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The recently-proposed deep clustering algorithm introduced significant advances in

single-channel speaker-independent multi-speaker speech separation. In this paper, we review deep
clustering and its improved method called chimera net. In addition, we describe our architectures for
reducing the latency of deep clustering by combining block processing and teacher-student learning.
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1. INTRODUCTION

Speech separation is the task of estimating the
individual speech signals that are mixed together and
overlapping in a single-channel or multi-channel signal. In
contrast with speech separation, we here define speech
enhancement as the task of estimating speech signals that
are mixed with non-speech signals. Before deep learning
methods started being widely used, most speech separation
approaches focused on multiple microphone scenarios [1],
and single-channel speech separation remained as a
challenging task. Deep learning techniques made it
possible to combine feature extraction and acoustic
modeling, resulting in drastically improved performance
for single-channel speech enhancement [2,3]. However, in
the case of single-channel speech separation, most early
approaches were limited to speaker-dependent scenarios
[4,5].

The main hurdle for single-channel speech separation is
the so-called “permutation problem” where the corre-
spondence between the outputs of an algorithm and the true
sources is up to an arbitrary permutation [6]. Figure 1
illustrates the permutation problem occurring when sepa-
rating two speakers. When speech samples of speaker pairs
(A,B), (A,C), and (B,C) are used to train a speaker-
independent speech separation model, it is unclear how
to assign each speaker’s sample to each output of the
algorithm. If speaker A were assigned to the first target
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position for mixtures (A,B) and (A,C) while B and C were
assigned to the second target, there would be no natural
assignment for the case of mixture (B,C), as both of the
speakers would need to be in the second position for
consistency. Such speaker-based assignments are thus
clearly not a proper solution in the speaker-independent
case.

Deep clustering [6] represents a significant step towards
solving this problem. This framework projects each time-
frequency unit to a high-dimensional embedding such that
the pairs of embeddings dominated by the same speaker are
closer to each other while those dominated by different
speakers are farther apart. Masks are then obtained by
clustering these embeddings. This approach can avoid the
direct estimation of time-frequency speaker masks and
enables high quality speaker-independent speech separa-
tion. The success of deep clustering accelerated the
research in single-channel speech separation. In recent
years, direct time-frequency mask estimation methods [7,8]
and time-domain speech separation have also been pro-
posed [9].

This paper reviews single-channel speech separation
methods based on deep clustering and introduces follow-up
methods from our team. The rest of this paper is organized
as follows: In Sect. 2, classic deep clustering is reviewed.
In Sect. 3, our recent work to improve and expand deep
clustering is explained. In Sect. 4, a low-latency method
for single-channel speech separation is described. In
Sect. 5, a single-channel speech separation approach that
incorporates phase processing is introduced.
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Fig.1 Permutation problem [6,10].

2. DEEP CLUSTERING

The key idea of deep clustering [6] is to learn a high-
dimensional embedding for each time-frequency bin such
that the embeddings belonging to the same speaker are
close to each other in the embedding space, and far from
each other otherwise. This way, simple clustering methods
such as k-means can be performed on the learned
embeddings to perform separation at the test stage.

2.1. Formulation

We define as x a raw input signal and as X; = g;(x),
i €{l,...,N}, a feature vector indexed by an element i. In
the case of audio signals, i is typically a time-frequency
index (¢, f), where ¢ indexes the frame of the signal, f
indexes frequency, and X; =X, is the value of the
complex spectrogram at the corresponding time-frequency
bin. Motivated by the sparseness of speech, we assume that
there exists a dominant speaker in each X; even though
there are multiple speakers in x. In the case of speech
separation based on the estimation of time-frequency
masks, a dominant speaker (a.k.a. class) or a dominance
ratio of the speaker is estimated for each time-frequency
bin and used to build masks to be applied to X;.

