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ABSTRACT
This paper examines using electric vehicles with indepen-

dently actuated wheels and anti-squat/lift/dive suspensions to im-
prove passenger comfort by reducing the lift, pitch, and roll mo-
tion of the vehicle chassis. Anti-squat/lift/dive suspensions use
an angled suspension bar to transfer a portion of the longitudinal
driving force into a vertical reaction force on the chassis. Using
this effect, we derive a control-oriented model of the lift, pitch,
and roll of the chassis where the steering angle and the four driv-
ing forces of the individual wheels are the control inputs and the
road-height is a disturbance. The model is simplified under the
assumption that the suspension deflections are small during nor-
mal, comfortable driving. Finally, we use steady-state analysis
and open-loop simulations to provide intuition about the rela-
tionship between the driving forces and the chassis motions.

1 INTRODUCTION
Technologies such as ride-sharing and autonomous vehi-

cles promise to free people from the monotony of commuting.
Whether for work or pleasure, many people use this additional
free-time to read. However, reading in a moving vehicle can
cause motion sickness. Thus, there is renewed interest in de-
veloping methods for improving passenger comfort.

This paper examines using anti-squat/lift/dive suspension
geometry to actively improve passenger comfort by reducing the
lift, pitch, and roll motion of the vehicle. Anti-squat/lift/dive
suspensions are a standard feature of modern rear/front/all-wheel
drive vehicles [1]. These passive suspensions use an angled sus-
pension arm which redirects a portion of the longitudinal driving
force into a vertical reaction force on the chassis that counteracts

the squatting of the rear-end or the lifting of the front-end of the
vehicle during acceleration. In vehicles with independently ac-
tuated wheel (e.g. electric vehicle with wheel hub motors), we
show that we can control these anti-squat/dive/lift forces by in-
telligently redistributing the controlled driving forces among the
four wheels. In other words, we show, independently actuating
the wheel throttles can produce the effect of an active suspen-
sion without additional hardware. Since the four wheel throttles
provide three additional degrees-of-freedom, this improvement
in passenger comfort does not compromise the drivability of the
vehicle. Specifically, the response of the vehicle to throttle (ac-
celeration) and steering (yaw-rate) commands from the driving
(human or autonomous) is unaffected.

The relationship between the longitudinal driving forces and
the vertical and rotational motion of the chassis is non-obvious.
Thus, this paper derives a control-oriented model that relates the
four controlled driving forces to the lift, pitch, and roll dynam-
ics, which determine passenger comfort. In addition, the model
includes the yaw dynamics with the steering angle as the fifth
control input since differential driving forces will produce a yaw-
moment which must be considered. The model also includes the
vehicle slip dynamics since the lateral tire forces can induce roll
motion on the chassis. A linear model of the tire forces is used
since we are considering a passenger vehicle driving under nor-
mal conditions. The derived forces that the suspension exerts
on the chassis are nonlinear functions of the chassis state, the
control inputs, and the road height, which is modeled as an ex-
ternal disturbance. Since we are interested in passenger comfort,
we can assume that the vehicle is driven under normal condi-
tion resulting in moderate deflection of the suspensions. Thus,
we partially linearize the suspension forces. However, the model
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remains non-linear due to the slip dynamics and coupling be-
tween the steering angle and driving forces for the front wheels.
After deriving the model, we perform a steady-state analysis to
provide intuition about how the driving forces influence the lift,
pitch, and roll motion of the chassis.

Several models [5–8] of hybrid and electric vehicle with
four-wheel-drive have been proposed in literature that are capa-
ble of describing vehicle’s cornering behavior and (or) the roll
motion. In [5] and [8], the roll dynamics were derived using a
mass-spring-damper model, but the angled suspension arm was
omitted. As a result, the anti-squat/lift/dive forces that effect lift,
pitch, and roll are not present. The roll model in [6] does not
consider the inertia forces during cornering (the center of grav-
ity is assumed to be on the ground) or acceleration (the longi-
tudinal speed of the vehicle is assumed to be constant). [7] is
the most relevant work for this paper where the anti-dive/squat
forces transmitted from the suspension to the sprung-mass were
derived. However, the coupling between the driving forces and
the steering angle was not considered. Moreover, the influence
of the time-varying road height was not explicitly consider in any
of the above-mentioned works. This paper builds on the previ-
ous models to derive a new model that includes the lift, pitch,
and roll dynamics of the chassis in response to the longitudinal
and lateral tire forces, the time-varying road height, and inertia
forces due to acceleration and cornering.

We make four contributions to the literature:

1. Our model incorporates the effects of time-varying road-
height on the chassis dynamics,

2. Our model considers acceleration and cornering,
3. The complexity of our model is reduced by making several

reasonable assumptions for our application,
4. The relation between the state of the sprung-mass and the

five control inputs (four driving forces and steering angle) is
derived and analyzed to provide intuition about using driving
forces to reduce lift, pitch, and roll.

