is then
used to synthesize a controller which is used to perform the
desired task using a suitable cost function. The model in our
case is represented by a physics engine that roughly describes
the CME with its physical properties. Additionally, we learn
the residual between the actual system and the physics system
using Gaussian process regression [5]. Such an augmented
simulator – a combination of a physics engine and a statistical
function approximator – allows us to efficiently learn models
for physical systems while using minimal domain knowledge.

Contributions. Our main contributions are as follows:
• We present a novel framework where a hybrid model

consisting of a full physics engine augmented with a
machine learning model is used to control a complex
physical system using NMPC in real time.

• We demonstrate that our proposed approach leads to
sample-efficient learning in the CME: our agent learns to
solve the maze within a couple of minutes of interaction.

We have released our code for the CME as it is a complex,
low-dimensional system that can be used to study real-time
physical control1.

II. RELATED WORK

Our work is motivated by the recent advances in (deep)
reinforcement learning to solve complex tasks in areas such as
computer games [12] and robotics [3], [13]. While these algo-
rithms have been very successful for solving simulated tasks,
their applicability in real systems is sometimes questionable
due to their relative sample inefficiency. This has motivated a
lot of research in the area of transferring knowledge from a
simulation environment to the real world [14], [15], [16], [10].
However, most of these techniques end up being very data
intensive. Here we attempt to study complex physical puzzles
using model-based agents in an attempt to learn to interact
with the world in a sample-efficient manner.

Recently the robotics community has seen a surge in
interest in the use of general-purpose physics engines which
can represent complex, multi-body dynamics [17]. These
engines have been developed with the intention to allow
real-time control of robotic systems while using them as an
approximation of the physical world. However, these simulators
still cannot model or represent the physical system accurately

1https://www.merl.com/research/license/CME

enough for control, and this has driven a lot of work in the area
of sim-to-real transfer [18], [19]. The goal of these methods is
to train an agent in simulation and then transfer them to the real
system using minimum involvement of the real system during
training. However, most of these approaches use a model-free
learning approach and thus tend to be sample inefficient. In
contrast, we propose a method that trains a MBRL sim-to-real
agent and thus achieves very good sample efficiency.

The idea of using residual models for model correction,
or hybrid learning models for control of physical systems
during learning in physical systems has also been studied
in the past [20], [21], [22], [11], [23]. However, most of
these studies use prior physics information in the form of
differential equations, which requires domain expertise and
thus the methods also become very domain specific. While we
rely on some amount of domain expertise and assumptions,
using a general purpose physics engine to represent the physical
system will allow for more readily generalization across a wide
range of systems.

A similar CME has been solved with MBRL and deep
reinforcement learning, in [11] and [10], respectively. In [11],
the analytical equations of motion of the CME have been
derived to learn a semi-parametric GP model [24], [25] of the
system, and then combined with an optimal controller. In [10],
a sim-to-real approach has been proposed, where a policy to
control the marble(s) is learned on a simulator from images,
and then transferred to the real CME. However, the transfer
learning still requires a large amount of data from the real
CME.

While approaches that combine physical predictions and
residuals have been used for control in the past [26], here we
demonstrate that this combination can be used as part of a
model-predictive controller (MPC) of a much more complex
system in real-time. An important point to note here is that
the work presented in [26] uses MPC in a discrete action
space, whereas for the current system we have to use nonlinear
model-predictive control (NMPC) that requires a solution to
a nonlinear, continuous control problem in real-time (which
requires non-trivial, compute-expensive optimization) [27].
Consequently, the present study deals with a more complicated
learning and control problem that is relevant to a wide range
of robotic systems.

III. PROBLEM FORMULATION

We consider the problem of moving the marble to the center
of the CME. Our goal is to study the sim-to-real problem in
a model-based setting where an agent uses a physics engine
as its initial knowledge of the environment’s physics. Under
these settings, we study and attempt to answer the following
questions in the present paper.

1) What is needed in a model-based sim-to-real architecture
for efficient learning in physical systems?

2) How can we design a sim-to-real agent that behaves and
learns in a data-efficient manner?

3) How does the performance and learning of our agent
compare against how humans learn to solve these tasks?