The objective of deep clustering is to learn an
embedding vector v; € R'P for each X; in order to avoid
the direct estimation of the time-frequency masks. Here,
we consider a unit-norm embedding, so that |v;|> = 1. The
target label is represented by y; € R'*¢ mapping each
element i to each of C clusters, so that y; . = 1 if element i
is in cluster ¢, and y;. = 0 otherwise. Vertically stacking
these embeddings on one hand and the target labels on
the other, we form the embedding matrix V € R¥*? and
the label matrix Y € RY*€. The matrix YY" can then be
considered as a binary affinity matrix that represents the
cluster assignments in a permutation-independent way:
(YYT),-/- =1 if elements i and j belong to the same cluster,
and ( YYT)U = 0 otherwise. The embeddings are learned by
minimizing the following objective function:

°CDCfclassic(V, Y)
= IVVT —YYT|}
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Fig.2 (a) Deep clustering and (b) Chimera network.

= |[VIVIE+ 1YY E-2|VTY|} (1)

where | - ||12: denotes the Frobenius norm, and the last
expression is obtained by using a trace trick to lower the
dimensionality of the computations.

Figure 2(a) shows the network architecture of deep
clustering. In order to estimate embeddings, bidirectional
long short-term memory (BLSTM) is used as a non-linear
mapping function. At test time, k-means, which is a
classical method of unsupervised clustering, is applied to
the estimated embeddings to estimate binary masks.
Because k takes any natural number, the estimated deep
clustering network can be applied to mixtures of k&
speakers’ speech, while the direct mask estimation method
cannot. In [6,7], deep clustering is applied to the separation
of three-speaker mixtures, even when only trained on
two-speaker mixtures. Soft k-means can also be applied to
estimate ratio masks [7]. Deep attractor network [11] is
another embedding-based method, which estimates not
only embeddings but also the centroids of embeddings.

2.2. Normalization of Cost Functions

Discarding or reducing the influence of time-frequency
bins in silence regions is found to be very important for
training deep clustering networks. The estimated mask
value for such low-energy bins has little influence on the
output, and their labelling is somewhat arbitrary. It is thus
likely counterproductive to force the network to learn how
to create embeddings for these bins. By filtering them out,
the network can focus on learning embeddings for the
time-frequency bins that actually contain some speech.

The square root of a weighting matrix W = diag(w) is
applied to (1) as follows:

1 T Tyt 12
°CDC—classic,W(Va Y) = ”WQ(VV -YY )W2||F (2)
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There are multiple ways to define the weights for training.
In [12], we obtained the best results with the magnitude
ratio weight defined as the ratio of the mixture magnitude
at time-frequency bin i over the sum of the mixture
magnitudes at all bins within an utterance:
il / 32 .

As also proposed in [12], an alternative objective can
be obtained by considering the objective function of the
k-means algorithm applied to the embedding matrix V after
normalizing it to have identity covariance. The objective
function of k-means is defined as follows:

Y = argmin |V — Y(Y'Y)"'YTV|2. (3)
.

w; =

Based on (3), a new objective function for deep clustering
can be obtlained using the whitened embedding matrix V =
V(VTV)72 as follows:

Lpcw(V.Y)
= IVVTV) 1 — YY) YTV (VTY) )2
=D —tu(V'V)"'VYYY)"'YTV). (4)

3. CHIMERA NETWORK

3.1. Mask Inference Learning

Mask inference (MI) is proposed in [6] as a benchmark
approach for deep clustering. Its cost function can be
defined as follows in the magnitude spectrum approxima-
tion (MSA) with L2 norm case:

= mi M, O |X|— 2 5
Lanvsar ggg[cju cOIX| = 1Szll%, )

where P is the set of permutations on {1,...,C}, |X| the
mixture magnitude, M, the c-th estimated mask, |S.| the
magnitude of the c-th reference source, and © the element-
wise product. This objective function is also referred to as
permutation invariant training (PIT) [8], as it calculates the
cost for every permutation and picks the minimum one.

Phase-sensitive spectrum approximation (PSA) [13],
which takes into account the phase difference between
mixture and reference source in the cost function, is often
used for speech enhancement from background noise. In
speech enhancement, it is common to truncate the mask
values to the range [0, ], in which case this technique is
called truncated PSA (tPSA). In the case of speech
separation, tPSA is adopted for MI as follows, with the
L' norm leading to best results in [12]:

Lmrpsa, = min Z M. 01X
TES =

= T(Sx0| © cos(Bx = o)l (6)

where Oy is the mixture phase, 6, the phase of the c-th
source, and TZ denotes a function truncating its input to the
range [a, b], where a < b.