The remainder of the paper is organized as follows: In Sec-
tion 2, the nonlinear dynamics of the sprung-mass and the sus-
pension assemblies are derived. Afterward, the tire dynamics are
discussed and the tire slip angles are derived. In Section 3, the
control-oriented model is simplified based on several assump-
tions, which are reasonable for this application. In Section 4, the
nonlinear control-oriented model is analyzed using steady-state
analysis and open-loop simulations.

2 Nonlinear Sprung-Mass and Suspension Dynamics
In this paper, passenger comfort is quantified by the lift,

pitch, and roll motions of the chassis. Although the spring stiff-
ness is not a control input, passive suspension systems can have
geometries that reduce the deflections in the spring length. Fol-
lowing this section, it will be shown that by exploiting the sus-

pension geometry, the motion characterizing passenger comfort
can be influenced by the controlled driving forces.

Since any suspension is functionally equivalent to a trailing
arm [2], the suspension assemblies can be simplified as trailing
arms as shown in Fig. 1. We model the interaction of the sus-
pension assemblies and chassis using reaction forces rather than
reaction torque. The spring-damper forces are defined to be in
the lift direction. The track width L j, wheel base b j as shown
in Fig. 1 are assumed to be unchanged ( j = f denotes the front
suspension, j = r denotes the rear suspension). The left and right
side of the vehicle have the same parameter values. Therefore in
the sequel we use Pf and Pr to denote the parameter P for the
front-right/left or rear-right/left suspension assembly.

FIGURE 1: Trailing arms and parameter definition in stationary posi-
tion

2.1 Sprung-Mass Lift, Pitch, Yaw and Roll Dynamics
In this section, we model the lift, pitch, yaw and roll dynam-

ics of the sprung-mass as functions of forces exerted by the four
individual suspension assemblies. The front-right ( f r), front-left
( f l), rear-right (rr) and rear-left (rl) suspension assembly each
exert four types of forces on the sprung-mass as shown in Fig. 2:

Spring-damper force Fs ji induced by the movement of the
sprung-mass and the road disturbances.
Lateral reaction force FRC

y ji transferred from (the combined)
cornering force to the sprung-mass through the rear-view
trailing arm at RC j.
Longitudinal reaction force Fx ji transferred from (the com-
bined) driving force to the sprung-mass through the side-
view trailing arm at the mounting point.
Vertical reaction forces Fz ji transferred from (the com-
bined) driving force to the sprung-mass through the side-
view trailing arm at the mounting point. FRC

z ji transferred
from (the combined) cornering force to the sprung-mass
through the front-view trailing arm at RC j, respectively.

Here j ∈ { f ,r} for front/rear, i ∈ {r, l} for right/left. The same
notation will also be used in the sequel. Assuming the left and
right suspensions′ pivoting line intersects at the same point, there
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is one suspension roll center RC j for the front/rear suspension as-
semblies. In addition, the sprung-mass is subject to gravitational
force Msg, inertia force Msa (when the vehicle is accelerating
with a) as well as centrifugal force Ms

V 2

R during cornering (when
the vehicle is cornering with speed V and radius R) on the center-
of-gravity (CG) as shown in Fig. 2. Ms is the sprung-mass mass,
and g is the standard gravity constant.

FIGURE 2: Diagram of the forces that the suspensions exert on the
sprung-mass. X/Y/Z: longitudinal/lateral/vertical direction in vehicle’s
inertia frame.

The dynamics of CG in the lift direction are

Msz̈ =−Msg−∑
j
∑

i
(Fs ji +Fz ji +FRC

z ji ), (1)

where z is the lift displacement of CG.
Since this paper considers passenger comfort, vehicle mo-

tions in the lift, pitch, and roll directions are small and, as a result
the displacement of the CG due to vehicle pitch is small and will
be ignore in the rest of the work. The dynamics of the vehicle
pitch about CG are

JY θ̈ =Fs f rb f +Fs f lb f −Fsrrbr−Fsrlbr

+(Fx f r +Fx f l)(h+ z−h f )

+(Fxrr +Fxrl)(h+ z−hr)

+(Fz f r +Fz f l)(b f −a f )− (Fzrr +Fzrl)(br−ar)

+(FRC
z f r +FRC

z f l )b f − (FRC
zrr +FRC

zrl )br,

(2)

where θ is the pitch angle which is defined as the rotation of
the sprung-mass about the Y axis, h is the height of CG to the
ground when vehicle is stationary, JY is the pitch inertia, a j is the
longitudinal distance between the wheel’s contact point CPji and
the side-view trailing arm mounting point, h j is the height of the

side-view trailing arm mounting point to the ground, and a j and
h j satisfy the following relationship:

h j = a j tanγ j, l2
j = a2

j +(h2
j − r2

t ),

where l j represents the fixed length of trailing-arm of front/rear
suspension assembly, γ j represents the anti-dive/squat angle of
the side-view trailing arm, and rt represents the tire radius. Re-
call that the motions of the sprung-mass are assumed to be small
and therefore we assume γ j, h j, and a j are constant.

