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Abstract
Learning data representations that capture task-related features, but are invariant to nui-
sance variations remains a key challenge in machine learning. We introduce an automated
Bayesian inference framework, called AutoBayes, that explores different graphical models
linking classifier, encoder, decoder, estimator and adversarial network blocks to optimize
nuisance-invariant machine learning pipelines. AutoBayes also enables learning disentangled
representations, where the latent variable is split into multiple pieces to impose various re-
lationships with the nuisance variation and task labels. We benchmark the framework on
several public datasets, and provide analysis of its capability for subject-transfer learning
with/without variational modeling and adversarial training. We demonstrate a significant
performance improvement with ensemble learning across explored graphical models
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ABSTRACT Learning data representations that capture task-related features, but are invariant to nuisance
variationsa remains a key challenge in machine learning. We introduce an automated Bayesian inference
framework, called AutoBayes, that explores different graphical models linking classifier, encoder, decoder,
estimator and adversarial network blocks to optimize nuisance-invariant machine learning pipelines.
AutoBayes also enables learning disentangled representations, where the latent variable is split into
multiple pieces to impose various relationships with the nuisance variation and task labels. We benchmark
the framework on several public datasets, and provide analysis of its capability for subject-transfer learning
with/without variational modeling and adversarial training. We demonstrate a significant performance
improvement with ensemble learning across explored graphical models.

aFor example of speech recognition, nuisance factors such as speaker’s attributes and recording environment may change the task
accuracy. For image recognition, ambient light conditions and image sensor conditions may become inherent nuisance factors. In
the context of this paper, nuisance variations mainly refer to subject identities and biological states during recording sessions for
physiological data learning.

INDEX TERMS Bayesian networks, adversarial learning, ensemble learning, brain-computer interface,
electroencephalography, electromyography

I. INTRODUCTION
The great advancement of deep learning techniques based
on deep neural networks (DNN) has enabled more prac-
tical design of human-machine interfaces (HMI) through
the analysis of the user’s physiological data [1], such as
electroencephalogram (EEG) [2] and electromyogram (EMG)
[3]. However, such biosignals are highly prone to variation
depending on the biological states of each subject [4]. Hence,
frequent calibration is often required in typical HMI systems.

Toward resolving this issue, subject-invariant methods [5],
employing adversarial training [6]–[8] with the Conditional
Variational AutoEncoder (A-CVAE) [9], [10] shown in
Fig.1(b), have emerged to reduce user calibration for realizing
successful HMI systems. Compared to a standard DNN
classifier C in Fig.1(a), integrating additional functional
blocks for encoder E , nuisance-conditional decoder D, and
adversary A networks offers excellent subject-invariant

performance. The DNN structure may be potentially extended
with more functional blocks and more latent nodes as shown
in Fig.1(c).

However, such a DNN architecture design may rely on
human effort and insight to determine the block connectivity
of DNNs. Automation of hyperparameter and architecture
exploration in the context of AutoML [11]–[19] can facilitate
DNN design suited for nuisance-invariant inference. Never-
theless, without proper reasoning, most of the search space
for link connectivity will be pointless.

In this paper, we propose a systematic automation frame-
work called AutoBayes, which searches for the best inference
graph model associated with a Bayesian graph model (also
a.k.a. Bayesian network) well-suited to reproduce the training
datasets. The proposed method automatically formulates
various different Bayesian graphs by factorizing the joint
probability distribution in terms of data, class label, subject
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FIGURE 1: Inference methods to classify Y given data X under latent Z and semi-labeled nuisance S.
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FIGURE 2: Model accuracy across different datasets. AutoBayes offers significant gain.

identification (ID), and inherent latent representations. Given
Bayesian graphs, some meaningful inference graphs are
generated through the Bayes-Ball algorithm [20] for pruning
redundant links to achieve high-accuracy estimation. In
order to promote robustness against nuisance variations
such as inter-subject/session factors, the explored Bayesian
graphs can provide reasoning to use adversarial training
with/without variational modeling and latent disentanglement.
We demonstrate that AutoBayes can achieve excellent
performance across various public datasets, in particular
with an ensemble stacking of multiple explored graphical
models.

II. KEY CONTRIBUTIONS
At the core of our methodology is the consideration of
graphical models that capture the probabilistic relationship
between random variables representing the data features X ,
task labels Y , nuisance variation labels S, and (potential)
latent representations Z. The ultimate goal is to infer the
task label Y from the measured data feature X , which is
hindered by the presence of nuisance variations (e.g., inter-

subject/session variations) that are (partially) labelled by
S. One may use a standard DNN to classify Y given X
as shown in Fig. 1(a), without explicitly involving S or Z.
Although A-CVAE in Fig. 1(b) may offer nuisance-robust
performance through adversarial disentanglement of S from
latent Z, there is no guarantee that such a model can perform
well across different datasets. It is exemplified in Fig. 2 where
A-CVAE outperforms the standard DNN model for some
datasets (QMNIST, Stress, ErrP) while it does not for the
other cases. This may be due to the underlying probabilistic
relationship of the data varying across datasets. Our proposed
framework can construct justifiable models, achieving higher
performance for every dataset, as demonstrated in Fig. 2. It
is verified that significant gain is attainable with ensemble
methods of different Bayesian graphs which are explored in
our AutoBayes. For example, our method with a relatively
shallow architecture achieves 99.61% accuracy which is
close to state-of-the-art performance in QMNIST dataset.

The main contributions of this paper over the existing
works are five-fold as follows:

• AutoBayes automatically explores potential graphical

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

models inherent to the data by combinatorial pruning of
dependency assumptions (edges) and then applies Bayes-
Ball to examine various inference strategies, rather than
blindly exploring hyperparameters of DNN blocks.

• AutoBayes offers a solid reason of how to connect
multiple DNN blocks to impose conditioning and
adversary censoring for the task classifier, feature
encoder, decoder, nuisance indicator and adversary
networks, based on an explored Bayesian graph.

• The framework is also extensible to multiple latent
representations and nuisances factors.

• Besides fully-supervised training, AutoBayes can auto-
matically build some relevant graphical models suited
for semi-supervised learning.

• Multiple graphical models explored in AutoBayes can
be efficiently exploited to improve performance by
ensemble stacking.

We note that this paper relates to some existing literature
in AutoML, variational Bayesian inference [9], [10], [21],
adversarial training [6]–[8], [22]–[24], and Bayesian network
[25]–[27] as addressed in Appendix A.1 in more detail.
Nonetheless, AutoBayes is a novel framework that diverges
from AutoML, which mostly employs architecture tuning
at a micro level. Our work focuses on exploring neural
architectures at a macro level, which is not an arbitrary
diversion, but a necessary interlude. Our method focuses
on the relationships between the connections in a neural
network’s architecture and the characteristics of the data [28].
In addition to the macro-level structure learning of Bayesian
network, our approach provides a new perspective in how to
involve the adversarial blocks and to exploit multiple models
for ensemble stacking.

III. AUTOBAYES
A. AUTOBAYES ALGORITHM

The overall procedure of the AutoBayes algorithm is de-
scribed in the pseudocode of Algorithm 1. The AutoBayes
automatically constructs non-redundant inference factor
graphs given a hypothetical Bayesian graph assumption,
through the use of the Bayes-Ball algorithm. Depending
on the derived conditional independency and pruned factor
graphs, DNN blocks for encoder E , decoder D, classifier
C, nuisance estimator N and adversary A are reasonably
connected. The entire network is trained with variational
Bayesian inference and adversarial training.

The Bayes-Ball algorithm [20] facilitates an automatic
pruning of redundant links in inference factor graphs through
the analysis of conditional independency. Fig. 3 shows
ten Bayes-Ball rules to identify conditional independency.
Given a Bayesian graph, we can determine whether two
disjoint sets of nodes are independent conditionally on other
nodes through a graph separation criterion. Specifically,
an undirected path is activated if a Bayes ball can travel
along without encountering a stop symbol: in Fig. 3.
If there are no active paths between two nodes when some

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 3: Bayes-Ball algorithm basic rules [20]. Condi-
tional nodes are shaded.

conditioning nodes are shaded, then those random variables
are conditionally independent.

B. GRAPHICAL MODELS
We here focus on 4-node graphs. Let p(y, s, z, x) denote the
joint probability distribution underlying the datasets for the
four random variables, i.e., Y , S, Z, and X . The chain rule
can yield the following factorization for a generative model
from Y to X (note that at most 4! factorization orders exist
including useless ones such as with reversed direction from
X to Y ):

p(y, s, z, x) = p(y)p(s|y)p(z|s, y)p(x|z, s, y), (1)

which is visualized in Bayesian graph of Fig. 4(a). The
probability conditioned on X can then be factorized, e.g., as
follows (among 3! different orders of inference factorization
for four-node graphs):

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|s, z, x), Z-first-inference
p(s|x)p(z|s, x)p(y|z, s, x), S-first-inference

(2)

which are marginalized to obtain the likelihood: p(y|x) =

Es,z|x
[
p(y, s, z|x)

]
. The above two scheduling strategies in

(2) are illustrated in factor graph models as in Figs. 4(b) and
(c), respectively.