3.2. Chimera Network Objective

The objective function of deep clustering can be
combined with MI in a multi-task learning fashion,
leveraging the regularizing property of the deep clustering
loss and the simplicity of the mask-inference network.
Figure 2(b) shows a chimera network architecture, where
a shared stack of encoding layers such as BLSTMs is
followed by separate heads for deep clustering and MI. The
loss function we minimize is a weighted sum of a deep
clustering loss and an MI loss:

Leni = alpc(V,Y) + (1 — @)L, @)

where « is a weight for the deep clustering loss. At run
time, we only use the MI output to make predictions.

4. LOW-LATENCY SPEECH SEPARATION

Unfortunately, the best performing deep clustering,
mask inference, and chimera models are based on bidirec-
tional recurrent networks (e.g., BLSTM), which require
running forward and backward passes over an entire
utterance before separation results can be obtained. This
high-latency operation is unacceptable in many applica-
tions, e.g., as a front-end for speech recognition systems,
however, simply replacing an offline BLSTM with a
forward-only LSTM leads to unacceptable performance
degradation. A trade-off between latency and separation
performance can be achieved with the latency-controlled
BLSTM (LC-BLSTM) [14,15], a block-based BLSTM
where the input is cut into overlapping blocks and the
latency is reduced to the block-size [16]. Another possible
approach to closing the performance gap between BLSTM
networks and low-latency LSTM/LC-BLSTM networks is
to use teacher-student learning (also known as distillation

[17]).

4.1. Latency-controlled BLSTM

BLSTMs are not practical for low-latency applications.
Indeed, as illustrated on the left-hand side of Fig. 3, the
forward LSTM operates from the first frame to the last
frame of the input and the backward LSTM operates from
the last frame to the first frame of the input. The output
of each direction is concatenated and used as an input to the
next layer. Therefore, one needs to wait until the BLSTM
sees a whole utterance to do the computations.

In order to cope with such issues, latency-controlled
BLSTM (LC-BLSTM) networks were proposed for auto-
matic speech recognition in [14,18]. We here consider their
application to speech separation, as an alternative to the
low-latency approximations to BLSTM considered in [15]
for speech enhancement. The LC-BLSTM architecture is
illustrated in the right-hand side of Fig. 3. In LC-BLSTM,
the input utterance is cut into non-overlapping blocks of
fixed length N,, called the main block. Each main block has
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Fig.3 BLSTM and LC-BLSTM.

a sub block of fixed length Ny, which is appended to the
right context. The forward LSTM now operates from the
first frame of a main block to the last frame of its sub block.
The memory cell of the last frame of the main block is
handed over to the next main block. The backward LSTM
operates from the last frame of the sub block to the first
frame of the main block, and its memory cell is always
initialized with 0. The outputs of sub blocks are propagated
to the last LC-BLSTM layer but are not propagated to
the linear layer in Fig. 2. Also, the gradients from the sub
blocks are not back-propagated. If N, is set to 0, LC-
BLSTM is equivalent to a block BLSTM where each
block operates independently.

4.2. Teacher-student Deep Clustering

In order to improve the performance of low-latency
models involving stacks of either LSTM or LC-BLSTM
layers in place of the BLSTM stack, we consider applying
teacher-student learning to deep clustering based speech
separation. The procedure is illustrated in Fig. 3. A
BLSTM-chimera network as presented in Sect. 3 is used
as the teacher. As the student, we use either a stack of
LSTM layers, which enables frame-wise operation, or a
stack of LC-BLSTM layers, which enables block-wise
operation. The teacher network is first trained using (7).
The student network is then optimized under the following
objective:

L = adlpe + (1 — )Lt + BLaisrs ®)

where L4 denotes a distance between the weights of the
final hidden layer of the teacher and student networks, and
B a weight for that distance. We consider here two variants
for the teacher-student distance:

Lagerr = by — hyll),  p e (1,2}, )

where k), and hj, denote the output of the final layer of the
teacher network and that of the student network, respec-
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tively. In the above equations, k), and h}, need to have the
same number of units. If the number of units is different,
a projection layer to expand or contract the dimensions
accordingly can be used.