The ultimate objective is to design a controller that redis-
tributes driving forces to improve comfort without changing the
driving characteristics of the vehicle. This requires tracking
a reference yaw-rate ψ̇r provided by the driver, human or au-
tonomous. Thus, our model includes the dynamics of the yaw
about the CG given by

JZψ̈ =(−Fx f r +Fx f l)
L f

2
+(−Fxrr +Fxrl)

Lr

2
− (FRC

y f r +FRC
y f l )b f +(FRC

yrr +FRC
yrl )br,

(3)

where ψ̇ is the yaw-rate of the sprung-mass about Z axis and
JZ is the yaw inertia. As will be shown in the subsequent sec-
tions, when front wheels are steered or the vehicle has lateral
velocity (thus slip angle β ), there will be tire slip which in-
duces a cornering force on each wheel. From (3) it should be
observed that apart from differential driving forces Fx f l − Fx f r
and Fxrl−Fxrr, difference in cornering forces and the wheel base
between the front (FRC

y f r +FRC
y f l )b f and rear suspension assemblies

(FRC
yrr +FRC

yrl )br could also induce a yaw torque.
When the vehicle is cornering with speed V > 0, and turning

radius R, the following relationship between the yaw-rate ψ̇ and
vehicle slip angle β satisfies

β̇ =

{
−ψ̇− V

R , δ < 0 (right turn)
−ψ̇ + V

R , δ ≥ 0 (left turn)
,

or in compact form

β̇ =−ψ̇ +
Ms

V 2

R
MsV

sgn(δ ), (4)

where the slip angle β is the angle between V and X axis as
shown in Fig. 2. Note that V 6= 0 when the vehicle is cornering.
During cornering, the direction of the centrifugal force changes
as the direction of turning changes. Based on our sign convention
(δ (+) for left turn, δ (−) for right turn), the following lateral
force balance needs to be satisfied

Ms
V 2

R
sgn(δ )cosβ +Msax tanβ =−∑

j
∑

i
FRC

y ji , (5)
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where Ms
V 2

R cosβ sgn(δ ) and Msax tanβ are the centrifugal force
due to cornering and the inertia force due to acceleration pro-
jected onto the lateral direction, respectively.

To prevent changing the driving characteristics of the vehi-
cle, its acceleration ax should match the reference ar

x provided by
the driver, human or autonomous. The longitudinal acceleration
ax is determined by the force balance in the X-direction

Msax =−∑
j
∑

i
Fx ji +Ms

V 2

R
sgn(δ )sinβ .

Note that the longitudinal acceleration ax will also be influenced
by centrifugal force Ms

V 2

R if vehicle has lateral velocity and thus
slip angle β . With (5), the above equation can be simplified as

Msax =−∑
j
∑

i
Fx ji cos2

β −∑
j
∑

i
FRC

y ji sinβ cosβ . (6)

Note that the desired acceleration ar
x can be achieved ax = ar

x by
proper choice of the sum of driving forces ∑ j ∑i Fx ji.

During cornering, the centrifugal force on CG will cause
load transfer to one side of the vehicle. As a result, the vehi-
cle body will roll around the roll axis, which is obtained by con-
necting RC f to RCr as are shown in Fig. 2, and the vehicle body
(sprung-mass) rolls around the roll axis. The roll center (RC) as
shown in Fig. 2 is the vertical projection of the CG onto roll axis
when vehicle is in stationary position. Note that although the roll
center and roll axis may change with vehicle movement, in the
sequel they are assume to be constant based on our assumption
that the lift, yaw and roll motion is small.

For passenger vehicles, the displacement of the CG due to
vehicle roll is very small in most cases and can generally be ig-
nored [1]. Thus, the dynamics of the vehicle roll around CG are
given by

JX φ̈ =(Fs f r−Fs f l)
L f

2
+(Fsrr−Fsrl)

Lr

2

+(Fz f r−Fz f l)
L f

2
+(Fzrr−Fzrl)

Lr

2
− (FRC

y f r +FRC
y f l )
(
(h+ z)−hRC

f
)

− (FRC
yrr +FRC

yrl )
(
(h+ z)−hRC

r
)
,

(7)

where φ is the roll angle of the sprung-mass around X axis and
JX is the roll inertia. hRC

j is the RC height of the suspension
assembly.

With (5) and (6), the dynamics of the slip β can be simplified
as

β̇ =−ψ̇ +
∑ j ∑i(Fx ji sinβ −FRC

y ji cosβ )

MsVx
, (8)

where Vx = V cosβ is the vehicle longitudinal velocity and its
dynamics are related by

V̇x = ax, (9)

where the longitudinal acceleration ax is determined by (6).
The state of the sprung-mass is x = [z, ż,θ , θ̇ ,φ , φ̇ ,β , ψ̇]T

where z, ż,θ , θ̇ ,φ , φ̇ are included to model performance, β is
included due to its influence on the roll φ , and ψ̇ is included
to ensure that the driving characteristics of the vehicle are not
changed. From (1), (2), (3) and (7) it can be seen that the dy-
namics of the lift, pitch, yaw and roll are linear in terms of the
suspension forces. However, in the following sections, we will
show that the suspension forces are nonlinear functions of the
state x = [z, ż,θ , θ̇ ,φ , φ̇ ,β , ψ̇]T , control inputs, and the road dis-
turbances.