We use the CME as our test environment for the studies
presented in this paper. However, our models and controller
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design are general-purpose and thus, we expect the proposed
techniques could find generalized use in robotic systems. For
the rest of the paper, we call the CME together with the tip-tilt
platform the circular maze system (CMS). At this point, we
would like to note that we make some simplifications for the
CMS to model actuation delays and tackle discontinuities for
controller design as we describe in the following text.

The goal of the learning agent is to learn an accurate model of
the marble dynamics, that can be used in a controller, π(uk|xk),
in a model-predictive fashion which allows the CMS to choose
an action uk given the state observation xk to drive a marble
from an initial condition to the target state. We assume that
the system is fully defined by the combination of the state
xk and the control inputs uk, and it evolves according to the
dynamics p(xk+1|xk,uk) which are composed of the marble
dynamics in the maze and the tip-tilt platform dynamics.

As a simplification, we assume that the marble dynamics is
independent of the radial dynamics in each of the individual
rings, i.e., we quantize the radius of the marble position into
the 4 rings of the maze. We include the orientation of the tip-tilt
platform as part of the state for our dynamical system, obtaining
a five-dimensional state representation for the system, i.e., x =
(rd, β, γ, θ, θ̇, ). It can be noted that the radius rd is a discrete
variable, whereas the rest of the state variables are continuous.
The terms β, γ represent the X and Y -orientation of the maze
platform, respectively, and θ, θ̇ represent the angular position
and velocity of the marble, measured with respect to a fixed
frame of reference. Since rd is fixed for each ring of the
CME, we remove rd from the state representation of the CMS
for the rest of the paper. Thus, the state is represented by a
four-dimensional vector x = (β, γ, θ, θ̇). The angles β, γ are
measured using a laser sensor that is mounted on the tip-tilt
platform (see Figure 1) while the state of the ball could be
observed from a camera mounted above the CMS. For more
details, interested readers are referred to [11].

We assume that there is a discrete planner, which can return
a sequence of gates that the marble can then follow to move
to the center. Furthermore, from the human experiments we
have observed that human subjects always try to bring the
marble in front of the gate, and then tilt the CME to move it to
the next ring. Therefore, we design a lower level controller to
move the marble to the next ring when the marble is placed in
front of the gate to the next ring. Thus, the task of the learned
controller is to move the marble in a controlled way so that
it can transition through the sequence of gates to reach the
center of the CME. This makes our underlying control problem
tractable by avoiding discontinuities in the marble movement
(as the marble moves from one ring to the next).

Before describing our approach, we introduce additional
nomenclature we will use in this paper. We represent the physics
engine by fPE, the residual dynamics model by fGP, and the real
system model by f real, such that f real(xk,uk) ≈ fPE(xk,uk)+
fGP(xk,uk). We use MuJoCo [17] as the physics engine,
however, we note that our approach is agnostic to the choice
of physics engine. In the following sections, we describe how
we design our sim-to-real agent in simulation, as well as on
the real system.

IV. APPROACH

Our approach for designing the learning agent is inspired by
human physical reasoning: people can solve novel manipulation
tasks with a handful of trials. This is mainly because we rely
on already-learned notions of physics. Following a similar
principle, we design an agent whose notion of physics comes
from a physics engine. The proposed approach is shown as a
schematic in Fig. 2.

We want to design a sim-to-real agent, which can bridge the
gap between the simulation environment and the real world in a
principled fashion. The gap between the simulated environment
and the real world can be attributed to mainly two factors. First,
physics engines represent an approximation of the physics of
the real systems, because they are designed based on limited
laws of physics, domain knowledge, and convenient approxi-
mations often made for mathematical tractability. Second, there
are additional errors due to system-level problems, such as
observation noise and delays, actuation noise and delays, finite
computation time to update controllers based on observations,
etc.

Consequently, we train our agent by first estimating the
parameters of the physics engine, and then compensate for the
different system-level problems as the agent tries to interact
with the real system. Finally, Gaussian process Regression is
used to model the residual dynamics of the real system that
cannot be described by the best estimated parameters of the
physics engine. In the rest of this section, we describe the
details of the physics engine for the CME, and provide our
approach for correcting the physics engine as well as modeling
other system-level issues with the CMS.