5. PHASE RECONSTRUCTION AND
COMPLEX MASK ESTIMATION

As magnitude processing has improved and begun to
approach oracle performance, i.e., the upper bound of
source separation performance using the noisy phase,
interest in processing phase for source separation has
increased as well [19]. When combined with the noisy
phase, separated source magnitudes may be inconsistent,
i.e.,, no corresponding time-domain signal may exist
[20,21]. Here, we describe a phase reconstruction method
which is integrated into our separation algorithm [22,23].
Moreover, complex time-frequency mask estimation based
on discrete representations is also introduced [24].

5.1. Phase Reconstruction

Time-frequency objectives such as (6) and (7) do not
account for phase inconsistencies, so a waveform approx-
imation (WA) objective that operates directly on the
reconstructed time-domain signals §,...,5¢ has been
proposed in [22] as follows:

Lwa = nngz 182 = sellr- (10)

Iterative reconstruction techniques such as Griffin-Lim
[25] and multiple input spectrogram inversion (MISI) [26]
attempt to recover each source’s clean phase by fixing
its magnitude estimate and running alternating STFT and
iSTFT iterations starting from the noisy phase. Applying
iterative phase reconstruction as a post processing to a
magnitude enhancement network often results in modest
improvements in source separation performance [22].

The framework of deep unfolding [27] enables us to
treat each iteration of the phase reconstruction as a layer in
a neural network. Algorithm | describes an extension of

Input: Mixture signal z in the time domain, estimated
masks M. for ¢ =1,...,C, and number of
iterations K

« (0),

X = STFTY (2);

SO = M. X, fore=1,...,C;

for k =1,...,K do

s —igTRT Y (S5 for e =1,..., €

stk=1) — 5 _ EZJZI §£k—1);
_ - . (k) (2(k—1) | §(k—1)
§F) = |5 | i4STFTE (s otn )7 for
c=1,...,C%
end

(K
return s£ ) —

iSTFTY (S9), for ¢ = 1,...,C;

Algorithm 1: Unfolded MISI. STFT®) extracts a com-
plex spectrogram of a signal, and iSTFng) reconstructs
a time-domain signal from a complex spectrogram.
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the MISI algorithm considered here, where the STFT and
iSTFT operations are generalized to STFT-like and
iSTFT-like operations that incorporate parameters. For
real-valued sequences such as audio signals, an N-point
discrete Fourier transform (DFT) has N/2 4+ 1 unique
complex coefficients. The DFT can be implemented using
only real-valued operations by stacking the real and
imaginary components and defining the elements of the
basis matrix W e RNV a5

N
w(n) cos(2rki/N), i€ H:l, 0 + 1]]
Wi,n = N
—w(n)sin(2wki/N), i€ [[5 +2,N + 2:”

11
where we have incorporated the analysis window w(7) into
the basis matrix. By treating W as the weight matrix in a
one-dimensional convolution layer, and setting the stride
parameter of this layer equal to the hop size, we can
efficiently create STFT-like layers with learnable basis
matrices. The inverse DFT matrix can be defined similarly
to (11) by using the synthesis window and accounting for
the appropriate normalization terms. We can again imple-
ment a trainable iSTFT-like layer using transposed con-
volutions.

Figure 4 shows the overall block diagram of the
system. In [22], the mask inference network is trained
using the objective (10) while keeping the STFT and
iSTFT layers fixed. Further improvement is obtained when
the forward and inverse transform parameters are untied
and independently learned for each STFT-like and iSTFT-
like layer [23].

| Unfolded MISI network
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Fig.4 Unfolded MISI network.

5.2. Complex Mask Estimation

Another way to improve the phase is through direct
estimation of complex masks. By using complex values,
complex ratio masks can modify both the magnitude and
the phase of the mixture to obtain an estimate of a source.
For example, complex ratio masks using a continuous real-
imaginary representation were proposed in [28]. We here
focus mainly on discrete representations involving a
magnitude-phase factorization (phasebook) or a direct
modeling of the complex value (combook) [24].