2.2 Rear Suspension Forces
In this section we derive the forces that the rear-right and

rear-left suspension assemblies exert on the sprung-mass. We
assume that the suspension assemblies are at quasi-equilibrium
and therefore the forces and torques applied to the suspensions
assemblies are balanced [9]. With only front-wheel steering there
is no coupling between driving forces uri and cornering forces
nri.

Fig. 3 shows the side, top and rear views of the free-body
diagram of the front-right/left and rear-right/left suspension as-
semblies. The spring-damper force Fsri is given by

Fsri =−F̄sri +Kr∆zri +Cr∆żri, (10)

where K j and C j denote the spring stiffness and damping coef-
ficient of the suspension assembly, respectively. F̄s ji is the static
spring force, which can be determined by the force and torque
balances in the Z,X,Y-directions

F̄s f i = br
Msg

2∑ j b j
, F̄sri = b f

Msg
2∑ j b j

. (11)

The suspension deflection ∆zri and deflection rates ∆żri are
given by

∆zri = z+br tanθ ∓ Lr

2
tanφ −dri (12a)

∆żri = ż+br(1+ tan2
θ)θ̇ ∓ Lr

2
(1+ tan2

φ)φ̇ − ḋri (12b)

where road height and rate of change in road height at each wheel
are denoted by d ji and ḋ ji, respectively. In (12), − is taken when
i = r, and + is taken when i = l. From (12b) it can be seen
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FIGURE 3: Free-body diagram of the front and rear suspension assemblies

that the suspension deflection rates are nonlinear functions of the
state of the sprung-mass. As a result, the spring-damper forces
(10) are nonlinear functions of the state of the sprung-mass.

The force balance in the X-direction and torque balance
around tire contact point CPri (see the side view in Fig. 3) yield
the following relationships

Fxri =−uri (13a)
Fzri =−uri tanγr. (13b)

It can be seen from (13) that the reaction forces in the side view
are functions of driving forces. In particular, the force (13b) pro-
vides control authority over the lift (1), pitch (2), and roll (7)
dynamics. Note that lift reaction force Fzri in (13b) is negative
when uri > 0 during acceleration, per Newton’s third law the lift
reaction force that the suspension assembly exerts on the sprung-
mass is positive. Thus, the suspension produces an anti-squat
reaction force during acceleration and hence this type of suspen-
sion is called anti-squat suspension. Similar effects also appears
in the front suspension design (anti-dive).

The force balance in the Y-direction and torque balance
around tire contact point CPri yield the following expressions for
the roll forces

FRC
yri = nri, (14a)

FRC
zri =±nri tanηr. (14b)

where η j denotes the angle between the trailing arm and the
ground in the rear view. In (14b), + is taken when i = r, − is
taken when i = l. Recall that η j is assumed to be constant since
the vehicle motions are small.

It can be seen from (14) that the reaction forces in the rear
view are functions of cornering forces nri. Note that from (14b),

a vertical reaction force will be induced by the cornering force.
This explains the source of ”jacking” forces inherent to indepen-
dent suspensions [2]. If the cornering force on the right-side
wheel nrr and the left-side wheel nrl has same magnitude, the
downward vertical reaction force induced by the cornering force
on one wheel will cancel out the lifting effect from the other
wheel due to its induced upward vertical reaction force.

The combined driving force uri and cornering force nri can
not exceed the tire friction limit µ jiN ji, where µ ji and N ji are the
friction coefficient and normal force on each tire, respectively.
The normal forces on the rear-right/left suspension assembly can
be expressed as

Nri =Mrig−Fsri−Fzri−FRC
zri , (15)

where Mri is the wheel mass of the rear-right/left wheel.

2.3 Front Suspension Forces
The forces produced by the front suspension assemblies dif-

fer from the rear due to the steering angle. Since the two front
wheels are used for both driving and steering, the longitudinal
and lateral forces on the front wheels depend on both the steer-
ing angle δi and the driving force u f i (see the top view in Fig. 3)

Fcb
x f i = u f i cosδi +n f i sinδi (16a)

Fcb
y f i =−u f i sinδi +n f i cosδi, (16b)

where Fcb
x f i and Fcb

y f i denote the combined forces in the X and Y-
direction, respectively.

With the combined forces (16) in the X (16a) and Y-direction
(16b), the modeling of the front suspension assemblies are simi-
lar to that of the rear suspension assemblies in the previous sec-
tion. Similar to (10) and (12), the spring-damper force Fs f i, the
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suspension deflection ∆z f i, as well as the deflection rate ∆ż f i are
given by

Fs f i =−F̄s f i +K f ∆z f i +C f ∆ż f i (17)

∆z f i = z−b f tanθ ∓
L f

2
tanφ −d f i (18a)

∆ż f i = ż−b f (1+ tan2
θ)θ̇ ∓

L f

2
(1+ tan2

φ)φ̇ − ḋ f i, (18b)

where the static spring force F̄s f i is given in (11). In (18), − is
taken when i = r, + is taken when i = l.