A. Physics Engine Model Description

As described earlier, we use MuJoCo as our physics engine,
fPE. Note that in our model we ignore the radial movement
of the marble in each ring, and describe the state only with
the angular position of the marble as described in Sec. III.
Consequently, we restrict the physics engine to consider only
the angular dynamics of the marble in each ring, i.e., the radius
of the marble position is fixed. However, in order to study the
performance of the agent in simulation, we also create a full
model of the CME where the marble does not have the angular
state constraint. Thus, we create two different physics engine
models: fPE

red represents the reduced physics engine available
to our RL model, and fPE

full uses the full internal state of the
simulator. fPE

red differs from fPE
full in two key ways. In the forward

dynamics of the fPE
red model, we set the location of the marble

to be in the center of each ring because we cannot observe the
accurate radial location of the marble in the real system, while
this is tracked in fPE

full. Additionally, because we cannot observe
the spin of the ball in real experiments, we do not include it
in fPE

red , while it is included in fPE
full. We use this fPE

full model
for analyzing the behavior of our agent in the preliminary
studies in simulation. This serves as an analog to the real
system in the simulation studies we present in the paper. We
call this set of experiments sim-to-sim. These experiments are
done to determine whether the agent can successfully adapt
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Fig. 2: The learning approach used in this paper to create a predictive model for the physics of the CME in the real system. We
create a predictive model for the marble dynamics in the CME using a physics engine. We start with a MuJoCo-based physics
engine (PE) with random initial parameters for dynamics, and estimate these parameters µ∗ from the residual error between
simulated and real CME using CMA-ES. The remaining residual error between simulated and real CME is then compensated
using Gaussian process (GP) regression during iterative learning. Finally, we use the augmented simulation model to control the
real CME with NMPC policy.

Algorithm 1 Model learning procedure

1: Collect N episodes in the real system using Alg. 2
2: Compute simulator trajectories as fPE

red,µ(x
real
k ,ureal

k ), from
the real system N episodes

3: Estimate physical parameters using CMA-ES
4: while Model performance not converged do
5: Collect N episodes in CMS using Alg. 2
6: Compute simulator trajectories xsim

k+1 for data in D
7: Train residual GP model
8: end while

its physics engine when initialized with an approximation of a
more complicated environment.

B. Model Learning

We consider a discrete-time system:

xk+1 = f(xk,uk) + ek, (1)

where xk ∈ R4 denotes the state, uk ∈ R2 the actions, and
ek is assumed to be a zero mean white Gaussian noise with
diagonal covariance, at the discrete time instant k ∈ [1, ..., T ].

In the proposed approach, the unknown dynamics f in Eq. 1
represents the CMS dynamics, f real, and it is modeled as the
sum of two components:

f real(xk,uk) ≈ fPE
red(xk,uk) + fGP(xk,uk), (2)

where fPE
red denotes the physics engine model defined in the

previous section, and fGP denotes a Gaussian process model
that learns the residual between real dynamics and simulator
dynamics. We learn both the components fPE

red and fGP to
improve model accuracy. The approach is presented as psuedo-
code in Algorithm 1 and described as follows.

1) Physical Parameter Estimation: We first estimate phys-
ical parameters of the real system. As measuring physical
parameters directly in the real system is difficult, we estimate
four friction parameters of MuJoCo by using CMA-ES [28].

Algorithm 2 Rollout an episode using NMPC

1: Initialize time index k ← 0
2: Reset the real system by randomly placing the marble to

outermost ring
3: while The marble does not reach innermost ring and not

exceed time limit do
4: Set real state to simulator xsim

k ← xreal
k

5: Compute trajectory (Xsim, U sim) using NMPC
6: Apply initial action ureal

k = usim
0 to the real system

7: Store transition D ← D ∪ {xreal
k ,ureal

k ,xreal
k+1}

8: Increment time step k ← k + 1
9: end while

More formally, we denote the physical parameters as µ ∈ R4,
and the physics engine with the parameters as fPE

red,µ.
As described in Algorithm 1, we first collect multiple

episodes with the real system using the NMPC controller
described in Sec. IV-D. Then, CMA-ES is used to estimate
the best friction parameters µ∗ that minimizes the difference
between the movement of the marble in the real system and
in simulation as:

µ∗ = argmin
µ

1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖xreal
k+1 − fPE

red,µ(x
real
k ,ureal

k )‖2Wµ
,

(3)

where D represents the collected transitions in the real system,
Wµ is the weight matrix whose value is 1 only related to the
angular position term of the marble θk+1 in the state xk+1.