The graphical models in Fig. 4 do not impose any
assumption of potentially inherent independency in datasets
and hence are most generic. However, depending on the
underlying independency in datasets, we may be able to
prune some edges in those graphs. For example, if the data
only follows the simple Markov chain of Y − X , while
being independent of S and Z, as shown in Fig. 5(a), all
links except one between X and Y will be unreasonable
in inference graphs of Figs. 4(b) and (c), that justifies the
standard classifier model in Fig. 1(a). This implies that
more complicated inference models such as A-CVAE can
be unnecessarily redundant depending on the dataset. This
motivates us to consider an extended AutoML framework
which automatically explores the best pair of inference factor
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Algorithm 1 Pseudocode for AutoBayes Framework

Require: Nodes set V = [Y,X, S1, S2, . . . , Sn, Z1, Z2, . . . , Zm], where Y denotes task labels, X is a measurement data,
S = [S1, S2, . . . , Sn] are (potentially multiple) semi-supervised nuisance variations, and Z = [Z1, Z2, . . . , Zm] are
(potentially multiple) latent vectors

Ensure: Semi-supervised training/validation datasets
1: for all permutations of node factorization from Y to X do
2: Let B0 be the corresponding Bayesian graph for the permuted full-chain factorization
3: for all combinations of link pruning on the full-chain Bayesian graph B0 do
4: Let B be the corresponding pruned Bayesian graph
5: Apply the Bayes-Ball algorithm on B to build a conditional independency list I
6: for all permutations of node factorization from X to Y do
7: Let F0 be the factor graph corresponding to a full-chain conditional probability
8: Prune all redundant links in F0 based on conditional independency I
9: Let F be the pruned factor graph

10: Merge the pruned Bayesian graph B into the pruned factor graph F
11: Attach an adversary network A to latent nodes Z for Zk ⊥ S ∈ I
12: Assign an encoder network E for p(Z| · · · ) in the merged factor graph
13: Assign a decoder network D for p(x| · · · ) in the merged factor graph
14: Assign a nuisance indicator network N for p(S| · · · ) in the merged factor graph
15: Assign a classifier network C for p(y| · · · ) in the merged factor graph
16: Adversary train the whole DNN structure to minimize a loss function in (5)
17: end for . At most (|V| − 2)! combinations
18: end for . At most 2|V|(|V|−1)/2 combinations
19: end for . At most (|V| − 2)! combinations
20: return the best model having highest task accuracy in validation sets

Y S Z X

(a) Bayesian Model

X Z S YpZ pS pY

(b) Z-First Inference

X S Z YpS pZ pY

(c) S-First Inference

FIGURE 4: Full-chain Bayesian graph and inference models for Z-first or S-first factorizations.

graph and corresponding Bayesian graph models matching
dataset statistics besides the micro-scale hyperparameter
tuning.

C. METHODOLOGY
AutoBayes begins with exploring any potential Bayesian
graphs by cutting links of the full-chain graph in Fig. 4(a),
imposing possible (conditional) independence. We then adopt
the Bayes-Ball algorithm on each hypothetical Bayesian
graph to examine conditional independence over different
inference strategies, e.g., full-chain Z-/S-first inference
graphs in Figs. 4(b)/(c). Applying Bayes-Ball justifies the
reasonable pruning of the links in the full-chain inference
graphs, and also the potential adversarial censoring when Z is
independent of S. This process automatically constructs the
connectivity of inference, generative, and adversary blocks
with sound reasoning.

Consider an example case when the data adheres to the
following factorization:

p(y, s, z, x) = p(y)p(s|�y)p(z|�s, y)p(x|z, s, �y), (3)

where we explicitly indicate conditional independence by
slash-cancellation from the full-chain case in (1). This
corresponds to a Bayesian graphical model illustrated in
Fig. 5(e). Applying the Bayes-Ball algorithm to the Bayesian
graph yields the following conditional probability:

p(y, s, z|x) = p(z|x)p(s|z, x)p(y|z, �s, �x), (4)

for the Z-first inference strategy in (2). The corresponding
factor graph is then given in Fig. 6(c). Note that the Bayes-
Ball also reveals that there is no marginal dependency
between Z and S, which provides the reason to use
adversarial censoring to suppress nuisance information S
in the latent space Z. In consequence, by combining the
Bayesian graph and factor graph, we automatically obtain A-
CVAE model in Fig. 1(b). AutoBayes justifies A-CVAE under
the assumption that the data follows the Bayesian model
E in Fig. 5(e). As the true generative model is unknown,
AutoBayes explores different Bayesian graphs like in Fig. 5
to search for the most relevant model. Our framework is
readily applicable to graphs with more than 4 nodes to
represent multiple Y , S, and Z. Models J and K in Fig. 5
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FIGURE 5: Example Bayesian graphs for data generative models under automatic exploration. Blue arrows indicate generative
graph for decoder networks. Thick circled S specifies the requirement of S-conditional decoder, which is less-convenient
when learning unlabeled nuisance datasets.

are such examples having multiple latent factors Z1 and
Z2. Despite the search space for AutoBayes will rapidly
grow with the number of nodes, most realistic datasets
do not require a large number of neural network blocks
for macro-level optimization. See Appendix A.2 for more
detailed descriptions for some Bayesian graph models to
construct factor graphs like in Fig. 6. Also see discussions
of graphical models suitable for semi-supervised learning in
Appendix A.4.

a: Training:
Given a pair of generative graph and inference graph, the
corresponding DNN structures will be trained. For example
of the generative graph model K in Fig. 5(k), one relevant
inference graph Kz in Fig. 6(k) will result in the overall
network structure as shown in Fig. 7, where adversary
network is attached as Z2 is (conditionally) independent
of S. This 5-node graph model justifies a recent work on
partially disentanged A-CVAE by [29]. Each factor block is
realized by a DNN, e.g., parameterized by θ for pθ(z1, z2|x),
and all of the networks except for adversarial network are
optimized to minimize corresponding loss functions including
L(ŷ, y) as follows:

min
θ,ψ,µ

max
η

E
[
L(ŷ, y) + λsL(ŝ, s) + λxL(x̂′, x)

+ λzKL(z1, z2‖N (0, I))− λaL(ŝ′, s)
]
,

(5)

(z1, z2) = pθ(x), ŷ = pφ(z1, z2), ŝ = pψ(z1),

x̂′ = pµ(z1), ŝ′ = pη(z2),
(6)

where λ∗ denotes a regularization coefficient, KL is the
Kullback–Leibler divergence, and the adversary network
pη(s′|z2) is trained to minimize L(ŝ′, s) in an alternating
fashion (see the Adversarial Regularization paragraph below).

The training objective can be formally understood from a
likelihood maximization perspective, in manner that can be
seen as a generalization of the VAE Evidence Lower Bound
(ELBO) concept [21]. Specifically, it can be viewed as the

maximization of a variational lower bound of the likelihood
pΦ(x, y, s) that is implicitly defined and parameterized by
the networks, where Φ represents the collective parameters
of the network modules (e.g., Φ = (φ, ψ, µ) in the example
of (5)) that specify the generative model pΦ(x, y, s|z), which
implies the likelihood pΦ(x, y, s), as given by

pΦ(x, y, s) =

∫
pΦ(x, y, s|z)p(z) dz.

However, since this expression is generally intractable, we
introduce qθ(z|x, y, s) as a variational approximation of the
posterior pΦ(z|x, y, s) implied by the generative model [21],
[30]:

1

n

n∑
i=1

log pΦ(xi, yi, si)=
1

n

n∑
i=1

[
log pΦ(xi, yi, si|zi)−

log
qθ(zi|xi, yi, si)

p(zi)
+log

qθ(zi|xi, yi, si)
pΦ(zi|xi, yi, si)

]
≈

1

n

n∑
i=1

[
log pΦ(xi, yi, si|zi)

]
−KL(qθ(z|x, y, s)‖p(z))+

KL(qθ(z|x, y, s)‖pΦ(z|x, y, s)) ≥
1

n

n∑
i=1

[
log pΦ(xi, yi, si|zi)

]
−KL(qθ(z|x, y, s)‖p(z)),

where the samples zi ∼ qθ(z|xi, yi, si) are drawn for each
training tuple (xi, yi, si), and the final inequality follows
from the non-negativity of KL divergence.

Ultimately, the minimization of our training loss func-
tion corresponds to the maximization of the lower bound
in (7), which corresponds to maximizing the likelihood of
our implicit generative model, while also optimizing the
variational posterior qθ(z|x, y, s) toward the actual posterior
for the latent representation pΦ(z|x, y, s), since the gap in the
bound is given by KL(qθ(z|x, y, s)‖pΦ(z|x, y, s)). Further
factoring of log pΦ(x, y, s|z) yields the multiple loss-terms
and network modules.
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b: Adversarial Regularization:
We can utilize adversarial censoring when Z and S should
be marginally independent, e.g., such as in Fig. 1(b) and
Fig. 7, in order to reinforce the learning of a representation
Z that is disentangled from the nuisance variations S. This is
accomplished by introducing an adversarial network that aims
to maximize a parameterized approximation q(s|z) of the
likelihood p(s|z), while this likelihood is also incorporated
into the loss for the other modules with a negative weight.
The adversarial network, by maximizing the log likelihood
log q(s|z), essentially maximizes a lower-bound of the
mutual information I(S;Z), and hence the main network
is regularized with the additional term that corresponds
to minimizing this estimate of mutual information. This
follows since the log-likelihood maximized by the adversarial
network is given by

E[log q(s|z)] = I(S;Z)−H(S)−KL
(
p(s|z)‖q(s|z)

)
, (7)

where the entropy H(S) is constant.