Unlike the rear suspension assemblies, the reaction forces in
the side and rear views are now induced by the combined driving
and cornering forces. The force and torque balance (see the side
and rear view in Fig. 3) yield the following relationships In the
side-view,

Fx f i =−Fcb
x f i, (19a)

Fz f r = Fcb
x f i tanγ f . (19b)

In the rear-view,

FRC
y f i = Fcb

y f i, (20a)

FRC
z f i =±Fcb

y f i tanη f . (20b)

In (20b), + is taken when i = r, − is taken when i = l.
Again, the combined driving force u f i and cornering force

n f i are limited by the normal force N f i on each tire. The normal
force on the suspension assembly can be expressed according to
the force balance in the Z direction

N f i =M f ig−Fs f i−Fz f i−FRC
z f i , (21)

where M f i is the wheel mass of the front-right/left wheel.

2.4 Linear tire model and cornering forces
Since the vehicle considered is operating under normal driv-

ing conditions, a linear model of tire forces is used

n ji =Cα
j α ji, (22)

where Cα
j is the cornering stiffness of the front/rear tires. The

tire slip angle α ji is the angle between the wheel’s velocity vec-
tor along the wheel center plane and the vehicle’s actual direc-
tion of displacement at the tire contact patch [1]. It can be ob-

tained through the rigid body motion and the velocity vector cor-
responding to each tire [3]

V cosβ

V sinβ

0

+
0

0
ψ̇

×
 b f

∓L f
2

0

=

Vf i cos(δi +α f i)
Vf i sin(δi +α f i)

0

 (23a)

V cosβi
V sinβi

0

+
0

0
ψ̇

×
−br

∓Lr
2

0

=

Vri cosαri
Vri sinαri

0

 , (23b)

where Vji is the speed at the tire contact point of each wheel. In
(23), − is taken when i = r, + is taken when i = l. The first
two components in the vector equations (23a) and (23b) offer
the relationship among the slip angle, the steering angle and the
vehicle slip angle:

tan(δi +α f i) =
V sinβ + ψ̇b f

V cosβ ± ψ̇
L f
2

, tanαri =
V sinβ − ψ̇br

V cosβ ± ψ̇
Lr
2

,

where + is taken when i = r, − is taken when i = l. The above
equation leads to the following tire slip angles expressions:

α f i = arctan

(
V sinβ + ψ̇b f

V cosβ ± ψ̇
L f
2

)
−δi (24a)

αri = arctan

(
V sinβ − ψ̇br

V cosβ ± ψ̇
Lr
2

)
, (24b)

where + is taken when i = r, − is taken when i = l.
Fig. 4 shows the control inputs and the road distur-

bances effect the suspension forces which in turn effect the
sprung-mass. Recall that the state of the sprung-mass is x =
[z, ż,θ , θ̇ ,φ , φ̇ ,β , ψ̇]T , and the suspensions models are quasi-
static. As will be discussed and demonstrated through simula-
tions, since the reaction forces are functions of the control input
u = [u f r,u f l ,urr,url ,δ ]

T , the behavior of the sprung-mass can in-
deed be influenced by the considered control input. Meanwhile,
to maintain the driving-characteristics, the driving forces must
satisfy (6) with ax = ar

x.

3 Model Linearization for Control Design
From (1)−(3) and (7), the model derived in the previous sec-

tion is linear with respect to suspension forces, except for the slip
angle dynamics (8), where there is nonlinear coupling between
the vehicle longitudinal velocity Vx, slip angle β , and the sus-
pension forces. However, the suspension forces (10), (13), (14),
(16), (17), (19) and (20) are nonlinear function of the control in-
puts and the sprung-mass state as shown in (12b), (16) and (18a).
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Fs f i (17)

Fx f i (19a)

Fz f i (20a)

FRC
y f i (19b)

FRC
z f i (20b)

Fsri (10)

Fxri (13a)

Fzri (13b)

FRC
yri (14a)

FRC
zri (14b)

x, Vx (9)

Lift z (1)

Pitch θ (2)

Roll φ (7)

Slip angle β (8)

Yaw-rate ψ̇ (3)

FIGURE 4: Model diagram of the suspension assemblies and the
sprung-mass as a dynamic system.

Consequently the relationship from the control inputs and the
road disturbances to the sprung-mass state as shown in Fig. 4 is
complicated. In addition, the tire slip angles in (24) have nonlin-
ear expressions. For the control design, a simplified model may
suffice based on several reasonable assumptions.