Consider a scalar codebook of phase values, or phase-
book, denoted by Fp = {0, ...,0P}. A network can
estimate a softmax probability vector pg(0;r|O) € AP
at each time-frequency bin ¢, f, where O denotes the
input features, ¢ the network parameters, and A" =
{(to, ... 1) € R Y= 1,5, > 0,Vi} is the unit
n-simplex. In [24], we consider several options for using
this softmax layer output vector to build a final output,
either as probabilities, to select the most likely value as in
[29] or sample a value, or as weights within some
interpolation scheme as follows, which leads to the best
results:

O =LY pa(Ory = 00]0)e””. (12)
J
Note that the interpolation in (12) is performed in the
complex domain and that taking the angle implies a
renormalization step; this interpolation is illustrated in
Fig. 5. An advantage of this representation is that it takes
into account phase wrapping, that is, the fact that any
measure of difference between phase values should be
considered modulo 27. Indeed, there is no need to
introduce a notion of proximity between values; with
(12), the phase is defined by its location around the unit
circle, varies continuously with the softmax probabilities,

us
2
3 — 1 ™
4 4
[ \
T ‘ } 0
\ )
o
0
_ 37 _T
4 pn 4
2

Fig.5 Illustration of the phase interpolation scheme
for a uniform phasebook with 8 elements. Softmax
probabilities are displayed via the surface of each
circle.



and values such as —m 4 € and 7 — € for small € can be
obtained with probabilities close to each other. This would
not be the case if phase was represented directly as a real-
valued angle.

We need to optimize the parameters ¢ of the model
under some objective function. We note that the codebooks
themselves can be considered fixed (to uniform or pre-
trained values), or optimized jointly with the rest of the
network. We can define similar “magbook” and “com-
book” representations for the magnitude mask and the
complex mask, again interpolating using a convex sum
over the codebook values with the softmax probabilities as
weights. For the magnitude, this is an extension of the
classical sigmoid activation function for the case of a fixed
magbook of size 2 with elements {0, 1} and an extension
of the convex softmax considered in [22] for the case of a
fixed magbook of size 3 with elements {0,1,2}. We
consider two types of training frameworks: train a phase-
book layer for best phase accuracy using cross-entropy,
after training the rest of the network separately using an
objective involving the magnitude; use a phasebook or
combook layer to obtain a complex mask estimate, and
train the whole network jointly for best waveform domain
reconstruction using (10). The latter approach obtains the
better result.

To build a complex mask estimation network architec-
ture based on combook, we replace the MI layer of chimera
network, which is shown in Fig. 2(b), with a combook
layer. We train the network using the WA objective (10) on
the time-domain signal reconstructed by inverse STFT
from the masked mixture, where the mask is obtained as
the output & ; of the combook layer. In [24], the jointly
trained combook 12 system obtains almost the same
performance as the system which learns replacements for
the STFT/iSTFT transforms presented in Sect. 5.1.

6. CONCLUSIONS

This paper reviewed deep clustering, one of the
breakthrough techniques for single-channel speech separa-
tion, and introduced various follow up methods involving
chimera networks, low-latency speech separation, phase
reconstruction, and complex mask estimation. Several
other extensions and related works have been recently
investigated by our team. Multi-channel deep clustering
was proposed in [30], where the phase difference of
channels is added to the input. Embeddings are estimated
from the combinations of multiple two-channel deep
clustering networks. Our speech separation is also eval-
uated with automatic speech recognition (ASR). In [31],
chimera network-based time-frequency mask estimation,
and ASR are concatenated in an end-to-end manner. Direct
text sequence recognition without mask estimation from
the overlapped speech has also been proposed [32]. Deep

Acoust. Sci. & Tech. 41, 2 (2020)

clustering and chimera network have also been applied to
musical audio separation [33] and noisy speech separation
[34]. Evaluation measures for single-channel speech
separation are discussed in [35].
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