D. ENSEMBLE LEARNING
We further introduce ensemble methods to make best use of
all Bayesian graph models explored by the AutoBayes frame-
work without wasting lower-performance models. Ensemble

stacked generalization works by stacking the predictions of
the base learners in a higher level learning space, where
a meta learner corrects the predictions of base learners
[31]. Subsequent to training base learners, we assemble the
posterior probability vectors of all base learners together
to improve the prediction. We compare the predictive
performance of a logistic regression (LR) and a shallow
multi-layer perceptron (MLP) as an ensemble meta learner
to aggregate all inference models. See Appendix A.5 for
more detailed description of the stacked generalization.

IV. EXPERIMENTAL EVALUATION
A. DATASETS
We experimentally demonstrate the performance of Auto-
Bayes for publicly available datasets as listed in Table 1. Note
that they cover a wide variety of data size, dimensionality,
subject scale, and class levels as well as sensor modalities
including image, EEG, EMG, and electrocorticography
(ECoG). See more detailed information of each dataset in
Appendix A.6.

B. MODEL IMPLEMENTATION
All models were trained with a minibatch size of 32 and using
the Adam optimizer with an initial learning rate of 0.001.
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TABLE 1: Parameters of Public Dataset Under Investigation

Dataset Modality Dimension Nuisance (|S|) Classes (|Y |) Samples Reference

QMNIST Image 28× 28 836 10 70,000 [32]
Stress Temperature etc. 7× 1 20 4 24,000 [33]
RSVP EEG 16× 128 10 4 41,400 [34]

MI EEG 64× 480 106 4 9,540 [35]
ErrP EEG 56× 250 27 2 9,180 [36]

Faces Basic ECoG 31× 400 14 2 4,100 [37], [38]
Faces Noisy ECoG 39× 400 7 2 2,100 [37], [39]

ASL EMG 16× 100 5 33 9,900 [40]

The learning rate is halved whenever the validation loss
plateaus. A compact convolutional neural network (CNN)
with 4 layers is employed as an encoder network E to
extract features from C × T data. Each convolution is
followed by batch normalization (BN) and rectified linear
unit (ReLU) activation. The AutoBayes chooses either a
deterministic latent encoder or variational latent encoder
under Gaussian prior. The original data is reconstructed by
a decoder network D that applies transposed convolutions.
All of our experiments were run for 20 epochs on NVIDIA
Tesla K80 12GB GPU. See Appendix A.7 for more details.

C. RESULTS
Fig. 8(a) shows the performance of QMNIST across 39
different inference models explored in AutoBayes including
2 ensemble models. Over 37 base models, some outperforms
the standard classifier model A, whereas the rest of the
models underperform. We observe a large gap of 1.0%
between the best and worst models with a standard deviation
of 0.23% across all Bayesian graph models. This indicates
that we may have a potential risk that one particular model
may lose up to 1.0% accuracy if we do not explore different
models.

Similar behaviors with a huge deviation can be seen for
different datasets as shown in Fig. 8(b). It was shown that the
best inference strategy highly depends on datasets. Specifi-
cally, the best model at one dataset does not perform best
for different datasets. This suggests that we must consider
different inference strategies for each target dataset and
our AutoBayes provides such an adaptive framework across
datasets. More detailed results are found in Appendix A.8.

Remarkably, the ensemble of base learners further en-
hances the performance regardless of the choice from LR
or MLP as the meta learner, as illustrated in Fig. 2 across
all the datasets. For some low-performing datasets such as
ErrP, MI and Faces (Noisy), ensemble learning significantly
improves the accuracy by 15.3%, 19.3% and 13.2% at the
expense of more storage and computational resources.

Exploring different models has actually a significant
benefit in improving nuisance robustness as shown in
Fig. 9(a), where box-whisker plots are present to show the
quartile distribution of the subject variation for the Stress
dataset having |S| = 20 users. We can observe that the
standard classification (Model A) has a wider distribution;
the best subject achieves an accuracy grater than 96%,
whereas the worst-case user has lower than 82% accuracy.

Except for model A, the other models from B to Kz take
the subject ID (S) into consideration to extract nuisance-
robust feature, which leads to significant improvement for
the worst-case user performance not only for the mean
or median. The ensemble stacking further improves the
subject variation robustness, achieving the worst-case user
performance of at least 94%. Additional results per user are
found in Appendix A.9.

Despite the performance gain, the nuisance-robust models
tend to have higher complexity. Fig. 9(b) shows the trade-off
between the accuracy and the space complexity. Here, we
varied the number of hidden layers and hidden nodes for
the models A, B, and Js to adjust the space complexity.
The Pareto front over the finite set of DNN configurations is
indicated with lines. It is observed that the standard classifier
model A has superior performance only at low complexity
regimes, while it does not improve performance beyond 95%
accuracy even with increased complexity. The Pareto front of
AutoBayes is thus better than the individual models at higher
accuracy regimes. See Appendix A.10 for an additional
analysis of time complexity.

We finally compare the performance of AutoBayes with
the benchmark competitor models from [5], [29], [41]–[43]
in Table 2. It can be seen that AutoBayes outperforms the
state-of-the-art in all datasets except QMNIST. Consequently,
we can see a great advantage of AutoBayes with exploring
different graphical models. Even for QMNIST, AutoBayes
meta-MLP model, achieving 99.61% accuracy, ranks 17
in the published leaderboard. Note that performing better
than 99.84% is nearly impossible, since some numbers are
illegible or mislabeled. Also note that we have not specifically
designed AutoBayes architecture for image classification but
for spatio-temporal signal applications and hyper-parameters
were not fully optimized yet.

AutoBayes can be readily integrated with AutoML to
optimize any hyperparameters of individual DNN blocks.
Nevertheless, as our primary objective was to show a proof-
of-concept benefit from solely graphical model exploration
of AutoBayes, we leave more rigorous analysis to optimize
DNN parameters such as network depths, widths, activation,
augmentation, etc. as a future work.

V. CONCLUSION AND FUTURE WORK
We proposed a new concept called AutoBayes which explores
various different Bayesian graph models to facilitate search-
ing for the best inference strategy, suited for nuisance-robust
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FIGURE 8: Task classification accuracy across different graphical models (with standard deviation).
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FIGURE 9: Task classification accuracy for Stress dataset.

deep learning. With the Bayes-Ball algorithm, our method
can automatically construct reasonable link connections
among classifier, encoder, decoder, nuisance estimator and
adversary DNN blocks. As a proof-of-concept analysis, we
demonstrated the benefit of AutoBayes for various public
datasets. We observed a huge performance gap between the
best and worst graph models, implying that the use of one
particular model without graph exploration can potentially
suffer a poor classification result. In addition, the best
model for one dataset does not always perform best for
different data, which encourages us to use AutoBayes for
adaptive model generation given target datasets. We further
improved the performance approaching the state-of-the-art
accuracy by exploiting multiple graphical models explored
in AutoBayes through the use of ensemble stacking. The
ensemble AutoBayes offers significant gain in nuisance

robustness by improving the worst-case user performance.
Even though additional computations are required, we
showed that AutoBayes can still achieve the superior Pareto
front in the trade-off between complexity and accuracy. We
are extending the AutoBayes framework to integrate AutoML
to optimize hyperparameters of each DNN block. How to
handle the exponentially growing search space of possible
Bayesian graphs along with the number of random variables
remains a challenging future work. It should require more
sophisticated metrics like Bayesian information criterion for
efficient graph exploration.

APPENDICES
A. RELATED WORK

We note that this paper relates to some existing literature as
follows.
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TABLE 2: Task classification performance of AutoBayes compared to state-of-the-art.

Method QMNIST Stress RSVP MI ErrP Faces Basic Faces Noisy ASL

Ensemble AutoBayes (Meta-MLP) 99.61 98.98 99.99 76.71 91.21 78.36 89.71 55.06

Ensemble AutoBayes (Meta-LR) 99.55 98.96 99.98 77.14 88.54 75.68 88.40 54.98

Best of AutoBayes 99.54 95.35 93.42 57.83 75.91 67.31 76.58 51.12

State-of-the-art (SOTA) 99.84 85.30 71.60 63.8 48.80 — — —

• AutoML: Searching DNN models with hyperparameter
optimization has been intensively investigated in a
framework called AutoML [11]–[19]. The automated
methods include architecture search [14], [16], [17],
[19], learning rule design [44], [45], and augmenta-
tion exploration [46], [47]. Most work used either
evolutionary optimization or reinforcement learning
framework to adjust hyperparameters or to construct
network architecture from pre-selected building blocks.
miconi2016neural gradually increases the size of an
RNN starting from only one node by incorporating
structural parameters into model training, which are
optimized along with the model weights. [48] uses
reinforcement learning to find the optimal neural net-
work architecture based on actor-critic framework. The
method uses an LSTM as a controller and critic to
explore the hyperparameter configurations for each
layer (number of filters, kernel size and stride) based
on the validation error of the output architecture that
corresponds to reward. The recent AutoML-Zero [17]
considers an extension to preclude human knowledge
and insights for fully automated designs from scratch.