3.1 Assumptions for simplification
To simplify the model, we make the following assumptions

since the vehicle is under normal driving condition

A.1 Small angle assumption: sin · ≈ tan · ≈ ·, and cos · ≈ 1.
A.2 The steering angles are the same for the front left and right

wheels: δr = δl = δ .
A.3 The lift motion z is small compared to the height of CG h

(z� h): h+ z≈ h.
A.4 The longitudinal velocity is larger compared to the velocity

induced by yaw-rate in the longitudinal direction (V cosβ �
ψ̇

L f
2 , V cosβ � ψ̇

Lr
2 ): V cosβ ± ψ̇

L f
2 ≈ V cosβ ± ψ̇

Lr
2 ≈

V cosβ .
A.5 The lateral velocity Vy of the vehicle is small: Vx ≈V .

Based on A.1, A.2, A.4 and A.5, the slip angle of each tire
can be simplified from (24) as

α f i ≈ β +
ψ̇b f

Vx
−δ , αri ≈ β − ψ̇br

Vx
. (25)

Based on A.1, A.2, A.5 and (25), the relationship between
ax and u, x can be simplified as

Msax ≈∑u ji +∑u f iδβ −2Cα
r (β −

br

Vx
ψ̇)β

+2Cα
f (β +

b f

Vx
ψ̇−δ )(δ −β ),

(26)

where there are no dynamics in ax. In other words, (26) is an
equality constraint on the driving forces ui j.

In addition, based on A.1 and (25), the normal forces on the
rear-right/left wheel (15) is simplified as

Nri ≈Mrig+ F̄sri−Kr(z+brθ ∓
Lr

2
φ −dri)

−Cr(ż+brθ̇ ∓
Lr

2
φ̇ − ḋri)+ tanγruri

∓Cα
r (β −

br

Vx
ψ̇) tanηr,

(27)

where− is taken when i= r, and + is taken when i= l. Likewise,
the normal forces on the front-right/left wheel (21) is simplified
as

N f i ≈M f ig+ F̄s f i−K f (z−b f θ ∓
L f

2
φ −d f i)

−C f (ż−b f θ̇ ∓
L f

2
φ̇ − ḋ f i)

− tanγ f (u f i +Cα
f (β +

b f

Vx
ψ̇−δ )δ )

∓ (−u f iδ +Cα
f (β +

b f

Vx
ψ̇−δ )) tanη f ,

(28)

where − is taken when i = r, and + is taken when i = l.
Based on the above assumptions and linearized expression

of tire slip angles (25), the model derived in Section 2 can be
simplified for control design. To summarize, the control-oriented
model can be written as

ẋ = f (x,u,d,Vx) , (29)

where d = [d f r, ḋ f r,d f l , ḋ f l ,drr, ḋrr,drl , ḋrl ]
T . Detailed equations

of (29) are omitted here due to space limitation, but can be easily
derived from the nonlinear model with the above assumptions
A.1-A.5 and the tire slip angles (25).

3.2 Local Controllability of the Control-Oriented
Model

The symbolic Jacobian matrices of (29) can be obtained with
Matlab Symbolic Math Toolbox:

A :=
∂ f
∂x

= A(x,u,Vx) (30a)

Bu :=
∂ f
∂u

= Bu (x,u,Vx) , (30b)

where the linearized state-space matrices A and B depend in-
versely 1

Vx
on the longitudinal velocity. The symbolic control-

lability matrix [Bu,ABu, ...,A7Bu] has full rank irrespective of
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the choice of operating conditions (Vx 6= 0). Consequently, the
nonlinear system (29) is locally controllable at any equilibrium
point through the sufficient condition for local controllability at
an equilibrium point [4].

4 Open-Loop Simulations
In this section, we analyze how the control inputs influence

the sprung-mass motion using the linearized model (30) with
a constant driving speed ax = 0 and Vx 6= 0. Afterwards, we
show that passenger comfort can indeed be influenced by the
control inputs using open-loop step responses of both the non-
linear (Fig. 4) and linearized (30) models. In addition, these step
responses validate our linearization and steady-state analysis.

Note that in the open-loop simulation, the actual acceler-
ation is obtained from (6). Thus, the control input does not
guarantee ax = ar

x = 0. Consequently, the actual velocity might
change as time evolves within each simulation. System parame-
ters used in this work are summarized in Table 1.

TABLE 1: System parameters
L f [m] Lr [m] b f [m] br [m] h f [m] hr [m]
1.661 1.699 1.480 1.480 0.3 0.3

hRC
f [m] hRC

r [m] tanγ f tanγr tanη f tanηr
0.1 0.2 0.271 0.309 0.102 0.235
K f

[kN/m]
Kr

[kN/m]
C f

[kN/m/s]
Cr

[kN/m/s]
Cα

f
[kN/rad]

Cα
r

[kN/rad]
23 23 1.991 1.991 11 11

Ms [kg]
JX

[kg· m2]
JY

[kg· m2]
JZ

[kg· m2]
1822 404 2328 2352

4.1 Steady-State Analysis with Linearized System
The control-oriented model (29) after simplification is still

nonlinear, parameter varying, and has coupling terms between
controls and states due to the coupling between the cornering n f i
and driving forces u f i on the front wheels. To obtain intuition on
the input to output behavior, (29) is linearized at the equilibrium
point where the vehicle is driven straight on a flat road at a con-
stant speed Vxe =Ve = 10m/s. Since we assume the road load has
already been balanced by nominal forces and not included in the
model and control design, the aforementioned operating condi-
tion corresponds to [ue,de] = [0,0], which leads to the following
equilibrium point: [ue,xe,de] = [0,0,0] (therefore axe = 0) from
(29) and the corresponding linearized system