2) Residual Model Learning Using Gaussian Process:
After estimating the physical parameters, a mismatch remains
between the simulator and the real system because of the
modeling limitations described in the beginning of this section.
To get a more accurate model, we train a Gaussian Process
(GP) model via marginal likelihood maximization [5], with a
standard linear kernel, to learn the residual between the two



OTA et al.: DATA-EFFICIENT LEARNING USING AUGMENTED SIMULATION 5

systems by minimizing the following objective:

LGP =
1

‖D‖
∑

(xreal
k ,ureal

k ,xreal
k+1)∈D

‖
(
xreal
k+1 − fPE

red,µ∗(xreal
k ,ureal

k )
)
− fGP(xreal

k ,ureal
k )‖2.

(4)
Note that after collecting the trajectories in the real system, we
collect the simulator estimates of the next state xsim

k+1 using the
physics engine with the estimated physical parameters µ∗. This
is done by resetting the state of the simulator to every state
xreal
k along the collected trajectory and applying the action ureal

k

to obtain the resulted next state xsim
k+1 = fPE

red,µ∗(xreal
k ,ureal

k ),
and store the tuple {xreal

k ,ureal
k ,xsim

k+1}. Thus, the GPs learn
the input-output relationship: fGP(xreal

k ,ureal
k ) = xreal

k+1 − xsim
k+1.

Two independent GP models are trained, one each for the
position and velocity of the marble. We found GP models ideal
for this system because of their accuracy in data prediction
and data efficiency which is fundamental when working with
real systems. However, other machine learning models could
be adopted in different applications.

3) Modeling Motor Behavior: The tip-tilt platform in the
CMS is actuated by hobby-grade servo motors which work in
position control mode. These motors use a controller with a
finite settling time which is longer than the control interval
used in our experiments. This results in actuation delays for
the action computed by any control algorithm, and the platform
always has non-zero velocity. The physics engine, on the other
hand, works in discrete time and thus the CME comes to
a complete rest after completing a given action in a control
interval. Consequently, there is a discrepancy between the
simulation and the real system in the sense that the real system
gets delayed actions. Such actuation delays are common in
most (robotic) control systems and thus, needs to be considered
during controller design for any application. To compensate for
this problem, we learn an inverse model for motor actuation.
This inverse model of the motor predicts the action to be sent
to the motors for the tip-tilt platform to achieve a desired
state (βdes

k+1, γ
des
k+1) given the current state (βk, γk) at instant

k. Thus, the control signals computed by the optimization
process are passed through this function that generates the
commands (ux, uy) for the servo motors. We represent this
inverse motor model by fimm. The motor model fimm is learned
using a standard autoregressive model with external input. This
is learned by collecting motor response data by exciting the
CMS using sinusoidal inputs for the motors before the model
learning procedure in Algorithm 1.

C. Trajectory Optimization using iLQR

We use the iterative LQR (iLQR) as the optimization
algorithm for model-based control [29]. While there exist
optimization solvers which can generate better optimal solutions
for model-based control [30], we use iLQR as it provides a
compute-efficient way of solving the optimization problem
for designing the controller. Formally, we solve the following
trajectory optimization problem to manipulate the controls uk

over a certain number of time steps [T − 1]

min
xk,uk

∑
k∈[T ]

`(xk,uk)

s.t.xk+1 = f(xk,uk)

x0 = x̃0.