• Variational Bayesian Inference: The VAE [21] intro-
duced variational Bayesian inference methods, incorpo-
rating autoassociative architectures, where generative
and inference models can be learned jointly. This
method was extended with the CVAE [10], which
introduces a conditioning variable that could be used to
represent nuisance variations, and a regularized VAE in
[9], which considers disentangling the nuisance variable
from the latent representation.

• Adversarial Training: The concept of adversarial
networks was introduced with Generative Adversarial
Networks (GAN) [22], and has been adopted into
myriad applications. The simultaneously discovered
Adversarially Learned Inference (ALI) [23] and Bidi-
rectional GAN (BiGAN) [24] propose an adversarial
approach toward training an autoencoder. Adversarial
training has also been combined with VAE to regularize
and/or disentangle the latent representations [6]–[8].

• Bayesian Network Structure Learning: Deep
Bayesian network [25]–[27] has been studied to learn
probabilistic relationships between random variables.
Learning model structure of a Bayesian network is
a problem that has long been studied, e.g., recovery
algorithm [49], scoring methods [50], and constraint
methods [51], [52]. Scoring methods commonly use

the posterior probability of the Bayesian network given
training data, such as Bayesian information criterion
(BIC). Although the complexity of an exhaustive search
is superexponential in the number of variables, recent
approaches [53] showed capability to learn structure of
Bayesian network with up to 100 variables using integer
programming. Constraint-based methods use conditional
independence tests between pairs of variables, com-
monly mutual information test or the Student’s t-test
for correlation. All constraint-based methods entail
three phases: i.e., (i) learning Markov blankets of each
variable, (ii) learning neighbors (parents and children)
of each variable that identifies which arcs are present in
a Bayesian network, and (iii) establishing arc directions.

Compared to the existing AutoML literature, our method
provides more systematic framework to explore justifiable
network architectures from a macro view. Although related
Bayesian network was studied to design DNN architecture,
our method extends it to realize nuisance robustness by
reasonably involving adversarial networks. In addition, en-
semble stacking was first introduced in AutoML framework
where multiple architectures can be reused to improve the
performance over every individual model.

B. BAYESIAN GRAPH AND INFERENCE MODELS

Given measurement data, we never know the true joint
probability beforehand, and therefore we shall assume one
of several possible generative models. AutoBayes aims to ex-
plore such potential graph models to match the measurement
distributions. As the maximum possible number of graphical
models is huge even for a four-node case involving Y , S, Z
and X , we restrict our focus to a few meaningful graphs-of-
interest shown in Fig.5. Each Bayesian graph corresponds to
the following assumption of the joint probability factorization

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(p(x| · · · ) term specifies a generative model of X):

p
(y
,s
,z
,x

)

=



p(y)p(s|�y)p(z|�s, �y)p(x|�z, �s, y), Model-A
p(y)p(s|�y)p(z|�s, y)p(x|z, �s, �y), Model-B
p(y)p(s|�y)p(z|�s, �y)p(x|�z, s, y), Model-C
p(y)p(s|�y)p(z|s, y)p(x|z, �s, �y), Model-D
p(y)p(s|�y)p(z|�s, y)p(x|z, s, �y), Model-E
p(y)p(s|�y)p(z|s, �y)p(x|z, �s, y), Model-F
p(y)p(s|�y)p(z|s, y)p(x|z, s, �y), Model-G
p(y)p(s|�y)p(z|s, y)p(x|z, �s, y), Model-H
p(y)p(s|�y)p(z|s, y)p(x|z, s, y), Model-I
p(y)p(s|�y)p(z1|s, �y)p(z2|��z1, �s, y)

p(x|z2, z1, �s, �y), Model-J
p(y)p(s|�y)p(z1|s, �y)p(z2|z1, �s, y)

p(x|z2, z1, �s, �y), Model-K

(8)

where we explicitly indicate independence by slash-cancelled
factors from the full-chain case in (1). Blue-colored terms
correspond to the blue arrows in Figs.5 for generative
graph of decoder networks. Depending on the assumed
Bayesian graph, the relevant inference strategy will vary
as some variables may be conditionally independent, which
enables pruning links in the inference factor graphs. As
shown in Fig.6, the reasonable inference graph model can
be automatically generated by the Bayes-Ball algorithm [20]
on each Bayesian graph hypothesis inherent in datasets.
Specifically, the conditional probability p(y, s, z|x) can be
obtained for each model as below.

a: Bayesian Graph Model A (Direct Markov):

The simplest model between X and Y would be single
Markov chain without any dependency of S and Z, shown
in Bayesian graph of Fig.5(a). This model puts an assumption
that the data are nuisance-invariant. For this case, there is
no reason to employ complicated inference models such
as A-CVAE since most factors will be independent as
p(y, s, z|x) = p(z|�x)p(s|�z, �x)p(y|�s, �z, x). We hence should
use a standard classification method, as in Fig.1(a), to infer
Y given X , based on the inference model p(y|x) without
involving S and Z.

b: Bayesian Graph Model B (Markov Latent):

Assuming a latent Z can work in a Markov chain of Y −
Z − X shown in Fig.5(b), we obtain a simple inference
model: p(y, s, z|x) = p(z|x)p(s|�z, �x)p(y|�s, z, �x). Note that
this model assumes independence between Z and S, and
thus adversarial censoring [6]–[8] can make it more robust
against nuisance. This model is hence based on A-VAE.

c: Bayesian Graph Model C (Subject-Dependent):

We may model the case when the data X directly depends
on subject S and task Y , shown in Fig.5(c). For this case,

we may consider the corresponding inference models due to
the Bayes-Ball:

p(y, s, z|x) =

{
p(s|x)p(z|�s, �x)p(y|s, �z, x), Model-Cs
p(y|x)p(s|y, x)p(z|�s, �y, �x). Model-Cy

(9)

Note that this model does not depend on Z, and thus Z-first
inference strategy reduces to S-first model. As a reference,
we here consider additional Y -first inference strategy to
evaluate the difference.

d: Bayesian Graph Model D (Latent Summary):
Another graphical model is shown in Fig.5(d), where a latent
space bridges all other random variables. Bayes-Ball yields
the following models:

p(y, s, z|x) =

{
p(z|x)p(s|z, �x)p(y|s, z, �x), Model-Dz
p(s|x)p(z|s, x)p(y|z, s, �x), Model-Ds

(10)

whose graphical models are depicted in Figs.6(a) and (b),
respectively.

e: Bayesian Graph Model E (Task-Summary Latent):
Another graphical model involving latent variables is shown
in Fig.5(e), where a latent space only summarizes Y . Bayes-
Ball yields the following inference models:

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|z, �s, �x), Model-Ez
p(s|x)p(z|s, x)p(y|�s, z, �x), Model-Es

(11)

which are illustrated in Figs.6(c) and (d). Note that the
generative model E has no marginal dependency between Z
and S, which provides the reason to use adversarial censoring
to suppress nuisance information S in the latent space Z. In
addition, because the generative model of X is dependent on
both Z and S, it is justified to employ the A-CVAE classifier
shown in Fig.1(b).

f: Bayesian Graph Model F (Subject-Summary Latent):
Consider Fig.5(f), where a latent variable summarizes subject
information S. The Bayes-Ball provides the inference graphs
shown in Figs.6(e) and (f), which respectively correspond
to:

p(y, s, z|x) =

{
p(z|x)p(s|z, �x)p(y|�s, x, z), Model-Fz
p(s|x)p(z|s, x)p(y|x, �s, z). Model-Fs

(12)

g: Bayesian Graph Model G:
Letting the joint distribution follow the model G in Fig.5(g),
we obtain the following inference models via the Bayes-Ball:

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|s, z, �x), Model-Gz
p(s|x)p(z|s, x)p(y|z, s, �x), Model-Gs

(13)
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whose graphical models are described in Figs.6(g) and (h).
Note that the inference model Gs in Fig.6(h) is identical to
the inference model Ds in Fig.6(b). Although the inference
graphs Gs and Ds are identical, the generative model of X
is different as shown in Figs.5(g) and (d). Specifically, VAE
decoder for the model G should feed S along with variational
latent space Z, and thus using CVAE is justified for the
model G but D. This difference of the generative models
can potentially make a different impact on the performance
of inference despite the inference graph alone is identical.

h: Bayesian Graph Models H and I:

Both the generative models H and I shown in Figs.5(h) and
(i) have the fully-connected inference strategies as given in
(2), whose graphs are shown in Figs.4(b) and (c), respectively,
since no useful conditional independency can be found with
the Bayes-Ball. Analogous to the relation of models Ds and
Gs, the inference graph can be identical for Bayesian graphs
H and I, whereas the generative model of X is different as
shown in Figs.5(h) and (i).

i: Bayesian Graph Model J (Disentangled Latent):

We can also consider multiple latent vectors to generalize the
Bayesian graph with more vertices. We here focus on two
such examples of graph models with two-latent spaces as
shown in Figs.5(j) and (k). Those models are identical class
of the model D, except that a single latent Z is disentangled
into two parts Z1 and Z2, respectively associated with S
and Y . Given the Bayesian graph of Fig.5(j), the Bayes-Ball
yields some inference strategies including the following two
models:

p
(y
,s
,z

1
,z

2
|x

)

=


p(z1, z2|x)p(s|z1,��z2, �x)p(y|�s,��z1, z2, �x), Model-Jz
p(s|x)p(z1|s, x)p(z2|�s, z1, x)

p(y|�s,��z1, z2, �x), Model-Js

(14)

which are shown in Figs.6(i) and (j). Note that Z2 is
marginally independent of the nuisance variable S, which
encourages the use of adversarial training to be robust against
subject/session variations.

j: Bayesian Graph Model K (Conditionally Disentangled
Latent):

Another modified model in Fig.5(k) linking Z1 and Z2 yields
the following inference models:

p
(y
,s
,z

1
,z

2
|x

)

=


p(z1, z2|x)p(s|z1,��z2, �x)p(y|�s, z1, z2, �x), Model-Kz
p(s|x)p(z1|s, x)p(z2|�s, z1, x)

p(y|�s, z1, z2, �x), Model-Ks

(15)

as shown in Figs.6(k) and (l). The major difference from
the model J lies in the fact that the inference graph should
use Z1 along with Z2 to infer Y .