ẋ = Aex+Bueu+Bded, (31)

where Ae = ∂ f
∂x |ue,xe,de,Vxe , Bue = ∂ f

∂u |ue,xe,de,Vxe , and Bde =
∂ f
∂d |ue,xe,de,Vxe . Afterwards, the steady-state relationship from the
control input u and the road disturbance d to the sprung-mass
state x can be obtained through the DC gain analysis. Here we
focus on the DC gain matrix Gyu from the control input u to

the outputs related to passenger comfort and the driver demand
y = [z,θ ,φ , ψ̇]T .

We use the gain Gyu to find input directions that produce
decoupled motion as shown in Table 2 and Fig. 5. The corre-
sponding control u is obtained through

y∞ =
[
Gyu1 Gyu2

][u∞
1

u∞
2

]
,

where Gyu =
[
Gyu1 Gyu2

]
, u∞

1 = [u∞
f r,u

∞
f l ,u

∞
rr,u

∞
rl ]

T , and u∞
2 = δ ∞.

The gain Gyu1 is of full rank with the linearized dynamics (31),
which implies

u∞
1 =G−1

yu1
(y∞−Gyu2u∞

2 ). (32)

TABLE 2: DC gain analysis from control inputs to states for decoupled
motion with (31).

z∞ θ ∞ φ ∞ ψ̇∞ u∞
f r u∞

f l u∞
rr u∞

rl δ ∞

[m] [rad] [rad] [rad/s] [kN] [kN] [kN] [kN] [rad]

0.1 0 0 0 −3.95 −3.95 +4.71 +4.71 0

0 0.1 0 0 −9.13 −9.13 −8.01 −8.01 0

0 0 0.1 0 +3.69 −3.69 −3.62 +3.62 0

0 0 0 0.1 −0.62 +0.62 +0.61 −0.61 0.0255

0 0 0 0.1 −0.47 +0.47 +0.71 −0.71 0

(a) Lift (b) Pitch (c) Roll

(d) yaw-rate (steered)

(e) yaw-rate

FIGURE 5: Scenarios of decoupled motion from DC gain analysis in
Table 2. Red arrows indicate the direction of the driving force on each
wheel.
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Fig. 5a and the first (non-title) row of Table 2 show the driv-
ing forces u∞

i j which produce a steady-state lift of z∞ = 0.1 me-
ters without any steady-state pitch, roll, or yaw motion when the
front wheels are not steered δ = 0. The front wheels have a driv-
ing force in the −X and the rear wheels have a driving force in
the +X direction. This brings the front and rear wheels slightly
closer together, lifting the vehicle due to the angled suspension
arms shown in the side view of Fig. 1.

Fig. 5b and the second (non-title) row of Table 2 show the
driving forces u∞

i j which produce a steady-state pitch θ ∞ = 0.1
radians without any steady-state lift, roll, or yaw motion when
the front wheels are not steered δ ∞ = 0. Both the front and rear
wheels have driving forces in the −X direction. Note that this
will cause the vehicle to accelerate in the −X direction. This
backward acceleration is responsible for the forward pitching of
the vehicle, with the anti-lift/squat partially attenuating the natu-
ral pitch of the vehicle.

Fig. 5c and the third (non-title) row of Table 2 show the driv-
ing forces u∞

i j which produce a steady-state roll φ ∞ = 0.1 radians
without any steady-state lift, pitch, or yaw motion when the front
wheels are not steered δ ∞ = 0. On the left side of the vehicle,
the front and rear wheels have opposing driving forces in the−X
and +X directions respectively. This causes the left side of the
vehicle to lift. Conversely, on the right side of the vehicle the
front and rear wheels have driving forces in the +X and −X di-
rections causing the right side to drop. The result is that vehicle
is rolled φ ∞ = 0.1 while the net lift of the CG is zero z∞ = 0.

Fig. 5d and the forth (non-title) row of Table 2 show the
driving forces u∞

i j which produce a steady-state yaw ψ̇∞ = 0.1
radians per second without any steady-state lift, pitch, or roll
motion when the front wheels are have a constant steering angle
δ ∞ = 0.0255 radians. The steering angle δ ∞ = 0.0255 radians
produces the desired steady-state yaw rate ψ̇∞ = 0.1 radians per
second. However, the cornering due to the steered front wheels
induces positive roll motion. The control input in the forth (non-
title) row of Table 2 is used to counteract this roll motion, result-
ing in a pure yaw-motion.