(5)

For the state cost, we use a quadratic cost function for the
state error measured from the target state xtarget (which in the
current case is the nearest gate for the marble), as represented
by the following equation:

`(x) = ||x− xtarget||2W , (6)

where the matrix W represents weights used for different states.
For the control cost, we penalize the control using a quadratic
cost as well, given by the following equation:

`(u) = λu‖u‖2. (7)

Other smoother versions of the cost function [29] did not
change the behavior of the iLQR optimization. The discrete-
time dynamics xk+1 = f(xk,uk) and the cost function
are used to compute locally linear models and a quadratic
cost function for the system along a trajectory. These linear
models are then used to compute optimal control inputs and
local gain matrices by iteratively solving the associated LQR
problem. For more details of iLQR, interested readers are
referred to [29]. The solution to the trajectory optimization
problem returns an optimal sequence of states and control
inputs for the system to follow. We call this the reference
trajectory for the system, denoted by X ref ≡ x0,x1, . . . ,xT ,
and U ref ≡ u0,u1, . . . ,uT−1. The matrix W used for the
experiments is diagonal, W = diag(4, 4, 1, 0.4) and λu = 20.
These weights were tuned empirically only once at the
beginning of learning.

D. Online Control using Nonlinear Model-Predictive Control

While it is easy to control the movement of the marble
in the simulation environment, controlling the movement of
the marble in the real system is much more challenging. This
is mainly due to complications such as static friction (which
remains poorly modeled by the physics engine), or delays in
actuation. As a result, the real system requires online model-
based feedback control. While re-computing an entire new
trajectory upon a new observation would be the optimal strategy,
due to lack of computation time in the real system, we use
a trajectory-tracking MPC controller. We use an iLQR-based
NMPC controller to track the trajectory obtained from the
trajectory optimization module to control the system in real-
time. The controller uses the least-squares tracking cost function
given by the following equation:

`tracking(x) = ‖xk − xref
k ‖2Q, (8)

where xk is the system state at instant k, xref
k is the reference

state at instant k, and the matrix Q is a weight matrix. The
matrix Q and the cost coefficient for control are kept the
same as during trajectory optimization. The system trajectory
is rolled out forward in time from the observed state, and the
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Fig. 3: Comparison of real trajectories (red), predicted trajecto-
ries (blue) using the estimated physical properties using CMA-
ES, and trajectories using the default physical properties (green)
in the sim-to-sim experiment. The trajectories are generated
with a random policy from random initial points.

objective in Eq. 8 is minimized to obtain the desired control
signals.

We implement the control on both the real and the simulation
environment at a control rate of 30 Hz. As a result, there is
not enough time for the optimizer to converge to the optimal
feedback solution. Thus, we warm-start the optimizer with a
previously computed trajectory. Furthermore, the derivatives
during the system linearization in the backward step of iLQR
and the forward rollout of the iLQR are obtained using parallel
computing in order to satisfy the time constraints to compute
the feedback step.

V. EXPERIMENTS

In this section we test how our proposed approach performs
on the CMS, and how it compares to human performance.

A. Physical Property Estimation using CMA-ES

We first demonstrate how physical parameter estimation
works in two different environments; sim-to-sim and sim-to-
real settings. For sim-to-sim setting, we regard the full model
fPE

full as a real system because it contains full internal state that
is difficult to observe in the real setup as described in Sec. IV-A.
Also, we regard the reduced model fPE

red , which has the same
state that can be observed in the real system, as a simulator.
For fPE

red , we start with default values given by MuJoCo, and
we set smaller friction parameters to fPE

full in the sim-to-sim
setting, because we found the real maze board is much more
slippery than what default MuJoCo’s parameters would imply.
For sim-to-real setting, we measure the difference between the
real system and the reduced model fPE

red .
To verify the performance of physical parameter estimation,

we collected samples using the NMPC controller computed
using current fPE

red models on both settings, which corresponds
to line 1-3 of Algorithm 1, and found the objective defined in
equation 3 converges only ∼ 10 transitions for each ring.
For sim-to-sim experiment, the RMSE of ball location θ
in two dynamics becomes ≈ 2e − 3 [rad] (≈ 0.1 [deg]),
which we conclude the CMA-ES produces accurate enough
parameters. Figure 3 shows the real trajectories obtained by fPE

full
(in red), simulated trajectories obtained by fPE

red with optimized
friction parameters (in blue), and simulated trajectories before
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Fig. 4: Comparison of average time spent by the marble in
each ring during learning and the corresponding standard
deviation over 10 trials. This plot shows the improvement in
the performance of the controller upon learning of the residual
model. Note that the controller completely fails without CMA-
ES initialization, and thus, those results are not included.