C. BACKGROUND ON VARIATIONAL BAYESIAN
INFERENCE
a: Variational AE
AutoBayes may automatically construct autoencoder archi-
tecture when latent variables are involved, e.g., for the model
E in Fig.5(e). For this case, Z represents a stochastic node
to marginalize out for X reconstruction and Y inference,
and hence VAE will be required. In contrast to vanilla
autoencoders, VAE uses variational inference by assuming a
marginal distribution for latent p(z). In variational approach,
we reparameterize Z from a prior distribution such as
the normal distirbution to marginalize. Depending on the
Bayesian graph models, we can also consider reparametering
semi-supervision on S (i.e., incorporating a reconstruction
loss for S) as a conditioning variable. Conditioning on Y
and/or S should depend on consistency with the graphical
model assumptions. Since VAE is a special case of CVAE,
we will go into further detail about the more general CVAE
below.

b: Conditional VAE
When X is directly dependent on S or Y along with Z in
the Bayesian graph, the AutoBayes gives rise the CVAE
architecture, e.g., for the models E/F/G/H/I in Fig.5. For
those generative models, the decoder DNN needs to feed S
or Y as a conditioning parameter. Even for other Bayesian
graphs, the S-first inference strategy will require conditional
encoder in CVAE, e.g., the models Ds/Es/Fs/Gs/Js/Ks in
Fig.6, where latent Z depends on S.

Consider the case when S plays as the conditioning
variable in a data model with the factorization:

p(s, x, z) = p(s)p(z)p(x|s, z), (16)

where we directly parameterize p(x|s, z), set p(z) to some-
thing simple (e.g., isotropic Gaussian), and leave p(s)
arbitrary (since it will not be directly used). The CVAE
is trained according to maximizing the likelihood of data
tuples (s, x) with respect to p(x|s), which is given by

p(x|s) =

∫
p(x|s, z)p(z) dz, (17)

which is intractable to compute exactly given the potential
complexity of the parameterization of p(x|s, z). While
it could be possible to approximate the integration with
sampling of Z, the crux of the VAE approach is to utilize
a variational lower-bound of the likelihood that involves a
variational approximation of the posterior p(z|s, x) implied
by the generative model. With q(z|s, x) representing the
variational approximation of the posterior, the Evidence
Lower-Bound (ELBO) is given by

log p(x|s) ≥ Ez∼q(z|s,x)[log p(x|s, z)]−KL
(
q(z|s, x)‖p(z)

)
.

(18)
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The parameterization of the variational posterior q(z|s, x)
may also be decomposed into parameterized components,
e.g., q(z|s, x) = q(s|x)q(z|s, x) such as in the S-first
models shown in Fig.6. Such decomposition also enables
the possibility of semi-supervised training, which can be
convenient when some of the variables, such as the nuisances
variations, are not always labeled. For data tuples that include
s, the likelihood q(s|x) can also be directly optimized, and
the given value for s is used an input to the computation
of q(z|s, x). However, for tuples where s is missing, the
component q(s|x) can be used to generate an estimate of s
to be input to q(z|s, x). We further discuss semi-supervised
learning and the sampling methods for categorical nuisance
variables in AppendixA.4 below.

D. SEMI-SUPERVISED LEARNING: CATEGORICAL
SAMPLING
a: Graphical Models for Semi-Supervised Learning
Nuisance values S such as subject ID or session ID may
not be always available for typical physiological datasets, in
particular for the testing phase of an HMI system deployment
with new users, requiring semi-supervised methods. We note
that some graphical models are well-suited for such semi-
supervised training. For example, among the Bayesian graph
models in Fig.5, the models C/E/G/I require the nuisance S
to reproduce X . If no ground-truth labels of S are available,
we need to marginalize S across all possible categories
for the decoder DNN D. Even for other Bayesian graphs,
the corresponding inference factor graphs in Fig.6 may not
be convenient for the semi-supervised settings. Specifically,
for models Ez/Fz/Jz/Kz have an inference of S at the end
node, whereas the other inference models use inferred S for
subsequent inference of other parameters. If S is missing or
unknown as a semi-supervised setting, those inference graphs
having S in a middle node are inconvenient as we need
sampling over all possible nuisance categories. For instance,
the model Kz shown in Fig.7 does not need S marginalization,
and thus readily applicable to semi-supervised datasets.

b: Variational Categorical Reparameterization
In order to deal with the issue of categorical sampling, we
can use the Gumbel-Softmax reparameterization trick [54],
which enables differentiable approximation of one-hot encod-
ing. Let [π1, π2, . . . , π|S|] denote a target probability mass
function for the categorical variable S. Let g1, g2, . . . , g|S|
be independent and identically distributed samples drawn
from the Gumbel distribution Gumbel(0, 1).1 Then, generate
an |S|-dimensional vector ŝ = [ŝ1, ŝ2, . . . , ŝ|S|] according to

ŝk =
exp((log(πk) + gk)/τ)∑|S|
i=1 exp((log(πi) + gi)/τ)

, (19)

where τ > 0 is a softmax temperature. As the softmax
temperature τ approaches 0, samples from the Gumbel-

1The Gumbel(0, 1) distribution can be sampled by drawing e ∼ Exp(1)
and computing g = − log(e).

Softmax distribution become one-hot and the distribution
becomes identical to the target categorical distribution. The
temperature τ is usually decreased across training epochs as
an annealing technique, e.g., with exponential decaying.

E. ENSEMBLE LEARNING: STACKED GENERALIZATION
To achieve higher predictive performance, we construct
ensembles from the output posterior class probabilities of
all graphical models. Let D0 = {(xn, yn, sn)|n = 1 : N}
denote a data set, where xn is a data instance, yn is the
task label, sn is the nuisance (subject) label and N is
the number of samples in the dataset. We randomly split
the data into training set Dtrain and validation set Dtest.
Given 37 graphical models, which we call base learners,
we induce a decision algorithm Mk, for k = 1, . . . , 37 by
invoking the kth graphical model on the data in Dtrain. For
each xn in Dtrain, graphical model Mk generates a class
probability vector for task and nuisance label prediction. Let
Pky(xn) = {P (y1|xn), . . . , P (yi|xn), . . . , P (yNy |xn)} de-
note the posterior probability distribution over Ny task labels
and Pks(xn) = {P (s1|xn), . . . , P (si|xn), . . . , P (sNs

|xn)}
denote the posterior probability distribution over Ns nuisance
labels produced by model Mk given data instance xn.
Ensemble generalization works by stacking the predictions of
the base learners in a higher level learning space, where meta
learner, denoted as M̃k, corrects the predictions of base learn-
ers [31]. Subsequent to training base learners, we assemble
the posterior probability vectors of all base learners together:
Py(xn) = {Pky(xn)} and Ps(xn) = {Pks(xn)}, where
k = 1 : 37. M̃k is trained using the predictions from all base
learners as input attributes: D̃in

train = {(Py(xn), Ps(xn))}
and correct labels as output: D̃out

train = {(yn, sn)}, where
n = 1 : Ntrain. Hold-out Dtest is used to measure the
classification performance of both base and meta learners.
To make best use of the base learners, we compare the
predictive performance of a LR model and a shallow MLP
as a meta learner in Table2.

F. DATASETS DESCRIPTION
We used publicly available physiological datasets as well as
a benchmark MNIST as follows. The parameters of datasets
are also summarized in Table1.
• QMNIST: A hand-written digit image MNIST with

extended label information including a writer ID number
[32].2 There are |S| = 539 writers for classifying |Y | =
10 digits from grayscale 28 × 28 pixel images over
60,000 training samples. Additional 297 writers provide
10,000 test samples.