Fig. 5e and the fifth (non-title) row of Table 2 show the driv-
ing forces u∞

i j needed to again produce a decoupled steady-state
yaw ψ̇∞ = 0.1 when the front wheels are not steered δ ∞ = 0. The
driving forces in the fifth row of Table 2 can be decomposed into
two forces u1 and u2 as u = u1 + u2 where the first input u1 is
the previous input from the forth row of Table 2, which coun-
teracts the roll motion induced by the yaw-rate ψ̇∞ = 0.1. The
second input u2 is a differential driving force choosen to produce
the desire yaw rate

u2 = [0.15,−0.15,0.10,−0.10,0]T .

This control input u2 applies positive (in the +X direction) to
the right-side of the vehicle and negative (in the −X direction)
to the left-side of the vehicle, producing a net torque in the yaw

direction. The input in the fifth row of Table 2 is the sum u =
u1 +u2 of these control inputs.

4.2 Step response to driving forces
To validate the control-oriented model (29), in the following

sections, the open-loop step response of the nonlinear system de-
rived in Section 2 is compared to the open-loop simulation result
with (29) and the steady-state value obtained from the DC gain
calculation with the linearized system (31).

In the first scenario, the vehicle is initially driving at 10
m/s and then constant driving forces are applied the front-right
+161.82N, front-left +27.03N, rear-right +165.76N, and rear-
left +297.55N wheels from t = 0 onward. The steering angle is
zero δ (t) = 0 throughout.

The directions of the driving forces are described in Fig-
ure. 6a, and the time domain response of the sprung-mass state
is shown in Figure. 6b.

The sum of the driving forces is in the +X direction, which
corresponds to the case when the vehicle is accelerating, and
the driving force on each wheel will induce suspension reaction
force (13a), (19a) in the +X direction for each suspension as-
sembly, therefore induce negative motion of the sprung-mass in
the pitch direction. However, due to the anti-lift/squat suspen-
sion geometries, the driving forces in the +X direction on the
two front wheels induce reaction force in the −Z (13b), (19b)
direction, and the driving force in the +X direction on the two
rear wheels induce reaction force in the +Z direction. The re-
sulting torque in the positive pitch direction will partially attenu-
ate the negative pitch motion caused by the vehicle acceleration.
Meanwhile, since the magnitude of the driving forces on the rear
wheels are larger compared to those on the front wheels, the +Z
lift reaction forces exceed the −Z lift reaction forces. As a re-
sult, positive motion of the sprung-mass in the lift direction is in-
duced. In addition, since the driving force on the rear-left wheel
is significantly larger than that on the front-left wheel, the large
net lift reaction force will be induced in the +Z direction. By
comparison, on the right hand side of the vehicle, since the driv-
ing forces are similar, the induced lift reaction forces will nearly
cancel each other out. Consequently, the resultant will induce
positive roll motion of the sprung-mass.

Despite the fact that the actual velocity changes, the lin-
earized control-oriented model (31) is still accurate enough to
depict the steady-state of the nonlinear model. In addition, it
can be seen that the control-oriented model (29) is a reasonable
accurate representation of the nonlinear model.

4.3 Step response to steering angle
Figure. 7 shows the scenario where the steering angle is 0.01

radians (left turn) and the driving forces on each wheel are zero.
The time domain response of the sprung-mass state is shown in
Fig. 7b.
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(a) Controls

(b) State responses

FIGURE 6: State response comparison among open-loop simulation
with the nonlinear model, the control-oriented model and DC gain cal-
culation. Solid blue: open-loop simulation results with nonlinear model.
Solid red: open-loop simulation results with (29). Dashed black: DC
gain calculation with (31).

(a) Controls

(b) State responses

FIGURE 7: State response comparison among open-loop simulation
with the nonlinear model, the control-oriented model and DC gain cal-
culation. Solid blue: open-loop simulation results with nonlinear model.
Solid red: open-loop simulation results with (29). Dashed black: DC
gain calculation with (31).

Since the vehicle is turning left, the yaw-rate will be pos-
itive, and the centrifugal force will cause the vehicle to roll to
the right (+) as shown in the third and second subplot in the
left column of Fig. 7b, respectively. Note that in the open-loop
simulation, although the sum of the driving forces is zero, due
to wheel steering, the lateral force will induce forces in the −X
direction. Consequently, the actual velocity of the vehicle will
decrease.

It can be seen from Fig. 7b that the predicted steady-
state with the linearized control-oriented model (31) is accu-
rate enough to depict the steady-state of the nonlinear model ex-
cept some small errors in the steady-state lift and pitch motion.
The discrepancy between the nonlinear and the control-oriented
model is small despite some small errors in the lift and pitch
motions, which means that the control-oriented model is a rea-

sonable accurate representation of the nonlinear model.

5 CONCLUSIONS
In this paper, we derived a model of the suspension and

sprung-mass of electric vehicles with passive suspension and in-
dependent wheel drive. We showed, through controllability anal-
ysis and open-loop simulations, that the state of the sprung-mass
can indeed be influenced by the controlled driving forces. Fi-
nally, the effectiveness of the control-oriented model was demon-
strated by comparison with the original model in open-loop sim-
ulation. It serves as the foundation of the controller design in the
subsequent work.
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