estimating friction parameters (in green). This qualitatively
shows that the estimated friction parameters successfully bridge
the gap between two different dynamics. Since tuning friction
parameters for MuJoCo is not intuitive, it is evident that we can
rely on CMA-ES to determine more optimal friction parameters
instead. Similarly, we find that sim-to-real experiment, the
RMSE of ball position θ between the physics engine and real
system decreased to ≈ 9e−3 [rad] after CMA-ES optimization.
However, we believe this error still diverges in rollout and we
still suffer from static friction. We also observed that CMA-ES
optimization in the sim-to-real experiments quickly finds a local
minima with very few samples, and further warm starting the
optimization with more data results in another set of parameters
for the physics engine with similar discrepancy between the
physics engine and the real system. Thus, we perform the
CMA-ES parameter estimation only once in the beginning and
more finetuning to GP regression.

B. Control Performance on Real System

We found the sim-to-sim agent learns to perform well with
just CMA-ES finetuning, and thus we skip further control
results for the sim-to-sim agent, and only present results on
the real system with additional residual learning for improved
performance. While CMA-ES works well in the sim-to-sim
transfer problem, if we want a robot to solve the CME,
there will necessarily be differences between the internal
model and real-world dynamics. We take inspiration from how
people understand dynamics – they can both capture physical
properties of items in the world, and also learn the dynamics
of arbitrary objects and scenes. For this reason we augmented
the CMA-ES model with machine learning data-driven models
that can improve the model accuracy as more experience (data)
is acquired. We opted for GP as data-driven models because
of their high flexibility in describing data distribution and data
efficiency [31].
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The CMA-ES model is then iteratively improved with the
GP residual model with data from 5 rollouts in each iteration.
In the following text, ‘CMA-ES’ represents the CMA-ES
model without any residual modeling, while ‘CMA-ES + GP1’
represents a model that has learned a residual model from 5
rollouts of the ‘CMA-ES’ model. Similarly, ‘CMA-ES + GP2’
and ‘CMA-ES + GP3’ learn the residual distribution from
10 experiments (5 with ‘CMA-ES’ and 5 with ‘CMA-ES +
GP1’) and 15 experiments (5 each from ‘CMA-ES’, ’CMA-ES
+ GP1’ and ‘CMA-ES + GP2’), respectively. The trajectory
optimization and tracking uses the mean prediction from the
GP models.

Figure 4 shows the time spent in each ring averaged over 10
different rollouts at each iteration during training. As expected,
models trained with a larger amount of data consistently
improve the performance, i.e., spending less time in each ring.
The improvement in performance can be seen especially in the
outermost (Ring1; F (3, 36) = 3.02, p = 0.042) and innermost
ring (Ring4; F (3, 36) = 4.52, p = 0.009).2 The outermost
ring has the largest radius and is more prone to oscillations,
which the model learns to control. Similarly, in the innermost
ring, static friction causes small actions to have larger effects.

C. Comparison with Human Performance

To compare our system’s performance against human learn-
ing, we asked 15 participants to perform a similar CME
task. These participants were other members of the Mitsubishi
Electric Research Laboratories who were not involved in this
project and were naive to the intent of the experiment. The
particpants were instructed to solve the CME five consecutive
times. A 2 DoF joystick was provided to control the two servo
motors of the same experimental setup on which the learning
algorithm was trained. To familiarize participants with the
joystick control, they were given one minute to interact with
the maze—without marble. Because people can adapt to even
unnatural joystick mappings within minutes [33], we assumed
that this familiarization would provide a reasonable control
mapping for our participants, similar to how the model pre-
learned the inverse motor model fimm without learning ball
dynamics. Since we found no reliable evidence of improvement
throughout the trials (see below), we believe that any further
motor control learning beyond this period was at most marginal.
Three participants had prior experience solving the CME in
the "convential" way by holding it with both hands.