• Stress: A physiological dataset considering neurological
stress level [33].3 It consists of multi-modal biosignals
for |Y | = 4 discrete stress states from |S| = 20 healthy
subjects, including physical/cognitive/emotional stresses
as well as relaxation. The data were collected by C = 7

2QMNIST dataset: https://github.com/facebookresearch/qmnist
3Stress dataset: https://physionet.org/content/noneeg/1.0.0/
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sensors, i.e., electrodermal activity, temperature, three-
dimensional acceleration, heart rate, and arterial oxygen
level. For each stress status, a corresponding task of 5
minutes long (i.e., T = 300 time samples with 1 Hz
down-sampling) was assigned to subjects for a total of
4 trials.

• RSVP: An EEG-based typing interface using rapid
serial visual presentation (RSVP) paradigm [34].4

|S| = 10 healthy subjects participated in the experi-
ments at three sessions performed on different days.
The dataset consists of 41,400 epochs of C = 16
channel EEG data for T = 128 samples, which were
collected by g.USBamp biosignal amplifier with active
electrodes during RSVP keyboard operations. |Y | = 4
labels for emotion elicitation, resting-state, or motor
imagery/execution task.

• MI: The PhysioNet EEG Motor Imagery (MI) dataset
[35].5 Excluding irregular timestamp, the dataset con-
sists of |S| = 106 subjects’ EEG data. During the
experiments, subjects were instructed to perform cue-
based motor execution/imagery tasks while C = 64
channels were recorded at a sampling rate of 160 Hz.
Focusing on motor imagery tasks, we use the EEG data
for three seconds of post-cue interval data (i.e., T = 480
time samples). The subject performed |Y | = 4-class
tasks; either right hand motor imagery, left hand motor
imagery, both hands motor imagery, or both feet motor
imagery. This resulted in a total of 90 trials per subject.

• ErrP: An error-related potential (ErrP) of front-central
EEG dataset [36].6 The dataset consists of EEG data
recorded from |S| = 16 healthy subjects participating
in an offline P300 spelling task, where visual feedback
of the inferred letter is provided to the user at the end
of each trial for 1.3 seconds to monitor evoked brain
responses for erroneous decisions made by the system.
EEG data were recorded from C = 56 channels for
epoched 1.25 seconds at a sampling rate of 200 Hz (i.e.,
T = 250). Across five recording sessions, each subject
performed a total of 340 trials. Since it was an offline
copy spell task, binary |Y | = 2 labels were provided
as erroneous or correct feedback.

• Faces Basic: An implanted electrocorticography
(ECoG) array dataset for visual stimulus experiments
[37], [38].7 ECoG arrays were implanted on the sub-
temporal cortical surface of |S| = 14 epilepsy patients.
|Y | = 2 classes of grayscale images, either faces or
houses, were displayed rapidly in random sequence for
400 ms each with black-screen intervals of 400 ms.
The ECoG potentials were measured with respect to
a scalp reference and ground, at a sampling rate of
1000 Hz. Subjects performed a basic face and house

4RSVP dataset: http://hdl.handle.net/2047/D20294523
5MI dataset: https://physionet.org/physiobank/database/eegmmidb/
6ErrP dataset: https://www.kaggle.com/c/inria-bci-challenge/
7Faces dataset: https://exhibits.stanford.edu/data/catalog/zk881ps0522

discrimination task. There were 3 sessions for each
patient, with 50 house pictures and 50 face pictures in
each run, in total 4,100 samples. We use the first C = 31
channels to analyze for T = 400. Reusing the public
dataset requires the ethics statement information.8

• Faces Noisy: The implanted ECoG arrays dataset for
visual stimulus experiments [37], [39]. The experiment
is similar to Faces Basic dataset, while pictures of faces
and houses are randomly scrambled. There are |S| = 7
subjects with C = 39 channels. Refer ethics statement
to reuse the dataset.9

• ASL: An EMG dataset for finger gesture identification
for American Sign Language (ASL) [40].10 |S| = 5
healthy, right-handed, subjects participated in experi-
ments with surface EMG (Delsys Inc. Trigno) recorded
at 2 kHz from |C| = 16 lower-arm muscles. Subjects
shaped their right hand into letters and numbers of the
ASL posture set presented as pictures on a computer
screen (|Y | = 33 postures, 3 trials per posture).
Dynamic letters ‘J’ and ‘Z’ were omitted, along with
the number ‘0’, which is visually the same as the letter
‘O’. The participants were given 2 seconds to form the
posture, 6 seconds to maintain it, and 2 seconds to rest
between trials. The signal is decimated to be T = 100.

G. DNN MODEL PARAMETERS
For 2D datasets, we use deep CNN for the encoder E and
decoder D blocks. For the classifier C, nuisance estimator
N , and adversary A, we use a multi-layer perceptron (MLP)
having three layers, whose hidden nodes are doubled from
the input dimension. We also use batch normalization (BN)
and ReLU activation as listed in Table3. Note that for a
tabular data such as Stress datasets, CNN was replaced with
3-layer MLP having ReLU activation and dropout with a
ratio of 20%. Also the MLP classifier was replaced with
CNN for 2D input dimension cases such as in the model
A. The number of latent dimensions was chosen |Z| = 64.
When we need to feed S along with 2D data of X into the
CNN encoder such as in the model Ds, dimension mismatch
poses a problem. We address this issue by using one linear
layer to project S into the temporal dimensional space of
X and another linear layer to project it into the spatial

8Ethics statement: All patients participated in a purely voluntary manner,
after providing informed written consent, under experimental protocols
approved by the Institutional Review Board of the University of Washington
(#12193). All patient data was anonymized according to IRB protocol, in
accordance with HIPAA mandate. These data originally appeared in the
manuscript “Spontaneous Decoding of the Timing and Content of Human
Object Perception from Cortical Surface Recordings Reveals Complementary
Information in the Event-Related Potential and Broadband Spectral Change”
published in PLoS Computational Biology in 2016 [38].

9All patients participated in a purely voluntary manner, after providing
informed written consent, under experimental protocols approved by the
Institutional Review Board of the University of Washington (#12193). All
patient data was anonymized according to IRB protocol, in accordance with
HIPAA mandate. These data originally appeared in the manuscript “Face
percept formation in human ventral temporal cortex” published in Journal
of Neurophysiology in 2017 [39].

10ASL Dataset: http://hdl.handle.net/2047/D20294523
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TABLE 3: DNN model parameters in Fig.7; Conv(h,w)cg denotes 2D convolution layer with kernel size of (h,w) for output
channel of c over group g. FC(h) denotes fully-connected layer with h output nodes. BN denotes batch normalization.

Classifier C Encoder E Decoder D Nuisance N Adversary A

FC(2|Z|) Conv(1, 15)50 FC(20T ) FC(2|Z|) FC(2|Z|)
BN+ReLU BN+ReLU ReLU BN+ReLU BN+ReLU
FC(|Y |) Conv(1, 7)50 Conv(C, 1)50 FC(|S|) FC(|S|)

BN+ReLU BN+ReLU
Conv(1, 3)50 Conv(1, 3)50
BN+ReLU BN+ReLU
Conv(C, 1)5050 Conv(1, 7)50
FC(|Z|) BN+ReLU

Conv(1, 15)50

dimensional space of X . The dot product of those two
projected vectors is concatenated as additional channel input.
We use λ∗ = 0.01 for the regularization coefficient. We
leave hyperparameter exploration to integrate AutoML and
AutoBayes as a remaining future work.

H. PERFORMANCE RESULTS

The additional results for the all datasets are listed in Table4.
The results suggest that the best inference strategy highly
depends on datasets. Specifically, the best model at one
dataset does not perform best for different datasets; e.g., the
model non-variational Is was best for ASL dataset, while the
model variational Ds was best for RSVP dataset. It suggests
that we shall consider different inference strategies for each
target dataset and AutoBayes provides such an adaptive
framework. Also note that reconstruction loss may not be a
good indicator to select the graph model. In addition, a huge
performance gap between the best and worst models was
observed for some datasets. For example, the task accuracy
of 76.4% was achieved with model non-variational Dz for
Faces (Noisy) dataset, whereas the model variational B offers
51.4%. This implies that we may have a potential risk that
one particular model cannot achieve good performance if
we do not explore different models.

I. SUBJECT VARIATION PERFORMANCE

For Stress dataset, there are |S| = 20 subjects. As we
have shown in Fig.9(a), we demonstrated that AutoBayes
can improve robustness against the nuisance variation, i.e.,
subject ID S. In Fig.10, we show that the task classification
accuracy highly depends on the subject ID S. Here, the box-
whisker plots shows the accuracy distribution over different
models from A to Kz. The outliers are identified by a whisker
factor of 2.4 with respective to an inter-quartile range. It is
seen that some users (e.g., S = 8) have superior performance
whereas classification task is harder for some other users
(e.g., S = 6). Our AutoBayes can well resolve the issues of
such a nuisance variation by linking the adversarial block for
S-independent latent variables Z to generate subject-invariant
feature.