Afterwards, the ball was placed at a random point in the
outermost ring, and participants were asked to guide the ball to
the center of the maze. They were asked to solve the CME five
times, and we recorded how long they took for each solution
and how much time the ball spent in each ring. Two participants
were excluded from analysis because they could not solve the
maze five times within the 15 minutes allotted to them.

Because people were given five maze attempts (and thus
between zero and four prior chances to learn during each
attempt), we compare human performance against the CMA-ES

2Due to extreme heteroscedasticity in the data we use White’s corrected
estimators in the ANOVA [32].

TABLE I: Average time spent in each ring [sec].

Human CMA-ES + GP0/1

Ring 1 (outermost ring) 22.6 4.18
Ring 2 8.0 3.87
Ring 3 24.3 3.85
Ring 4 (innermost ring) 41.1 18.29

and CMA-ES+GP1 versions of our model that have comparable
amounts of training.

We find that while there was a slight numerical decrease in
participants’ solution times over the course of the five trials,
this did not reach statistical reliability (χ2(1) = 1.63, p =
0.2): participants spent an average of 110 seconds (95%CI :
[66, 153]) to solve the maze the first time, and 79 seconds
(95%CI : [38, 120]) to solve the maze the last time, and only
8 of 13 participants solved the maze faster on the last trial as
compared to their first. This is similar to the learning pattern
found in our model, where the solution time decreased from
33s using CMA-ES to 27s using CMA-ES+GP1, which was
also not statistically reliable (t(15) = 0.56, p = 0.58).

In addition, Table I shows the time that people and the model
kept the ball in each ring. For statistical power we have averaged
over all human attempts, and across CMA-ES and CMA-ES
+ GP1 to equate to human learning. In debriefing interviews,
participants indicated that they found that solving the innermost
ring was the most difficult, as indicated by spending more time
in that ring than any others (all ps < 0.05 by Tukey HSD
pairwise comparisons). This is likely because small movements
will have the largest effect on the marble’s radial position,
requiring precise prediction and control. Similar to people,
the model also spends the most time in the inner ring (all
ps < 0.002 by Tukey HSD pairwise comparisons), suggesting
that it shares similar prediction and control challenges to people.
In contrast, a fully trained standard reinforcement learning
algorithm – the soft actor-critic (SAC) [34] – learns a different
type of control policy in simulation and spends the least amount
of time in the innermost ring, since the marble has the shortest
distance to travel (see Supplemental Materials for more detail).

VI. CONCLUSIONS AND FUTURE WORK

We take inspiration from cognitive science to build an agent
that can plan its actions using an augmented simulator in order
to learn to control its environment in a sample-efficient manner.
We presented a learning method for navigating a marble in
a complex circular maze environment. Learning consists of
initializing a physics engine, where the physics parameters
are initially estimated using the real system. The error in the
physics engine is then compensated using a Gaussian process
regression model which is used to model the residual dynamics.
These models are used to control the marble in the maze
environment using iLQR in a feedback MPC fashion. We
showed that the proposed method can learn to solve the task
of driving the marble to the center of the maze within a few
minutes of interacting with the system, in contrast to traditional
reinforcement systems that are data-hungry in simulation and
cannot learn a good policy on a real robot.
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To implement our approach on the CMS, we made some
simplifications that are only applicable to the CMS, e.g., that the
problem can be segmented into moving through the gates in the
rings. While this does limit the generality of the specific model
used, most physical systems require some degree of domain
knowledge to design an efficient and reliable control system.
Nonetheless, we believe our approach is a step towards learning
general-purpose, data-efficient controllers for complex robotic
systems. One of the benefits of our approach is its flexibility:
because it learns based off of a general-purpose physics engine,
this approach should generalize well to other real-time physical
control tasks. Furthermore, the separation of the dynamics and
control policy should facilitate transfer learning. If the maze
material or ball were changed (e.g., replacing it with a small
die or coin), then the physical properties and residual model
would need to be quickly relearned, but the control policy
should be relatively similar. In future work, we plan to test the
generality and transfer of this approach to different mazes and
marbles. For more effective use of physics engines for these
kind of problems, we would like to interface general-purpose
robotics optimization software [35] to make it more useful for
general-purpose robotics application.
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