J. TIME COMPLEXITY ANALYSIS
In Fig.9(b), we have shown the accuracy vs. the space
complexity. In this section, we evaluate the time complexity
in Figs.11(a) and (b), which show the task classification
accuracy as a function of computation time for training and
testing, respectively, for the Stress dataset. As in the same
setting of Fig.9(b), we explored different DNN configurations
for the models A, B, and Js, by sweeping the number of
hidden layers and hidden nodes. Some Pareto-front DNN
configurations having lower complexity and higher accuracy
are connected with lines. We used pytorch on NVIDIA Tesla
K80 GPU with CUDA 10.1. It is seen that the standard
classifier model A outperforms the other models in lower
complexity regimes, whereas our AutoBayes can achieve
better Pareto front for higher accuracy regimes. It should be
also noted that the increase of the time complexity is not
so significant (by a few folds) in comparison to that of the
space complexity (by a few magnitudes) in Fig.9(b).
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TABLE 4: Performance of datasets: the reconstruction loss, the scores of nuisance classification and task classification in
variational/non-variational and adversarial/non-adversarial setting.

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

QMNIST

Model A −51.73 — — — 99.02 — 290K 01 : 10 : 51

Model B −65.68 −61.62 — — 98.72 99.44 978K 01 : 58 : 51

Model Cs −66.38 — 13.12 — 99.32 — 3.56M 01 : 50 : 08

Model Cy −67.74 — 12.17 — 99.30 — 3.53M 01 : 48 : 47

Model Ds −57.14 −41.43 10.55 9.90 99.35 99.23 3.43M 01 : 54 : 06

Model Dz −65.04 −66.74 0.44 0.46 99.16 99.27 1.03M 01 : 21 : 37

Model Es −65.35 −66.56 11.77 10.51 99.44 99.21 4.17M 01 : 55 : 15

Model Ez −65.51 −61.41 2.55 14.95 99.35 99.13 4.15M 02 : 41 : 13

Model Fs −57.39 −43.39 14.94 16.50 99.34 99.40 3.49M 02 : 22 : 03

Model Fz −65.85 −43.42 1.80 9.03 99.08 99.41 1.09M 02 : 55 : 13

Model Gs −64.88 −61.51 9.78 10.25 98.54 98.88 4.23M 01 : 53 : 51

Model Gz −65.68 −42.05 9.71 12.36 99.12 98.73 4.20M 01 : 58 : 44

Model Hs −66.02 −43.32 15.94 16.56 99.18 99.39 3.49M 02 : 24 : 17

Model Hz −65.85 −43.45 13.20 14.70 99.47 99.28 3.49M 02 : 24 : 37

Model Is −65.35 −45.41 15.96 18.57 99.46 99.32 4.28M 02 : 26 : 26

Model Iz −65.84 −45.46 14.97 15.45 99.54 99.28 4.28M 02 : 23 : 56

Model Js −59.02 −57.3 11.41 11.21 99.47 99.39 4.11M 02 : 19 : 28

Model Jz −67.96 −61.51 6.44 5.02 98.85 99.46 1.71M 02 : 14 : 30

Model Ks −65.51 −63.35 11.59 1.16 99.49 99.10 4.12M 02 : 21 : 54

Model Kz −67.33 −61.20 6.32 6.94 99.15 99.15 1.71M 02 : 14 : 24

Stress

Model A −56.31 — — — 85.87 — 32.7K 00 : 00 : 35

Model B −66.56 −59.41 — — 94.79 92.67 97.0K 00 : 01 : 32

Model Cs −67.74 — 59.46 — 93.48 — 50.0K 00 : 00 : 50

Model Cy −66.56 — 75.77 — 91.93 — 48.0K 00 : 00 : 55

Model Ds −61.94 −36.04 59.90 28.37 93.26 83.70 95.3K 00 : 01 : 02

Model Dz −66.02 −48.40 81.17 36.21 94.22 79.76 99.0K 00 : 01 : 03

Model Es −66.38 −63.35 54.21 79.76 94.00 92.05 95.3K 00 : 01 : 08

Model Ez −64.73 −59.25 90.35 91.92 95.02 30.00 99.7K 00 : 01 : 46

Model Fs −64.73 −38.68 68.45 40.74 94.07 87.80 94.4K 00 : 01 : 04

Model Fz −66.94 −38.57 83.25 5.18 94.92 87.24 98.1K 00 : 01 : 40

Model Gs −67.96 −64.73 53.94 25.88 93.61 86.56 97.3K 00 : 01 : 11

Model Gz −65.85 −39.16 82.86 69.26 94.11 89.04 102K 00 : 01 : 01

Model Hs −65.04 −38.47 78.36 72.42 94.72 92.86 94.4K 00 : 01 : 04

Model Hz −66.38 −38.37 84.10 71.07 94.57 90.73 101K 00 : 01 : 06

Model Is −66.74 −47.94 79.51 74.38 94.74 91.94 96.4K 00 : 01 : 04

Model Iz −67.96 −47.98 84.46 68.63 94.80 90.52 103K 00 : 01 : 04

Model Js −67.13 −36.17 79.36 92.47 95.35 30.00 140K 00 : 01 : 21

Model Jz −66.74 −54.02 86.27 58.59 95.17 86.99 135K 00 : 02 : 07

Model Ks −68.64 −51.50 73.57 87.33 94.65 86.74 146K 00 : 01 : 20

Model Kz −66.56 −51.94 85.00 61.84 94.35 86.34 141K 00 : 02 : 05

RSVP

Model A −30.69 — — — 93.07 — 268K 00 : 48 : 25

Model B −34.27 −35.36 — — 93.06 91.89 1.87M 01 : 00 : 35

Model Cs −31.33 — 90.12 — 91.56 — 437K 00 : 55 : 35

Model Cy −31.57 — 90.38 — 91.54 — 435K 00 : 54 : 29

Model Ds −35.61 −30.17 91.33 84.77 91.16 93.42 2.01M 00 : 56 : 05

Model Dz −35.27 −35.37 92.42 86.84 92.44 92.71 1.87M 00 : 48 : 35

Model Es −35.61 −31.44 91.74 90.46 93.23 92.99 2.02M 00 : 54 : 43

Model Ez −35.62 −35.52 94.26 93.01 92.65 91.99 2.03M 01 : 16 : 32

Model Fs −35.60 −30.17 91.03 90.38 92.15 93.27 2.06M 01 : 00 : 52

Model Fz −32.94 −30.16 9.57 9.88 90.21 91.04 1.93M 01 : 08 : 24

Model Gs −35.78 −31.24 92.17 92.90 89.83 86.82 2.03M 00 : 57 : 25

Model Gz −35.28 −30.34 91.27 90.18 92.15 91.31 2.03M 00 : 52 : 22

Model Hs −35.40 −30.18 93.89 91.31 93.05 91.22 2.06M 01 : 04 : 10

Model Hz −35.39 −30.18 91.49 89.84 92.65 92.76 2.06M 01 : 04 : 20

Model Is −35.37 −30.35 93.37 90.32 92.94 91.60 2.08M 01 : 04 : 16

Model Iz −35.37 −30.36 91.36 90.96 91.41 91.92 2.08M 01 : 00 : 53

Model Js −36.10 −36.09 92.78 9.92 90.82 92.74 3.64M 01 : 02 : 55

Model Jz −35.82 −36.65 93.60 82.62 93.12 92.85 3.49M 01 : 01 : 37

Model Ks −35.65 −36.05 90.93 92.86 93.19 90.54 3.65M 01 : 01 : 11

Model Kz −35.53 −36.01 91.99 82.10 92.81 93.03 3.50M 00 : 58 : 04
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TABLE 4: Performance of datasets (continued)

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

MI

Model A −30.28 — — — 55.85 — 454K 02 : 47 : 39

Model B −32.17 −32.24 — — 56.32 47.61 6.29M 03 : 53 : 06

Model Cs −32.12 — 35.99 — 52.65 — 5.89M 03 : 35 : 09

Model Cy −32.15 — 43.60 — 52.98 — 5.84M 03 : 34 : 53

Model Ds −31.34 −20.20 74.15 1.14 24.26 24.89 10.9M 03 : 25 : 51

Model Dz −32.14 −35.92 4.82 9.01 55.26 51.80 6.30M 02 : 57 : 19

Model Es −32.22 −30.90 61.95 0.74 44.74 24.85 11.7M 03 : 25 : 11

Model Ez −32.52 −30.82 5.77 8.21 54.12 48.65 11.7M 04 : 43 : 56

Model Fs −30.36 −20.35 38.60 0.66 48.90 51.91 11.2M 04 : 16 : 05

Model Fz −31.86 −29.77 3.05 0.96 57.83 25.40 6.54M 04 : 24 : 11

Model Gs −32.16 −30.07 33.97 0.55 53.01 24.82 11.7M 03 : 30 : 57

Model Gz −32.31 −30.06 4.82 0.96 52.61 26.40 11.7M 03 : 30 : 49

Model Hs −32.11 −30.08 88.42 57.87 52.68 49.04 11.2M 04 : 15 : 27

Model Hz −31.99 −30.02 43.93 1.07 57.21 25.96 11.2M 04 : 15 : 56

Model Is −32.27 −30.08 85.55 54.99 55.00 24.26 12.0M 04 : 00 : 46

Model Iz −32.35 −30.09 48.49 1.03 53.57 26.03 12.0M 03 : 59 : 26

Model Js −30.29 −30.10 49.19 0.80 41.54 24.93 17.0M 04 : 01 : 20

Model Jz −32.88 −35.14 43.64 31.10 57.50 44.93 12.3M 03 : 59 : 00

Model Ks −30.79 −30.18 81.18 0.77 23.79 25.18 17.0M 04 : 00 : 59

Model Kz −32.27 −32.44 29.26 28.31 48.12 48.79 12.3M 03 : 43 : 01

ErrP

Model A −31.04 — — — 69.89 — 301K 00 : 48 : 18

Model B −41.26 −39.79 — — 71.81 71.39 3.40M 01 : 05 : 07

Model Cs −39.26 — 94.95 — 63.68 — 1.05M 00 : 56 : 24

Model Cy −41.51 — 98.98 — 70.07 — 1.05M 00 : 59 : 07

Model Ds −39.44 −29.92 98.68 7.69 69.11 69.77 4.04M 00 : 56 : 40

Model Dz −42.52 −39.46 97.30 68.93 68.09 75.91 3.41M 00 : 47 : 42

Model Es −39.49 −38.91 97.12 92.91 70.01 65.38 4.14M 00 : 59 : 27

Model Ez −41.17 −41.98 47.18 99.64 70.91 72.42 4.15M 01 : 18 : 58

Model Fs −39.54 −30.00 98.32 6.73 71.45 70.07 4.13M 01 : 09 : 08

Model Fz −41.35 −30.10 93.33 8.35 66.71 70.19 3.50M 01 : 17 : 28

Model Gs −40.23 −33.96 97.00 0.42 70.85 70.31 4.14M 00 : 56 : 57

Model Gz −41.02 −29.94 96.57 98.68 69.23 67.31 4.15M 00 : 57 : 12

Model Hs −40.03 −28.32 98.14 98.02 67.85 29.93 4.13M 01 : 10 : 47

Model Hz −41.19 −29.90 96.81 97.12 68.81 69.11 4.13M 01 : 05 : 37

Model Is −38.09 −30.07 98.26 96.33 59.62 67.31 4.23M 01 : 07 : 48

Model Iz −40.54 −29.99 96.21 96.33 70.25 66.95 4.23M 01 : 10 : 42

Model Js −40.33 −34.44 98.20 6.07 68.57 68.03 7.21M 01 : 11 : 08

Model Jz −42.40 −41.27 99.04 95.13 72.54 69.29 6.54M 01 : 06 : 01

Model Ks −38.85 −37.71 98.86 5.77 68.63 69.29 7.22M 01 : 09 : 38

Model Kz −42.48 −40.05 98.32 95.01 72.36 69.65 6.55M 01 : 05 : 53
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TABLE 4: Performance of datasets (continued)

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

Faces Basic

Model A −29.95 — — — 63.30 — 332K 00 : 40 : 22

Model B −33.68 −30.10 — — 48.56 51.12 5.27M 00 : 57 : 51

Model Cs −32.18 — 80.45 — 64.50 — 960K 00 : 46 : 11

Model Cy −32.96 — 87.26 — 65.62 — 954K 00 : 46 : 07

Model Ds −32.99 −30.10 92.23 7.69 62.74 48.08 5.80M 00 : 48 : 29

Model Dz −31.68 −23.37 88.70 7.77 66.99 49.28 5.28M 00 : 40 : 52

Model Es −31.98 −30.08 92.95 6.73 50.96 53.12 5.88M 00 : 47 : 36

Model Ez −31.84 −30.03 38.94 97.60 50.96 51.36 5.91M 01 : 05 : 37

Model Fs −33.32 −30.11 96.07 8.09 61.14 62.82 5.93M 00 : 54 : 31

Model Fz −32.95 −28.80 49.60 10.02 61.30 61.14 5.40M 01 : 06 : 39

Model Gs −32.56 −29.76 91.11 7.05 63.38 49.92 5.89M 00 : 46 : 34

Model Gz −33.13 −30.11 85.02 83.41 63.86 64.02 5.91M 00 : 46 : 19

Model Hs −32.03 −30.08 98.00 86.22 61.14 64.42 5.93M 00 : 51 : 52

Model Hz −33.29 −29.41 91.11 83.81 65.46 61.94 5.93M 00 : 54 : 32

Model Is −31.63 −30.11 97.92 94.39 62.34 61.94 6.01M 00 : 54 : 30

Model Iz −33.20 −30.06 91.67 89.10 63.94 67.31 6.01M 00 : 51 : 56

Model Js −33.28 −30.12 94.87 8.33 51.04 52.23 10.9M 00 : 53 : 17

Model Jz −32.21 −29.50 93.83 7.29 65.79 51.28 10.3M 00 : 56 : 36

Model Ks −31.12 −29.88 88.94 7.45 51.92 53.85 10.9M 00 : 55 : 41

Model Kz −32.69 −30.09 93.43 7.93 51.76 51.84 10.3M 00 : 56 : 37

Faces Noisy

Model A −30.09 — — — 75.94 — 333K 00 : 24 : 12

Model B −30.35 −30.09 — — 73.59 51.41 5.27M 00 : 33 : 07

Model Cs −30.10 — 95.62 — 75.16 — 664K 00 : 30 : 04

Model Cy −30.56 — 96.56 — 71.56 — 662K 00 : 27 : 47

Model Ds −30.22 −27.90 82.34 13.28 74.84 51.72 5.55M 00 : 27 : 45

Model Dz −30.11 −30.09 96.09 14.38 76.41 53.91 5.28M 00 : 24 : 18

Model Es −30.09 −28.70 91.09 13.28 74.38 52.50 5.59M 00 : 27 : 45

Model Ez −30.47 −28.58 21.41 93.75 70.94 52.97 5.61M 00 : 40 : 16

Model Fs −30.14 −30.08 95.62 13.75 71.88 75.62 5.68M 00 : 32 : 51

Model Fz −29.96 −27.76 27.50 17.03 72.50 72.19 5.40M 00 : 40 : 20

Model Gs −28.46 −30.15 93.75 13.91 71.56 52.50 5.59M 00 : 30 : 07

Model Gz −30.59 −30.09 94.53 80.94 75.00 75.16 5.61M 00 : 27 : 52

Model Hs −30.04 −30.08 98.49 88.59 75.59 69.06 5.68M 00 : 31 : 14

Model Hz −30.30 −30.06 95.94 91.09 75.47 76.09 5.68M 00 : 32 : 58

Model Is −30.10 −30.04 97.97 96.88 68.91 69.53 5.72M 00 : 31 : 27

Model Iz −30.62 −29.86 88.91 87.19 74.06 72.50 5.72M 00 : 33 : 43

Model Js −30.08 −28.72 95.69 15.94 65.31 53.59 10.6M 00 : 33 : 16

Model Jz −30.57 −30.03 96.62 14.22 71.56 52.66 10.3M 00 : 35 : 01

Model Ks −30.29 −30.14 65.62 15.52 54.06 53.44 10.6M 00 : 31 : 34

Model Kz −30.12 −28.45 94.84 12.66 76.56 54.23 10.3M 00 : 34 : 54

ASL

Model A −24.22 — — — 41.69 — 588K 01 : 18 : 06

Model B −23.89 −24.08 — — 3.03 37.80 1.53M 01 : 34 : 55

Model Cs −24.07 — 93.63 — 38.35 — 726K 01 : 26 : 27

Model Cy −24.14 — 94.63 — 38.28 — 729K 01 : 26 : 31

Model Ds −24.07 −24.08 93.74 94.29 39.23 41.32 1.63M 01 : 32 : 02

Model Dz −24.47 −24.69 95.99 95.10 43.83 40.89 1.53M 01 : 16 : 50

Model Es −24.07 −24.07 94.00 93.60 40.07 40.38 1.65M 01 : 32 : 04

Model Ez −24.96 −24.10 43.16 85.45 43.56 37.23 1.65M 01 : 55 : 58

Model Fs −24.07 −24.08 93.93 97.58 38.75 42.27 2.00M 01 : 39 : 40

Model Fz −24.08 −24.08 9.99 10.79 28.25 42.16 1.89M 01 : 50 : 56

Model Gs −24.07 −24.08 94.45 93.81 38.81 39.83 1.65M 01 : 29 : 42

Model Gz −24.50 −24.81 95.69 94.76 47.43 43.32 1.65M 01 : 27 : 01

Model Hs −25.10 −24.08 96.61 94.26 49.30 36.39 2.00M 01 : 39 : 54

Model Hz −24.87 −24.08 94.77 94.20 48.31 37.33 2.00M 01 : 45 : 32

Model Is −24.87 −24.08 96.54 94.37 51.12 38.31 2.01M 01 : 39 : 47

Model Iz −24.74 −25.03 95.81 93.98 49.47 38.45 2.01M 01 : 45 : 43

Model Js −24.07 −24.11 93.64 97.09 38.39 36.77 2.92M 01 : 47 : 38

Model Jz −24.09 −24.11 14.27 96.44 6.24 37.25 2.79M 01 : 35 : 45

Model Ks −24.11 −24.05 93.10 16.26 38.07 8.19 2.93M 01 : 39 : 54

Model Kz −24.22 −24.22 12.34 95.83 3.03 37.75 2.80M 01 : 40 : 42
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FIGURE 10: Task classification accuracy across subject ID for Stress dataset.
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FIGURE 11: Task classification accuracy as a function of time complexity for Stress dataset.
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